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Abstract

Background: Bovine milk provides an important source of nutrition in much of
the Western world, forming components of many food products. Over many years,
artificial selection has substantially improved milk production by cows. However,
the genes underlying milk production quantitative trait loci (QTL) remain
relatively poorly characterised. Here, we investigate a previously-reported QTL
located at the CSF2RB locus, for several milk production phenotypes, to better
understand its underlying genetic and molecular causes.
Results: Using a population of 29,350 taurine dairy cattle, we conducted
association analyses for milk yield and composition traits, and identified highly
significant QTL for milk yield, milk fat concentration, and milk protein
concentration. Strikingly, protein concentration and milk yield appear to show
co-located yet genetically distinct QTL. To attempt to understand the molecular
mechanisms that might be mediating these effects, gene expression data were used
to investigate eQTL for eleven genes in the broader interval. This analysis
highlighted genetic impacts on CSF2RB and NCF4 expression that share similar
association signatures to those observed for lactation QTL, strongly implicating
one or both of these genes as the cause of these effects. Using the same gene
expression dataset representing 357 lactating cows, we also identified 38 novel
RNA editing sites in the 3′ UTR of CSF2RB transcripts. The extent to which two
of these sites were edited also appears to be genetically co-regulated with lactation
QTL, highlighting a further layer of regulatory complexity implicating the CSF2RB
gene.
Conclusions:
This chromosome 5 locus presents a diversity of molecular and lactation QTL,

likely representing multiple overlapping effects that, at a minimum, highlight the
CSF2RB gene as having a causal role in these processes.
Keywords: GWAS; Milk; QTL mapping; RNA sequencing; Genome sequencing;
RNA editing

Background
Liquid milk provides a source of nutrition to neonate mammals, and is also used as
a convenient source of nutrition for both infant and adult humans. In much of the
Western world, milk is primarily produced for human consumption by taurine cattle
(Bos taurus) dairy breeds. Within these breeds, many generations of selection have
improved milk production capacity and efficiency. However, despite numerous recent
genome-wide association studies (GWAS) e.g. [1, 2, 3, 4], major QTL remain for
which no causative gene has been definitively assigned.
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Several genes with substantial impacts on milk yield are known, including DGAT1
[5], ABCG2 [6], GHR [7], SLC37A1 [8], and MGST1 [9]. Recently, as part of work
presented elsewhere [10], we performed a milk volume genome-wide association
analysis in 4,982 mixed breed cattle using a BayesB model [11, 12], using a panel
of 3,695 variants selected as tag-SNPs representing expression QTL (eQTL) from
lactating mammary tissue. Of the top three loci explaining the greatest proportion
of genetic variance in this model, genes representing the top and second to top
effects have been well described for their role in milk production effects (DGAT1
and MGST1 respectively [5, 9]), whereas no causative gene appears to have been
definitively assigned for the third signal at chromosome 5:75–76 Mbp.
This locus broadly overlaps QTL reported previously for milk yield [13, 3], milk

protein yield [13, 3], milk protein concentration [14, 1, 2], and milk fat concentration
[9, 2].Although no gene has been definitively implicated, Pausch et al [2] noted
significant markers mapping adjacent to the CSF2RB, NCF4 genes, and TST genes,
proposing the latter as the most likely candidate based on its proximity to the top
associated variant. Other studies have proposed CSF2RB due to its high level of
expression in the mammary gland [14, 1], or involvement in the JAK-STAT signalling
pathway [13, 3]. Other nearby genes speculated to cause these effects also include
MYH9 [3] and NCF4 [13].
Given these observations, and the magnitude and diversity of effects at this locus,

the aim of this study was to investigate the chromosome 5 region in detail. By
combining information from milk yield and composition traits with gene expression
data from a large bovine mammary RNA sequence dataset, we highlight multiple
lactation, gene expression, and RNA-editing QTL segregating at the locus, presenting
CSF2RB as the most likely causative gene responsible for these effects.

Results
Sequence-based association analysis at the chr5 interval
Fine mapping of milk yield and protein concentration QTL at the chr5:75–76Mbp
locus was performed using imputed sequence genotypes representing >30,000 cows.
These animals had been physically genotyped using the GeneSeek Genomic Profiler
(GGP) chip, where this panel had also been augmented with 224 custom sequence
variants representing the chromosome 5 window, enriching the interval for QTL-
tag variants identified from previous, preliminary analyses of the locus (spanning
74.8–76.2Mbp; see Materials and Methods). Sequence data were imputed using
Beagle4 [15] (74.8–76.2Mbp; 11,733 markers), and phenotypes were produced from
herd-test records (N=29,350 cows) from the animals’ first lactations to derive values
for milk yield (MY), protein yield (PY), fat yield (FY), protein concentration (PC),
and fat concentration (FC; see Materials and Methods).
Mixed linear model association (MLMA) analyses were conducted using GCTA [16].

The top associated variant for each of the five phenotypes is shown in Table 1. All
QTL were found to be significant at the genome-wide threshold 5 × 10−8. The most
significant QTL was identified for protein concentration, followed by fat concentration
and milk yield. The fat yield phenotype exhibited the least significant QTL. The
protein concentration and milk yield phenotype QTL are illustrated in Figure 1.
Alongside the MLMA-LOCO analysis, AI-REML was performed, using a GRM

calculated over all chromosomes, to estimate narrow-sense heritabilities (h2; Table 2).
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To investigate these QTL further, the linkage disequilibrium (LD) statistics (R2)
between each pair of top variants were calculated (Figure 2). Strong LD was observed
between the top variants for the MY, FC, and PC phenotypes (MY vs FC tag variants
R2 = 0.887; MY vs PC tag variants R2 = 0.991).

Functional prediction of variant effects suggests regulatory QTL mechanisms
To assess potential functional effects of the statistically implicated QTL variants,
all polymorphisms in strong LD (R2 > 0.9) with the top-ranked QTL variants for
each trait were extracted (N=365 variants), and analysed using the Ensembl Variant
Effect Predictor (VEP) [17]. The majority of these variants (N=247) were predicted
to map outside of genes, while 113 were predicted to be intronic, with 58 in transcript
ENSBTAT00000009911.4 (NCF4) and 55 in ENSBTAT00000011947.5 (CSF2RB).
The remaining five variants were predicted to be synonymous mutations, with two
in ENSBTAP00000009911.4 (NCF4) at positions p.Gln145= and p.Tyr243=, and
three in ENSBTAP00000011947.5 (CSF2RB) at positions p.Asn58=, p.Tyr405=,
and p.Glu424=. Importantly, none of the highly associated variants were predicted
to change the protein sequences of genes, suggesting a regulatory mode of effect as
the likely mechanism(s) of the QTL.

Expression QTL analysis highlights three genes differentially expressed by genotype
To look for cis-eQTL effects that might explain the lactation QTL, gene expression
levels were calculated for genes in the BTA5:75-76Mbp window, using RNAseq data
representing lactating mammary tissue biopsies from 357 cows (Figure 1, panel C).
Expression levels in fragments per kilobase of transcript per million mapped reads
(FPKM) and transcripts per million mapped reads (TPM) were calculated using
Stringtie [18] and are shown in Table 3 for transcripts where FPKM > 0.1. The gene
with the highest expression level was CSF2RB, consistent with previous observations
in murine mammary RNAseq data [19]. Moderate expression was also observed
for the candidate gene MYH9. However, the expression level of NCF4 was very
low, at FPKM = 0.406. The highest correlation between pairs of gene expression
levels was observed for TST and MPST (r = 0.545), concordant with the published
observation of a shared bidirectional promoter for these two genes [20].
Association mapping was then conducted for the eleven expressed genes in Table

3. To this end, gene expression data were first scaled using the variance-stabilising
transformation (VST) implemented in DESeq [21]. A GRM was then calculated
for the 357 cows representing the RNAseq dataset, and the MLMA-LOCO method
performed as described for analysis of lactation traits, above. This yielded genome-
wide significant eQTL for three genes: CSF2RB (1.33 × 10−26), NCF4 (4.30 × 10−16),
and TXN2 (5.85 × 10−12) (see Table 3 and Figure 3). All three genes locate within
the peaks of their respective eQTL, demonstrating regulation in cis.
In cases where genetic regulation of gene expression (i.e. an eQTL) underlies a

complex trait QTL, we expect that both QTL should share similar association
signals, with the most (and least) associated variants similar between phenotypes.
To test whether any of the eleven expressed genes shared similarities with the milk
QTL, the Pearson correlation between the log10 p-values for each of the milk QTL
and eQTL were calculated. Table 4 shows the QTL:eQTL correlations for all five
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phenotypes with three significant eQTL, plus the TST gene, which did not yield a
genome-wide significant eQTL, though has been proposed as a candidate underlying
this locus. The eQTL for CSF2RB has R2 > 0.5 (r > 0.707) with three of the five
milk phenotypes, while correlations for the neighbouring gene NCF4 sit just below
this level. Neither of the TXN2 or TST genes exhibited high correlations with any
milk QTL. The eQTL for CSF2RB was also highly correlated with the NCF4 eQTL
(r = 0.863). A similar picture is obtained when examining the LD between the top
tag markers for each QTL, with high LD observed (Figure 4) among the tags for
the MY, FC, and PC phenotypes with the tags for the CSF2RB and NCF4 eQTL.

Evidence of multiple, differentially segregating QTL for milk yield and protein
concentration
Examining panel A in Figure 1 (repeated in 5A) suggested that protein concentration
might be influenced by two co-located but mechanistically independent QTL, as
a number of markers that are not in strong LD with the top marker nevertheless
exhibit very small p-values (< 1 × 10−60). To investigate this possibility, the top
associated marker (rs208375076) was fitted as a fixed effect and the MLMA-LOCO
analysis repeated using the residual, protein concentration phenotype (Figure 5B).
The new top marker (rs210293314) remained highly significant (P=1.30 × 10−24 after
adjustment, 9.31 × 10−41 before adjustment), suggesting that it is tagging a different
QTL. Adjusting the original protein concentration phenotype for rs210293314 and
repeating the MLMA-LOCO analysis yielded the result shown in Figure 5C. Here,
the most significant marker was rs208086849, a variant largely equivalent to the
top rs208375076 marker from the original, unadjusted analysis (R2 = 0.999). These
observations indeed suggest the presence of two QTL for milk protein percentage.
This analysis was repeated with the MY phenotype (Figure 5D). This phenotype

showed little evidence of a second co-locating QTL, where fitting the top associ-
ated marker (rs208473130) dropped the signal below the genome-wide significance
threshold (P=1.36 × 10−6 for marker rs378861677; 5E). However, adjusting the MY
phenotype by fitting rs378861677 and repeating the MLMA-LOCO analysis resulted
in an increase in significance for the top marker rs208473130, from 6.64 × 10−25 to
8.63 × 10−29 (5F), suggesting there may indeed be an additional weak QTL, or the
variant otherwise addresses some other confounding signal. The variants rs208086849
(from the PC analysis in the previous paragraph) and rs208473130 show very strong
LD (R2 = 0.991), suggesting that both markers are in fact tagging the same QTL
across the PC and MY traits. In contrast, variants rs210293314 (PC analysis above)
and rs378861677 show moderate to weak LD (R2 = 0.332), suggesting the two
signals tagged by these variants are genetically distinct.
Since at least two differentially segregating QTL were apparent at the locus,

it was possible that they were underpinned by different genes and/or molecular
mechanisms. To assess whether the significant, co-locating CSF2RB and NCF4 eQTL
were themselves comprised of multiple, overlapping signals (i.e. multiple cis-eQTL
driven by different regulatory elements), the top associated variants were fitted as
fixed effects to the gene expression phenotypes, with analyses rerun as above. This
yielded new top markers with p-values of 8.87 × 10−5 and 1.75 × 10−4 respectively,
suggesting that the expression of these two genes, if influenced by multiple regulatory
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factors, were weak effects or impacts that were too heavily confounded by LD to
differentiate clearly.
To look at how the eQTL might contribute to the multiple, co-locating PC QTL in

comparative terms, the SNP-adjusted PC association results were used to calculate
eQTL correlations, using the methodology described in the previous section. Notably,
these analyses resulted in improved correlations with eQTL. The correlation between
the CSF2RB cis-eQTL and the unadjusted PC phenotype was 0.754 (Figures 4 and
6A). However, using the phenotype adjusted for the marker rs210293314 yielded a
correlation of 0.807 (6B). The same pattern was observed for the NCF4 gene, where
correlations improved from 0.691 to 0.843 (6C and D). Applying the same approach
to milk yield phenotypes (unadjusted, and adjusted by marker rs37886167) gave
similar results, albeit with marginal increases: correlations with the CSF2RB eQTL
increased from 0.855 to 0.872, and correlations with the NCF4 eQTL increased from
0.692 to 0.719.
To investigate the possibility that secondary, co-locating PC and/or MY QTL

might be caused by protein-coding variants, all variants in strong LD (R2 > 0.9)
with rs210293314 (secondary PC tag-SNP) or rs378861677 (secondary MY tag-SNP)
were analysed using VEP as described previously. Of the 260 variants captured by
this analysis, two missense SNPs were identified in conjunction with rs378861677,
both mapping to exon two of the MPST gene: rs211170554 (p.Asp129Asn) with a
SIFT score of 0.88 (predicted tolerated), and rs209917448 (p.Arg47Cys) with a SIFT
score of 0.01 (predicted deleterious). In the absence of additional eQTL that might
account for the secondary PC and MY signals, these results suggest a potential
protein-coding-based mechanism for the MY effect at least.

CSF2RB encodes a promiscuously RNA-edited transcript
Previous work [22] had identified four RNA editing sites mapping to the introns of
the CSF2RB gene. Here, while manually examining RNAseq and WGS sequence
reads mapping to the gene, a surprising number of additional RNA edits were
apparent (see Materials and Methods). This included a total of 38 novel A-to-
G variant sites present in the RNAseq data, yet absent from the whole genome
sequence representing the nine cows for which both data sources were available.
These sites were present in four clusters within the 3′ UTR (Figure 7), missed from
our previously published genome-wide analysis [22] due to that analysis being based
only on reference annotations that failed to capture the full length 3′UTR sequence
evident using empirically derived gene structures from mammary RNAseq data.
Because the ADAR genes responsible for adenosine-to-inosine editing (A-to-G in
sequence reads) target double-stranded RNA [23, 24], we predicted the potential
for the sequence surrounding the edited sites to form double-stranded RNA. The
dot-plot shown in Figure 7 shows that, of the 38 edited sites (red dashed lines), 37
(97.4%) sit within regions of extended complementarity (diagonal black lines), thus
having the potential to form double stranded secondary structures.
As recently reported, we have observed a proportion of RNA-edited bases to be

genetically modulated for some sites [22]. To investigate potential genetic regulation
of editing of CSF2RB transcripts, editing proportion phenotypes were generated
(see Methods) for use in detecting RNA editing QTL (edQTL [22, 25]). Using the
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MLMA-LOCO method as applied for eQTL analysis described above, genome-wide
significant edQTL (P<5 × 10−8) were identified for 18 of the 38 sites. Because RNA
editing may impact gene expression by several different mechanisms [26, 27, 28], we
investigated whether any edQTL were correlated with the eQTL for CSF2RB. One
site, mapping to BTA5:75,750,220, had a correlation of 0.849 between the − log10
p-values of the edQTL and the eQTL. This edQTL was also strongly correlated
with the NCF4 eQTL (0.929).
As an extension to the hypothesis that edQTL might underlie changes in gene

expression (i.e. eQTL), we reasoned that one or more of the milk phenotype QTL
might also be impacted, as evidenced through correlation. Investigating this hypoth-
esis, we observed correlations > 0.707 between edQTL and the fat concentration,
protein concentration, and protein yield phenotypes (Table 5). In addition, we found
very strong correlations (> 0.9) between two edQTL (sites BTA5:75,749,101 and
BTA5:75,750,335) and the milk yield phenotype after adjusting for the genotype
of marker rs208473130 (yield QTL illustrated in Figure 5E, correlations in Fig-
ure 7). A strong correlation (0.822) was also detected between the edQTL for site
BTA5:75,748,760 and the protein concentration QTL after adjusting for marker
rs208375076 (PC QTL illustrated in Figure 5B). Like analyses of candidate protein-
coding variants, these results suggest other alternative (and likely overlapping)
mechanisms that may account for the multiple QTL segregating at the chromo-
some 5 locus.

Hypervariability at the CSF2RB locus presents an abundance of candidate causative
variants
Manual examination of the WGS alignments at the locus also revealed read depth
anomalies at approximately BTA5:75,781,300–75,782,800. This analysis revealed
a suspected 1.5 kbp deletion variant, located between the CSF2RB and TEX33
genes (downstream of the 3′ UTRs of both genes given a ‘tail to tail’ orientation).
To attempt to derive genotypes for this variant, the copy number at this site was
estimated for 560 whole genome sequenced cattle using CNVnator 0.3 [29]. The
resulting estimates of copy number formed a trimodal distribution (Figure 8A),
suggestive of a biallelic variant that could be assumed to be inherited in a Mendelian
fashion [30]. Although one pseudogene maps to the region (LOC788541 60S ribosomal
protein L7), the deleted segment appeared otherwise devoid of noteworthy genomic
features.
To investigate the candidacy of the deletion as a potential causative variant for

one or more of the QTL in the region, genotypes were called from CNVnator copy
number predictions (Materials and Methods), and the LD (R2) between the deletion
and top QTL variants investigated. Strong LD (0.887) was observed with the top
markers for the MY (rs208473130) and PC (rs208375076) phenotypes, as well as
with rs208086849, the top variant for the PC phenotype after adjusting for the
secondary QTL (Figure 8B). A slightly lower LD score was observed for the FC
phenotype (R2=0.807). The deletion allele was more frequent than the reference
allele in the NZ dairy population (deletion=0.547).
The strong LD of the ∼ 1.5 kbp deletion with key QTL tag variants qualified the

variant as a potential candidate for these QTL, so we then imputed the variant into
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the association analysis population to test for association directly. Using the same
MLMA-LOCO analysis method applied for other variants, significant associations
(P<5 × 10−8) were observed for the PC (P=7.30 × 10−71), FC (P=1.08 × 10−30),
and MY (1.18 × 10−18) phenotypes. Although highly significant, when ranking all
variants by p-value, the deletion variant never placed higher than the 400th most
significant; however, given the very large number of associated variants at the region
generally (>800 in the top 20 orders of magnitude for PC), and the fact that some
of the read-depth-based genotype calls may be erroneous, the deletion remains a
plausible candidate variant for future consideration of these QTL.

Discussion
Milk phenotype QTL
We report QTL mapping of a chromosome 5 locus for several milk yield and
composition phenotypes, with a diversity of gene expression and RNA editing QTL
that could underpin these effects. We note in particular that some phenotypes exhibit
multiple QTL, likely with distinct genetic causes. The fat and protein concentration
QTL are both in high LD with the milk yield QTL, suggesting that these effects may
be mediated by changes in the total volume of milk produced without concomitant
changes in fat or protein production. The fat and protein yield QTL are not in LD
with either each other or with milk yield. However, these two QTL are less significant
than the others by many orders of magnitude (see Table 1), suggesting that the lack
of LD may be due to insufficient power in the data set to identify reproducible tag
variants.

Candidate causative genes
Several candidate causative genes have been previously proposed to underlie lactation
effects at this locus, and based on the work presented here, we propose that one or
both of the CSF2RB and NCF4 genes are the likely candidates, with a predicted
deleterious variant in the MPST gene also providing a potential candidate for a
secondary effect milk yield QTL.
The CSF2RB gene (ENSBTAG00000009064) encodes the common beta chain

of the receptors for GM-CSF, interleukin-3, and interleukin-5, cytokines that are
involved in regulating the proliferation and differentiation of hematopoietic cells [31].
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is produced in the
mammary gland by alveolar macrophages [32] where it enhances the bactericidal
activity of milk neutrophils [33]. These receptors form a link in the JAK-STAT
signalling pathway, operating via JAK2 and STAT5 [34]. The STAT5 proteins,
especially STAT5A, are important for enabling mammopoiesis and lactogenesis
[35, 36] and directly bind the gamma-interferon-activating sequence (GAS) found in
the promoters of milk proteins such as beta-casein, [37], beta-lactoglobulin [38], and
whey acidic protein in mice [38]. The importance of this pathway is further evidenced
by associations for milk production traits observed at the STAT5 locus [39, 40, 41].
Although the relevant ligands and subunits with which CSF2RB forms complexes
are unknown in the current context, mutations that impact downstream interactions
with STAT5 proteins could be assumed to impact milk production/composition
phenotypes.
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The NCF4 gene (ENSBTAG00000007531) encodes neutrophil cytosolic factor 4,
which forms the p40-phox subunit of the NADPH oxidase enzyme complex [42]. This
enzyme produces superoxide (O−2 ), a reactive oxygen species produced in phagocytic
cells during the respiratory burst [43], intended to kill invading fungi and bacteria
[44]. NCF4 has been shown to be upregulated in mastitic mammary glands [45], and
two SNPs mapping to the NCF4 gene have been associated with elevated somatic
cell scores (SCS) [45, 46], a trait that is used as a surrogate phenotype for mastitis in
dairy animals. As cows suffering from mastitis produce smaller volumes of milk than
healthy cows [47], this provides a possible mechanism by which NCF4 could influence
milk production. A more appealing mechanism is one that involves CSF2RB or
NCF4 outside of a pathogen response context however, given that the locus is better
known for its impacts on milk production and composition in the absence of overt
mammary infection.
Both the CSF2RB and NCF4 eQTL were correlated with the MY QTL, with

the former giving stronger correlations (r = 0.849 compared to 0.682). Lower
correlations were observed between the two eQTL and the PC QTL (r = 0.754
and 0.691), however, removing one of the two apparent signals at this locus by
fitting the rs210293314 marker to the PC phenotype increased correlations for both
candidate genes. As no other genes showed similar patterns of co-association, we
consider one or more of these genes to be the best candidates at this locus. The
CSF2RB gene was expressed very strongly in mammary samples (TPM=80.1), and
by comparison, at a much higher level than NCF4 (TPM=0.51). This observation
suggests a critical role for CSF2RB-mediated signalling in lactation, and given
the plausible biological linkages of CSF2RB to these processes (via JAK-STAT
signalling), we favour CSF2RB as the more likely of these two candidates.
The TST gene (ENSBTAG00000030650) was recently proposed by Pausch et al.

[2] as a candidate for milk fat and protein percentage QTL at ∼ 75–76 Mbp on
chromosome 5. TST encodes thiosulfate sulfurtransferase, also known as rhodanese,
a mitochondrial enzyme that catalyses the conversion of cyanide plus thiosulfate into
thiocyanate plus sulfite [48]. It has also been shown that the rhodanese enzyme (in
misfolded form) can bind with 5S-rRNA, enabling its import into the mitochondria
[49]. There appears to be limited literature implicating TST in mammary devel-
opment and milk production, and given that the gene maps downstream of peak
association in our dataset, and has no prominent eQTL by which to mediate these
effects, a role for this gene seems unlikely for QTL in the NZ population. This
does not preclude the involvement of the gene in other populations, however, we
submit that the most parsimonious hypothesis is that these QTL are shared across
populations, at least partially underpinned by regulatory variants modulating the
expression of the CSF2RB gene.

RNA editing and edQTL
We previously [10] reported four RNA editing sites mapping to the CSF2RB gene, one
of which (BTA5:75,739,106) showed a significant edQTL (smallest P=6.68 × 10−13).
This site exhibited only modest correlations with the CSF2RB eQTL, or with the
milk yield or composition QTL [10].
In the current paper, we report the discovery of an additional 38 RNA-editing

sites mapping to the 3′-UTR of CSF2RB. These sites were not identified in the
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previous work as they map approximately 3 kbp downstream of the gene structure
based on the Ensembl reference annotation. Two of the novel sites, BTA5:75,749,101
and BTA5:75,750,335, exhibited edQTL with correlations exceeding 0.9 with the
milk yield QTL after adjusting for marker rs208473130. The correlation between the
CSF2RB eQTL and the same milk QTL was -0.173, suggesting that, if the lactation
effects indeed derive from an RNA-editing-based mechanism, that this mechanism is
not wholly reflected by the gene expression data used to quantify the eQTL effects.

Conclusions
We have examined a previously implicated chromosome 5 locus for milk yield and
composition traits, and identified highly significant QTL for milk yield, protein
concentration, and fat concentration. Using a large mammary RNA sequence resource,
we have conducted eQTL mapping of the locus and show that expression of CSF2RB,
a highly expressed gene that signals through pathways important to mammary
development and lactation, appears to be responsible for these effects. RNA editing
sites were also discovered in the 3′-UTR of CSF2RB, and edQTL for two of these
are correlated with one of two co-located yet differentially segregating milk yield
QTL, which was also in strong LD with a predicted deleterious missense variant
in the MPST gene. These results highlight the pleiotropic nature of the CSF2RB
gene, and showcase the mechanistic complexity of a locus that will require further
statistical and functional dissection to catalogue the full multiplicity of effects.

Methods
Genotyping and phenotyping
All cows that had been genotyped using the GGP LDv3 or LDv4 chips for which herd
test phenotypes were also available were targeted for the current study (N=29,350).
Animals representing these platforms were targeted since, based on preliminary
sequence-based association analyses not reported here, these panels had been enriched
with 365 polymorphisms identified as tag-variants of the chromosome 5 lactation
QTL (spanning a region from 74.8–76.2 Mbp; Additional File 1). These variants
included 30 SNPs from the Illumina BovineSNP50 chip (50k), added to assist with
imputation of the region and create equivalence with that platform for other analysis
applications. Tag-variants were targeted as custom content using a scheme that
attempted to genotype sites in both orientations (two primers per site), resulting in
341 custom markers on the LDv3 chip, and 342 on the LDv4 chip for this locus.
Phenotypes were calculated from their herd-test records for the three yield traits

plus fat and protein concentration in milk. These phenotypes were generated using
herd-test data from the first lactation, adjusted using an ASReml-R [50] model with
birth year, age at calving, breed, and heterosis as linear covariates, stage of lactation
as a fixed effect, season/herd as an absorbed fixed effect, and animal as a random
effect. Herd test records were sampled using Fourier-transform infrared spectroscopy
on a combination of Milkoscan FT6000 (FOSS, Hillerød, Denmark) and Bentley
FTS (Bentley, Chaska, USA) instruments.

Imputation and association analyses
Genotypes for 29,350 animals were imputed to WGS resolution in the window
of interest using Beagle 4 [15] as described previously [51, 9]. Briefly, a reference
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population of 565 animals, comprising Holstein-Friesians, Jerseys, and cross-bred
cattle, was sequenced using the Illumina HiSeq 2000 instrument to yield 100 bp
reads. Read mapping to the UMD 3.1 bovine reference genome was conducted using
BWA MEM 0.7.8 [52], followed by variant calling using GATK HaplotypeCaller 3.2
[53]. Variants were phased using Beagle 4 [15], and those with poor phasing metrics
(allelic R2 < 0.95) were excluded, yielding 12,867 variants. Quality control filtering to
further remove variants with MAF<0.01% (N=673) or Hardy-Weinberg Equilibrium
p-values <1 × 10−30 (N=461) resulted in a final set of 11,733 variants. As described
above, the imputation window was enriched for custom, physically genotyped variants
on the GGP-LDv3/4 chips, markedly increasing the scaffold density at this location.
Imputed genotypes for 639,822 autosomal markers on the Illumina BovineHD

SNP-chip were used to calculate a genomic relationship matrix (GRM) for the 29,350
animals of interest, using GCTA [54, 16]. The imputation step also used Beagle 4
software, leveraging a BovineHD-genotyped reference population of 3,389 animals.
Heritabilities for all phenotypes were calculated using this GRM with the REML
option in GCTA. A leave-one-chromosome-out (LOCO) GRM was also created
excluding chromosome 5, and used in combination with the imputed variant set and
phenotypes to perform a mixed linear model analysis (MLMA-LOCO) [55] using
GCTA.

RNAseq, gene expressions and eQTL
RNAseq data from lactating mammary gland biopsies representing 357 cows was
generated as described previously [41]. Briefly, samples were sequenced using Illumina
HiSeq 2000 instruments, yielding 100 bp paired-end reads. These were mapped to the
UMD 3.1 reference genome using TopHat2 [56]. Stringtie software [18] was used to
quantify gene expression values for genes mapping to the window BTA5:75–76Mbp,
yielding fragments per kilobase of transcript per million mapped reads (FPKM) and
transcripts per million (TPM) [57] metrics. These calculations used gene models
defined by the Ensembl gene build (release 81). Gene expression levels were also
processed using the variance-stabilising transformation (VST) function implemented
in the Bioconductor package DESeq [21] to produce expression data suitable for
analysis using linear models.
WGS-resolution genotypes were imputed using the same WGS sequence reference

described above in conjunction with a mixture of genotype panels (see Methods in
[41]) for the 357 cows, yielding 12,825 variants in the window BTA5:74.6–76.2Mbp.
Filtering to remove variants with >5% missing genotypes (N=36) or MAF <0.5%
(N=1,643) resulted in a final set containing 11,146 variants. VST-transformed gene ex-
pressions were analysed for genes with FPKM > 0.1, using the GCTA MLMA-LOCO
method described above. The GRM was calculated using physically genotyped vari-
ants from the BovineHD SNP chip for 337 cows, and imputed BovineHD genotypes
for the remaining twenty cows based on an Illumina SNP50 platform scaffold.

RNA-editing site discovery and edQTL
RNA editing in the 3′-UTR of the CSF2RB gene was investigated in the nine
discovery set animals from [22], where these animals had been previously sequenced
using both RNAseq and WGS methodologies. Editing sites were identified using
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custom scripts [22] and by manual inspection of WGS and RNAseq BAM files for
each animal. Sites were considered to represent RNA edits where: i) an A-to-G
variant was present in the RNAseq reads, but was absent from the WGS reads, and
ii) had at least five reads containing ‘G’ at the position in every animal. This yielded
38 candidate edited sites. Following the recommendations of Ramaswami et al 2012
[58] for non-Alu sites, the 38 candidate sites were examined for the presence of 5′

mismatches, simple repeats, homopolymer runs ≥ 5 bp, or splice junctions within
4 bp; however, none of the candidates were impacted by these filters, and all 38 were
retained for further analyses.
Having determined the positions of variant sites, the rate of editing at each site

was quantified in the larger ‘quantification set’ of 353 cows [22] with RNA editing
phenotypes for each site generated by transforming editing proportions using the
logit function. RNA editing QTL discovery was performed using these phenotypes
by performing MLMA-LOCO, incorporating the same GRM and imputed WGS
genotypes used for eQTL discovery (N=353 animals).
RNA secondary structure around the edited sites was predicted using dot-plots

as described by [22]. Sequence containing all 38 edited sites was extracted, along
with 800 bp upstream and downstream. The sequence was then plotted against
its complement, with dots placed where at least 11 of 15 nucleotides surrounding
a point were complementary. Diagonal lines in the resulting plot indicate regions
of extended complementarity, which therefore have the potential to form double-
stranded secondary structures.

Copy number variant genotyping and imputation
Manual examination of the WGS BAM files suggested the presence of a copy-number
variant (CNV) located downstream of CSF2RB, mapping to BTA5:75,781,300–
75,782,800. Copy numbers were estimated from WGS reads for each of 560 cattle
using the software package CNVnator version 0.3 [29], based on sequence read
depth. Thresholds for genotype calling of the CNV were decided based on the
histogram of the trimodal distribution of the copy number (CN) estimates, where
homozygous deletion was called where CN<0.95, heterozygous 0.95 <= CN < 1.95,
and homozygous wild type when CN >= 1.95. CNV genotypes were imputed into a
larger population (N=29,350), for use in association analyses, using Beagle version 4.1
[59], using the reference population of 560 cattle described above. Combining the
reference genotype calls with the imputed population yielded a set of 31,950 animals
for use in MLMA-LOCO analyses, as described above.

List of abbreviations
CNV: Copy-number variant; FC: Milk fat concentration; FY: Milk fat yield; GRM: Genomic relationship matrix;
LOCO: Leave one chromosome out; MY: Milk yield; PC: Milk protein concentration; PY: Milk protein yield; QTL:
Quantitative trait locus; RNAseq: RNA sequence data; WGS: Whole genome sequence; YD: yield deviation.
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Table 1 Top variants for milk yield and composition trait QTL. Phenotypes are daily yields for fat
(FY), protein (PY), and milk (MY); and composition (percentage) phenotypes for fat (FC) and protein
(PC).

Phenotype Top Variant MAF Beta SE P

FY (kg/day) rs466308089 0.031 -0.015 0.003 2.40 × 10−8

PY (kg/day) rs108985709 0.409 0.004 0.001 1.05 × 10−8

MY (L/day) rs208473130 0.444 0.216 0.021 6.64 × 10−25

FC (%) rs379739117 0.471 -0.055 0.004 3.27 × 10−41

PC (%) rs208375076 0.446 -0.035 0.002 7.28 × 10−83
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Figure 1 The genetic context of milk trait QTLs. Panels A) and B): QTLs for the
herd-test-derived phenotypes protein concentration (A) and milk yield (B). Colours represent LD
(R2) with the most significant marker. Panel C) shows the locations of genes mapping into this
window (bottom) and the numbers of RNAseq reads mapping at positions across the window (top).
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Figure 2 Linkage disequilibrium (LD) observed between the top associated markers for each
phenotype (R2). Markers are identified using dbSNP reference SNP ID numbers. Phenotypes are
as per Table 2.
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Figure 3 QTL plots showing eQTL for the three genes that exhibit genome-wide significant
cis-eQTL (Table 3). From top to bottom, the three genes are A) CSF2RB, B) NCF4, and C)
TXN2. Colours represent correlations for each marker with the top variant for that eQTL (see
Figure 1 for legend). Grey bands indicate the location of the gene for which the eQTL is displayed.
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Figure 4 Linkage disequilibrium between the top tag variants for milk trait QTL and co-located
gene expression QTL. Three genes with significant (P<5 × 10−8) eQTL are included, along with
the TST [2] that have previously been proposed as a candidate causative gene at this locus.
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Figure 5 The effect of fitting the top variant on protein concentration (A–C) and milk yield
(D–F) QTLs. The top panels (A & D) show the QTL with no marker adjustments fitted; the centre
panels (B & E) show the QTL after fitting the top variant from the panel above; and the bottom
panels (C & F) show the QTL after fitting the top variant from the centre panel above. The
phenotypes were adjusted by fitting the following markers: B) rs208375076, C) rs210293314, D)
rs208473130, E) rs378861677.

Table 2 Heritability estimates for milk yield and composition phenotypes. Phenotypes are milk fat
daily yield (kg) and concentration (%), protein daily yield and concentration, and milk daily volume (L).

FY (kg) FC (%) PY (kg) PC (%) MY (L)

0.184 ± 0.008 0.622 ± 0.007 0.183 ± 0.008 0.614 ± 0.007 0.263 ± 0.008

Table 3 Median gene expression levels and top variants identified in eQTL analyses. Genes with
FPKM values less than 0.1 are not shown. Gene symbols are from VGNC and Ensembl. Beta is the
effect size of the minor allele on gene expression, measured in VST-transformed units. Three genes
have eQTL which exceed the genome-wide significance threshold 5 × 10−8 [60].

Gene Ensembl FPKM TPM Top Variant MAF Beta SE P

APOL3 ENSBTAG00000040244 0.934 1.166 rs433710540 0.101 0.128 0.0315 4.84 × 10−5

CSF2RB ENSBTAG00000009064 61.888 80.081 rs384734208 0.439 0.428 0.0401 1.33 × 10−26

EIF3D ENSBTAG00000001988 9.139 11.461 rs110614216 0.353 -0.072 0.0138 1.66 × 10−7

FOXRED2 ENSBTAG00000000015 0.142 0.179 rs385243246 0.176 0.036 0.0133 6.52 × 10−3

IFT27 ENSBTAG00000026657 0.904 1.107 rs110654851 0.440 0.046 0.0103 8.01 × 10−6

IL2RB ENSBTAG00000016345 0.285 0.359 rs43436480 0.364 0.058 0.0184 1.61 × 10−3

MPST ENSBTAG00000030648 1.564 1.957 rs109488885 0.314 -0.053 0.0144 2.40 × 10−4

MYH9 ENSBTAG00000010402 14.448 17.497 rs377857213 0.034 0.280 0.0715 9.07 × 10−5

NCF4 ENSBTAG00000007531 0.406 0.513 rs209273109 0.443 0.137 0.0168 4.30 × 10−16

TST ENSBTAG00000030650 2.131 2.662 rs109922126 0.073 -0.152 0.0313 1.19 × 10−6

TXN2 ENSBTAG00000000014 4.345 5.653 rs109450151 0.454 -0.080 0.0116 5.85 × 10−12

Table 4 Pearson correlations between the − log10 p-values for milk trait QTL and co-located gene
expression QTL. Three genes with significant (P<5 × 10−8) eQTL are shown, along with the TST
gene [2] that have previously been proposed as a candidate causative at this locus.

Phenotype CSF2RB NCF4 TST TXN2

FY (kg/day) 0.376 0.164 0.293 0.024
PY (kg/day) 0.562 0.404 0.425 0.032
MY (L/day) 0.849 0.682 0.306 -0.039
FC (%) 0.756 0.648 0.293 -0.128
PC (%) 0.754 0.689 0.059 -0.118
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Figure 6 Correlations between eQTL and the co-located protein concentration QTL for the
genes CSF2RB (left) and NCF4 (right). Panels on the top row are plotted against the original
protein concentration QTL (Figure 5A), while panels on the bottom row are plotted against the
phenotype after fitting rs210293314 (Figure 5C).

Table 5 Pearson correlations between the − log10 p-values for milk trait QTL and edQTL for sites
mapping to the 3′-UTR of CSF2RB. Only sites and phenotypes where the correlation exceeded 0.707
(R2 > 0.5) are shown.

Phenotype Edit Site Correlation

FC (%) BTA5:75,750,310 0.751
PC (%) BTA5:75,750,220 0.753
PC (%) BTA5:75,750,310 0.771
PY (kg/day) BTA5:75,748,794 0.799
PY (kg/day) BTA5:75,749,140 0.787
PY (kg/day) BTA5:75,750,204 0.718
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Figure 7 Left: dotplot of sequence from the CSF2RB 3′-UTR against its complement. Positions are
given relative to BTA5:75,747,904. Black dots indicate that seven of the eleven surrounding
nucleotides are complementary. Vertical dashed red lines indicate the locations of predicted
RNA-editing sites. Sections of the region 2275–2452 are complementary to the regions 837–915,
1178–1350, 1591–1719, and 1757–1832, suggesting that the UTR is able to fold into multiple
configurations. Right: the section of predicted double stranded sequence between 1184 and 1217 on
the left strand (running upward), and 2411–2444 on the right strand (running downward). Edited
sites are coloured based on the strength of the edQTL at that site, from blue (not significant) to
red (max P=5.22 × 10−26). Sites are labelled with the correlation between the edQTL and the milk
volume (MY) QTL after adjusting for marker rs208473130.

Figure 8 A) Histogram of copy number genotype calls of 560 animals from CNVnator. Copy
numbers follow a trimodal distribution, suggesting that the variant is bialleleic. Genotype classes are
coloured gold (homozygous deletion), grey (heterozygous) and blue (homozygous wild-type). B)
deletion variant genotypes plotted against the genotypes of the rs208086849 variant. The two
variants are in strong LD (R2=0.887). Points are jittered to increase visibility.
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