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Abstract1

Neurons are diverse and can be differentiated by their morphological, electrophysiological, and molec-2

ular properties. Current morphology-based classification approaches largely rely on the dendritic tree struc-3

ture or on the overall axonal projection layout. Here, we use data from public databases of neuronal re-4

constructions and membrane properties to study the characteristics of the axonal and dendritic trees for5

interneuron classification. We show that combining signal propagation patterns observed by biophysical6

simulations of the activity along ramified axonal trees with morphological parameters of the axonal and7

dendritic trees, significantly improve classification results compared to previous approaches. The classifica-8

tion schemes introduced here can be utilized to robustly classify neuronal subtypes in a functionally relevant9

manner. Our work paves the way for understanding and utilizing form-function principles in realistic neu-10

ronal reconstructions.11

Introduction12

Quantitative analysis of neuronal types and their properties is critical for better understanding and deciphering13

brain function (1, 2). Despite the attempts to standardize the terminology for neuronal types, there is no clear14

consensus regarding neuron nomenclature, leaving neuronal classification as an ongoing challenge (3, 4). To15

date, interneuron classification is based on morphology (5), membrane and firing patterns (6, 7), connectivity16

patterns (8), neurochemical markers (9), transcriptome (10–12), and epigenomics (13). The morphology-based17

classification approaches include dendritic tree geometry (14, 15) and axonal projection (16, 17), where direc-18

tionalities of axons are taken into account. The interneuron’s axonal tree arbor enables better classification of19

cell types than the dendritic tree (8, 18). Topological persistence-based methods were also developed to sup-20

port comparisons between individual neurons and classification of neurons (19, 20). Topological motifs of the21

axonal tree were found to differentiate interneurons and pyramidal cells (21, 22). So far, no studies have used22

the geometrical properties of the axonal tree, specifically the axonal branch diameters and lengths, for neuronal23

classification.24

Different types of neurons have different ion channels with various kinematics and densities, spreading25

across the soma, axons, and dendrites (23, 24). As part of the Blue Brain Project (BBP), evolutionary al-26

gorithms were used to fit the experimental recordings of rat cortical neurons with specific ion channel types27

and parameters. Firing patterns are commonly defined by neuronal responses to step currents at the soma.28

Combinations of continuous, delayed, and bursting onset patterns, with accommodating, non-accommodating,29

stuttering, irregular, and adapting steady-state behaviors, led to establishing eleven electrical types (e-types),30

ten of which exist in interneurons and one in pyramidal cells. The distribution of each of the ion channels31

along specific neuronal types and cortical layers as well as the fitted parameters are indicated in the Neocortical32

Microcircuit Collaboration Portal (NMC) (25). Hence, activity-based neuronal classification is a promising and33

interesting path that remains to be explored.34
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Here, we have leveraged the advancement of imaging techniques that led to growth in high-resolution 3D35

reconstructions along with the development of big neuronal morphology databases, such as the Blue Brain36

Project (26), the Allen Institute Brain Atlas (27), and NeuroMorpho.Org (28), to classify interneurons into37

subtypes based on their morphology and activity. We first classified interneurons based on axonal tree mor-38

phology parameters, obtaining fairly accurate discrimination. Adding dendritic tree morphology to the axonal39

one improved the prediction rates. Finally, we considered an axonal tree activity-based neuronal classification40

and further improved the classification’s results. Building a classification scheme based on all these features is41

shown here to robustly classify neurons in a functionally relevant manner.42

Results43

Classification of interneuron types by morphology44

To classify interneurons based on axonal tree morphology, high-resolution traced neurons were analyzed. For45

this purpose, neuron reconstructions were downloaded from the NeuroMorpho.Org database, and filtered for46

several criteria to obtain a high-quality dataset for classification (Table 1). Only neurons from a cortex with47

at least 10 axonal branches and 1,000 axonal segments were included. To achieve high precision in axonal48

tree geometry, only neurons with at least 10 axonal diameter values measured were included. The resulting49

filtered dataset is diverse because the interneurons were taken from different cortical layers of male and female50

rats (n=312, 78%) and mice (n=90, 22%), and were analyzed by different labs. We focus here on the most51

prominent interneuron types: basket cell (BC), Martinotti cell (MC), chandelier cell (CHC), neurogliaform52

cell (NGF), bitufted cell (BTC), double-bouquet cell (DBC), and bipolar cell (BP) (29). Figure 1A–G show53

representative examples of the interneuron types.54

Filter criteria basket Martinotti neurogilaform bitufted double bouquet chandelier bipolar

All data in NeuroMorpho.Org 7.4 829 294 209 93 64 68 606

Cortex only 564 228 139 88 63 36 40

With both axon and dendrite data 508 224 127 56 56 31 40

≥ 10 axonal branches and ≥ 1, 000 ax-
onal segments

437 193 122 53 52 29 34

≥ 10 axonal diameter values measured 196 99 40 20 20 17 10

Table 1: Neuron reconstructions filtration. The table summarizes the number of neurons that were included after each
filtration step according to their types.

Each neuron reconstruction is characterized by 28 features that can be divided into three categories: over-55

all topology, branch length, and diameter (Table 2). Overall topology measurements include the number of56

branches, branch order, Sholl analysis, the axonal tree size, and symmetry. Branch length-related parameters57

include the total length, branch lengths, path lengths, and the branch length divided by the square root of the58

diameter. The diameter-related parameters include the branch diameter and the geometric ratio (GR). GR is59

defined as the ratio between the sum of the diameter of the two daughter branches and the mother branch, to60

which a 3/2 power exponent is applied. These features are expected to reflect signal propagation dynamics61

along the axonal tree (30, 31).62

To avoid biases in classification due to unequal group sizes, and to decrease simulation time we down-63

sampled our data to include 16 neurons in each group. These neurons were selected as the reconstructions with64

the highest number of diameter values measured from each group. We applied a 4-fold cross validation scheme65

with 1,000 repeats, and used a multinomial logistic regression approach with l2 regularization to classify the66

data. The resulting F1-scores are presented in Fig. 1H. F1-scores range between 0.702 for basket cells, and67

0.902 for chandelier, resulting in an average F1-score of 0.777, based only on the axonal tree’s morphological68

parameters. These results are supported by the fact that chandelier cells are, indeed, the easiest cells for experts69

to classify manually (5). Furthermore, basket cells are heterogeneous, commonly divided into large, nest, and70

small basket cell subclasses (26). A noticeable similarity between the axonal trees of the double-bouquet and71

Martinotti cells can be seen in Fig. 1H. This resemblance supports previous studies that showed the similarity72

between the electrophysiological properties of these two types of neurons (32). A complement analysis of73

unsupervised clustering was performed on the morphological parameters for each neuron and is presented in74
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Figure 1: Classification by morphology. Representative examples of different interneuronal types. Line width
is proportional to the axonal (blue) or dendritic (red) segment’s corresponding diameter. Data are projected into the
XY plane. Cells used for visualizations are as follows: A. NMO 06143, B. NMO 61613, C. NMO 79459, D. NMO
61580, E. NMO 37062, F. NMO 04548, and G. NMO 61602. F1-score matrices for H. Axonal tree morphology only
(average F1-score: 0.777), I. Dendritic tree morphology only (average F1-score: 0.488), and J. Axonal and dendritic tree
morphologies combined (average F1-score: 0.817).

fig. S1.75

To compare the above classification based on axonal tree morphology to a more common classification76

based on dendritic tree morphology, we applied an analogous classification approach to the dendritic trees of77

the same neurons. The resulting F1-scores are presented in Fig. 1I. The dendritic tree-based classification78

better detects neurogliaform cells (F1-score of 0.83 compared to 0.356–0.547 in other cell types). This result79
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Description
1 The number of branches
2 Symmetry – mean of the ratio between the number of children in each daughter branch
3 Maximum branch order
4 Mean branch order
5 Difference between maximum and minimum on the x-coordinates (µm)

6 Difference between maximum and minimum on the y-coordinates (µm)

7 Difference between maximum and minimum on the z-coordinates (µm)

8 Sholl analysis – the number of branch intersections at a radius of 100µm from the soma in 3D
9 Sholl analysis – the number of branch intersections at a radius of 200µm from the soma in 3D
10 Sholl analysis – the number of branch intersections at a radius of 300µm from the soma in 3D
11 The number of branches longer than 200µm

12 The number of branches longer than 300µm

13 The number of branches longer than 400µm

14 Maximum path length, the distance from the soma to the farther leaf (µm)

15 Minimum path length, the distance from the soma to the closer leaf (µm)

16 Mean path length, the distance from the soma to the closer leaf (µm)

17 Maximum branch length (µm)

18 Mean branch length (µm)

19 The total length of all branches in the axonal tree (µm)

20 Maximum branch length divided by the square root of the branch diameter
21 Mean branch length divided by the square root of the branch diameter
22 Maximum branch diameter (µm)

23 Mean branch diameter (µm)

24 The number of GRs above 2
25 The number of GRs above 3
26 The maximum GR value of all branching points
27 The mean GR value of all branching points
28 The percentage the of bifurcations with GR above 2

Table 2: Morphological features of the axonal tree.

agrees with the observation that neurogliaform cells are known for their thinness and abundance of radiating80

dendrites (33). In fact, of the six cell types, this is the only case in which the dendritic tree-based classification81

performs better than the axonal tree-based classification (F1-score of 0.83 compared to 0.781). Interestingly,82

the dendritic tree-based classification performs poorly on chandelier cells (F1-score of 0.356), in contrast to83

the axonal tree-based classification, that classifies these cells with a very high success rate (F1-score of 0.902).84

Note that bitufted cells are better differentiated by the axonal tree, even though their name was coined due to85

their dendritic tree structure.86

We next combined axonal and dendritic tree morphology parameters and applied the same classification87

scheme as before. This resulted in an improved classification performance: the average F1-score increased88

from 0.777 for axonal trees only and 0.488 for dendritic trees only to 0.817 for the two combined (Fig. 1J).89

The fitted classification models allow us to quantify the contribution of each feature to the classification90

(fig. S2). For example, neurogliaform cells are characterized by symmetrical topology, high Sholl values at91

100µm, and high values of mean GR of the axonal tree. In the dendritic tree, however, they are characterized92

by low values of mean GR. In contrast, Martinotti cells have low values of the mean GR in the axonal tree.93

Bitufted cells have high values of mean branch length and mean branch length divided by the square root of94

diameter; Chandelier cells are characterized by high values of the maximum dendritic branch length and the95

maximum path length.96

Classification of interneuron types by signal propagation dynamics97

To study signal propagation dynamics, we measured the response to current stimulus pulses injected into the98

soma at various frequencies along the axonal tree. Figure 2 shows an example of simulated neuronal activity99

along axonal branches of a basket cell. In this example, we used the membrane properties of the ‘continuous100

non-accommodating’ (cNAC) e-type, obtained from the BBP repertoire to simulate signal propagation. In101

the soma, all the stimulus pulses lead to action potential (denoted as ‘1’), and in the other probed locations102

intermitted trains occur (denoted as ‘2–4’).103

Figure 3 shows the electrical response along the axonal tree for different stimulus frequencies for the cNAC104

e-type. At 200Hz (Fig. 3A) the axonal tree is split into two subtrees, each exhibits a different firing pattern,105

in particular, an uninterrupted train and a ‘1:1’ pattern in which every other pulse propagates. For a stimulus106
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Figure 2: Activity recorded along the axonal tree. A. An XY projection for a basket cell (NMO 06143). The arrows
indicate the location in which the stimulus is induced and the locations in which the propagated signal is recorded.
Dendrites are in red, and the axonal branches are colored according to the firing pattern response. B. An example of firing
patterns in four different locations. Panels 1–4 (indicated in the top right part of each panel) correspond to the arrows
shown in (A). C. Axonogram: a dendrogram-like graph of the axonal tree only. Horizontal line widths indicate axonal
diameters. D. Raster plot of the electrical activity; each row represents the activity at the corresponding (same height)
axonal branch in (C). Line color indicates the fraction of spike train that propagates: maroon – 1, orange – 0.75, deep sky
blue – 0.66, violet – 0.5, and navy – 0.375. Black squares on the bottom row indicate the current pulses applied to the
soma (330Hz). The response to the first 1, 000ms is not shown, to rule out the influence of the initial condition.

frequency of 300Hz (Fig. 3B), there are 8 subtrees with three different response types, and at 400Hz (Fig. 3C),107

there are 23 subtrees with five different response types. We counted the number of subtrees as a function of108

stimulus frequency (Figure 3D), and obtained a characteristic curve that will be used for the classification. In109

addition to the cNAC, we generated three other curves from the cAC, bNAC, and bAC e-types. The decision110

to focus on these e-types resulted from an analysis that showed a high degree of propagating signal similarity111

between e-types (see fig. S3).112

We then tested the possibility of using neuronal activity signatures to classify interneuron types. To this113

end, we have engineered activity-based features from Hill diversity indexes (see Methods). Figure S4 shows114
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Figure 3: Effects of stimulus frequency on the signal propagation dynamics. Axonograms showing the responses
of the same interneuron (as in Fig. 2) to three stimulus frequencies are presented in A. (200Hz), B. (300Hz), and
C. (400Hz). D. The number of subtrees as a function of stimulus frequency. The dots (marked in ‘A’, ‘B’, and ‘C’)
correspond to the scenarios presented in (A), (B), and (C). F1-score matrices for E. Activity only (average F1-score:
0.767), F. Axonal morphology and activity combined (average F1-score: 0.895), and G. Axonal and dendritic morphology
and activity combined (average F1-score: 0.94).

the mean and standard deviation of the q = 0 diversity index as a function of the stimulus frequency. Note115

that for q = 0, the diversity index is equal to the number of subtrees. Similar to the morphology-based116

classification, we used multinomial logistic regression, and assessed it with a 4-fold cross validation scheme117

with 1,000 repeats. Figures 3E presents the classification results based on the axonal tree activity (an average118

F1-score of 0.767). Combining axonal morphology (Fig. 1H) with axonal tree activity (Fig. 3E) improves the119

classification’s average F1-score from 0.777 and 0.767 to 0.895 (Fig. 3F). Including the morphology of the120

dendritic tree as well resulted in an average F1-score of 0.94 (Fig 3G). The classification model results for each121

neuron are presented in Table S1.122

Discussion123

Numerous studies published in recent years used a variety of approaches to classify neurons. Standard classifi-124

cation approaches are based on morphology. In particular, they utilize soma position, dendritic geometry, gen-125

eral axonal projections, and connectivity features (4). Here we used the axonal tree morphology for interneuron126

classification, resulting in better results compared with classification based on the dendritic tree morphology.127
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Combining axonal tree morphology with dendritic tree morphology and activity patterns further improved the128

classification results. For the data analyzed here, the average F1-score changed from 0.777 for axonal trees129

and 0.488 for dendritic trees to 0.817 for the two combined. Combining also the activity patterns significantly130

improved the F1-score to 0.94.131

Interneuron subtypes are known to shape the electrophysiological activity dynamics (34). Therefore, the132

use of activity-based features as classifiers is important (35). Teeter et al. used simple generalized leaky133

integrate-and-fire point neuron models to classify transgenic lines (36). Previous studies have also shown134

how dendritic tree geometry affects the electrical activity in neurons. It was demonstrated that in activity135

simulations taking into account the dendritic tree morphology, rather than a point neuron, can capture local136

non-linear effects (37). In this study, we used realistic neuronal morphologies and dynamics for classification137

of interneurons. To this end, the soma was stimulated with a wide range of current pulses frequencies, since138

it was shown that high-frequency trains may exist in fast-spiking neurons and in bursting (38, 39). Then, we139

recorded the simulated activity along each branch of the axonal tree, and not only at the soma. This revealed140

diverse response patterns already at the single neuron level. Importantly, we showed that these firing patterns141

can be used to classify interneurons into their known subtypes. Our results indicate that it is beneficial for142

modeling signal propagation dynamics to include the full biophysical neuronal structure including the axonal143

tree. In particular, precise measurements of neuronal processes were shown here to strongly affect simulation144

results in single neuron models. In the future, advanced imaging tools may be used to explore the activity along145

the axonal tree in real neurons. This will allow to study the effects of geometry on the accuracy of activity146

simulations.147

Due to the lack of accepted nomenclature and no complete agreement between experts, the labels given by148

a specific lab, provided by NeuroMorpho.Org, are prone to errors. It can be seen in table S1 and in fig. S1,149

that there are neurons that evidently belong to a different type than the one tagged by NeuroMorpho.Org (e.g.,150

NMO_37137 and NMO_61618). Discarding these neurons may further improve classification results. Despite151

tremendous progress in imaging and reconstruction techniques, the amount of quality data is not sufficient.152

More data of high-resolution reconstructions from diverse sources are of utmost importance for more compre-153

hensive species dependent neuron classification. When such additional data become available, neurons of rats,154

mice, and humans, from different brain regions and layers, could be independently classified. The electrical155

membrane properties of the reconstructions used here, were fitted by the BBP to the soma, dendrites, and the156

axon initial segment, and do not include the entire axonal tree, axonal boutons, and myelin sheath (26). Nev-157

ertheless, these properties resemble a close approximation of an actual mechanism, and yielded an excellent158

classifications. Fitting the electrical membrane properties along all the axonal tree, can further improve our159

understanding of signal propagation in neurons.160

Classifying neurons into subtypes is debatable; it is not yet clear that neurons can be described by a set161

of distinct classes or should they be treated as a continuum of phenotypes (18). The approach used here of162

combining dendritic and axonal tree morphologies with activity patterns can be utilized in an unsupervised163

fashion to examine the clusters of subtypes without prior assumptions. This investigation will also advance164

standardization toward consensus regarding neuronal type nomenclature.165

Materials and Methods166

Simulations167

Digitally reconstructed neurons were downloaded from NeuroMorpho.Org version 7.4 (28). All reconstructions168

were produced in the same staining method, by bright-field images of biocytin filled neurons. Each neuron’s169

reconstructed data is stored in an SWC file. We used the notation of branch to describe an axonal section170

between two branching points, or between a branching point and a termination point (leaf), and a segment to171

describe a small compartment in 3D space. Several successive segments were used to construct a branch. The172

SWC files were imported into NEURON simulation using the Import3D tool, which converts all the segments of173

each branch into equivalent diameter cables. The neuronal activity simulations were conducted using NEURON174

simulation environment version 7.5 embedded in Python 2.7.13 (40). The same version of Python was used for175

all other analyses presented here.176
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Membrane electrical properties177

To simulate signal propagation dynamics, ion channel mechanisms with different densities were introduced into178

the reconstructed neurons. For realistic modeling, we used membrane properties borrowed from the BBP (26).179

These e-types were fitted to experiments produced in the cortex neurons of Wistar (Han) rats at a temperature180

of 34◦C. Each e-type is constructed from specific ion channel types with varying densities at the soma, axons,181

and basal and apical dendrites. Details of the ion channels, their kinetics, and other parameters can be found in182

the NMC portal (25) and in the attached files there. The specific equations and parameters used here were taken183

from the following reconstructions: L23 LBC cNAC187 5, L23 DBC cACint209 1, L23 LBC bNAC219 1,184

L5 LBC bAC217 4, and L5 STPC cADpyr.185

Current pulses were stimulated in the soma, with an amplitude of 20µA and a duration of 1ms, for a range186

of frequencies. Electrical responses were recorded at the center of each axonal branch. For the raster plots (e.g.,187

Fig. 2D), a spike was defined when the voltage peak amplitude exceeded a zero voltage threshold. Voltage peaks188

that were separated by less than 1ms were discarded to avoid discretization errors.189

Classification190

Supervised classification was performed using multinomial logistic regression. We used the LogisticRegression191

function from the Scikit-learn python library, with an l2 regularization penalty. For the classification, 1,000192

4-fold cross validation repeats were produced, i.e., 1,000 choices of 75% of the data for training and 25% for193

testing the model. All morphological parameters were first log-transformed, and then standardized for this194

classification. The parameters for both the training and test sets were standardized according to the mean195

and standard deviation of the training set. Feature selection was performed in a recursive way where in each196

iteration, the worst feature of each neuronal type was discarded, to achieve the optimize features for the final197

model. Sensitivity was calculated by normalizing each value in the confusion matrix by the sum of the row to198

which it belongs. Precision was calculated similarly but normalization was done according to the column of199

the confusion matrix. F1-score is defined as the harmonic average of sensitivity and precision (Equation 1).200

F1 = 2× precision× sensitivity
precision+ sensitivity

(1)

For activity-based classification, the Hill diversity index (Equation 2) was calculated as a function of frequency201

for each interneuron type. The Hill diversity index was calculated for q ∈ {0, 1}, for four e-types, and two202

definitions of a subgroup: 1. A subtree with an identical response, and 2. A set of branches with an identical203

response (possibly in more than one subtree). The Hill diversity index is defined as204

qD =

( R∑
i=1

P qi

)1/(1−q)
(2)

where R is the number of groups (“species” according to its original definition), and Pi is the normalized205

number of members in each group. 0D equals the number of groups, and 1D converges to the exponent of206

Shanon Entropy (Equation 3).207

1D = exp

(
−

R∑
i=1

Piln(pi)

)
(3)

Code availability208

The code for the models and simulations is publicly available on Github:209

https://github.com/NetanelOfer/Axonal tree classification.210

Supplementary Materials211

Table S1. Detailed confusion matrix.212

Fig. S1. A heatmap comparing the distributions of morphological parameters.213

Fig. S2. Logistic regression coefficients.214

Fig. S3. Comparison between 10 e-types from the BBP.215

Fig. S4. Axonal response characterized by diversity index as a function of stimulus frequency.216
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Type NMO MC BC BTC CHC DBC NGF
Martinotti NMO 06140 250 4 0 0 0 0

NMO 36965 194 0 0 56 1 0
NMO 37190 245 2 2 0 3 1
NMO 37290 202 0 38 17 0 0
NMO 37291 256 0 0 0 0 0
NMO 37297 235 0 0 0 0 0
NMO 37301 233 5 0 0 0 0
NMO 37672 269 0 0 0 0 0
NMO 37787 201 3 47 0 0 2
NMO 79457 213 0 0 0 0 0
NMO 79458 269 0 0 0 0 0
NMO 79459 245 0 0 0 0 0
NMO 79462 270 4 0 0 0 0
NMO 79463 230 0 0 0 8 0
NMO 79464 236 0 0 0 0 0
NMO 79465 260 0 0 0 0 0

basket NMO 06143 1 236 0 0 0 0
NMO 37015 0 268 0 5 0 0
NMO 37112 2 227 0 1 5 0
NMO 37117 129 108 2 7 2 9
NMO 37137 0 73 0 30 4 151
NMO 37188 0 203 30 0 15 0
NMO 37310 0 254 0 0 0 0
NMO 37311 2 287 0 1 0 0
NMO 37504 0 248 0 0 0 1
NMO 37505 0 232 0 0 1 15
NMO 37529 15 207 0 24 0 0
NMO 37841 0 232 0 0 1 0
NMO 37844 0 148 101 0 7 0
NMO 37862 2 260 0 0 6 1
NMO 79468 96 159 0 0 1 0
NMO 79469 17 212 0 0 0 0

bitufted NMO 37096 0 0 250 0 0 0
NMO 37099 0 0 254 0 0 0
NMO 37110 0 0 256 0 0 0
NMO 37127 0 0 255 0 2 0
NMO 37244 0 3 260 0 0 0
NMO 37296 0 0 254 0 0 0
NMO 37302 0 0 243 0 0 0
NMO 37316 0 0 252 0 0 0
NMO 37324 0 0 244 0 0 0
NMO 37385 0 0 267 0 0 0
NMO 37691 0 0 241 0 1 0
NMO 37704 0 0 260 0 0 0
NMO 37776 0 0 236 0 0 0
NMO 37781 0 0 226 0 0 0
NMO 61570 34 4 198 0 3 0
NMO 61580 0 5 152 0 84 17

chandelier NMO 04548 0 0 0 241 0 0
NMO 07472 0 0 0 249 0 0
NMO 35831 0 0 0 248 0 0
NMO 36983 0 0 0 261 0 0
NMO 37114 1 0 0 245 1 0
NMO 37133 0 4 0 249 0 0
NMO 37138 0 0 0 264 0 0
NMO 37247 0 1 0 279 0 0
NMO 37391 0 0 0 244 0 0
NMO 37424 0 0 0 235 0 0
NMO 37537 0 0 0 255 0 0
NMO 37548 0 4 0 240 0 0
NMO 37763 0 0 0 236 0 0
NMO 37764 0 0 0 240 0 0
NMO 37818 0 0 0 245 0 0
NMO 37821 0 0 0 261 0 0

double-bouquet NMO 37148 0 0 3 0 264 6
NMO 37171 0 0 5 0 237 0
NMO 37178 0 0 0 1 252 0
NMO 37184 0 0 1 0 240 0
NMO 37363 0 0 0 0 248 0
NMO 37422 1 0 0 0 256 0
NMO 37423 0 0 0 0 243 0
NMO 37469 0 0 0 0 260 0
NMO 37475 0 30 0 1 228 0
NMO 37694 0 0 0 0 264 0
NMO 37695 0 0 1 0 263 0
NMO 37699 0 0 0 0 263 0
NMO 37724 0 1 2 0 245 17
NMO 37762 0 0 0 0 248 0
NMO 61613 3 42 0 0 207 0
NMO 61618 9 161 3 0 63 3

neurogliaform NMO 06138 0 0 0 0 0 244
NMO 06139 14 23 22 0 0 191
NMO 37059 0 0 20 0 0 222
NMO 37061 0 0 0 0 0 271
NMO 37062 0 0 0 0 0 244
NMO 37063 0 0 0 0 0 252
NMO 37075 0 0 0 0 0 266
NMO 37076 0 0 0 0 0 230
NMO 37243 0 0 0 0 0 234
NMO 37517 0 0 0 0 0 237
NMO 37623 0 0 0 0 2 273
NMO 37625 0 0 0 0 0 244
NMO 37640 0 0 3 0 0 250
NMO 37661 0 0 0 0 7 251
NMO 37720 1 2 1 1 0 226
NMO 37721 0 3 0 0 0 240

Table S1: Detailed confusion matrix. The results of the classification based on the axonal and dendritic morphology
and activity (an elaboration of Fig. 3G). The maximum number in each row is indicated by blue background.
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Figure S1: A heatmap comparing the distributions of morphological parameters. The parameters were transferred
to z-score values. The NeuroMorpho.Org IDs are indicated for each neuron reconstruction on the right side, and the
interneuron subtype is indicated by the ‘row color’ on the left side. The columns are the 28 morphological parameters
organized according to the above dendrogram. The left dendrogram clusters the neurons in an unsupervised manner.
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Figure S2: Logistic regression coefficients. The average of the logistic regression coefficients for the 1,000 repeats of
the axonal (A) and dendritic (B) trees’ morphology. Positive values indicate the significance of this feature for the specific
interneuron type.
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Figure S3: Comparison between 10 e-types from the BBP. A heatmap showing the similarity between all 10 interneuron
e-types under current pulse frequencies of 100Hz, 200Hz, 300Hz, and 400Hz in terms of firing pattern, in a basket
cell (NMO 06143). In the original experiments conducted by BBP, an elongated current step was induced, resulting in
significant differences between these 10 e-types. In our case, the soma was stimulated with strong current pulses, leading
to very similar responses in several e-types. Hence, we chose to focus on four e-types: cAC, bAC, bNAC, and cNAC.
The response for stimulus frequency of 300Hz. B. ‘cNAC’ (the same as in Fig. 3B), C. ‘cAC’, D. ‘bNAC’, and E. ‘bAC’
e-types. The line color indicates the fraction of spike train that propagates: maroon – 1, orange – 0.75, deep sky blue –
0.66, violet – 0.5, navy – 0.375, dim gray – 0.2, and silver – 0. The same neuron as in Fig. 2.
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Figure S4: Axonal response characterized by diversity index as a function of stimulus frequency. Solid lines rep-
resent the mean diversity index (q = 0) and the shaded regions represent plus minus one standard deviation. Each
panel shows the response for another e-type: A. Continuous accommodating (cAC), B. Continuous non-accommodating
(cNAC), C. Burst accommodating (bAC), and D. Burst non-accommodating (bNAC).
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