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Growth rate and yield are fundamental features of micro-
bial growth. However, we lack amechanistic and quantita-
tive understanding of the rate-yield relationship. Studies
pairing computational predictions with experiments have
shown the importance ofmaintenance energy andproteome
allocation in explaining rate-yield tradeoffs and overflow
metabolism. Recently, adaptive evolution experiments of Es-
cherichia coli reveal a phenotypic diversity beyondwhat has
been explained using simple models of growth rate versus
yield. Here, we identify a two-dimensional rate-yield trade-
off in adapted E. coli strains where the dimensions are (A) a
tradeoff between growth rate and yield and (B) a tradeoff
between substrate (glucose) uptake rate and growth yield.
We employ a multi-scale modeling approach, combining a
previously reported coarse-grained small-scale proteome
allocationmodel with a fine-grained genome-scale model of
metabolism and gene expression (ME-model), to develop a
quantitative description of the full rate-yield relationship
for E. coliK-12MG1655. Themulti-scale analysis resolves
the complexity of ME-model which hindered its practical
use in proteome complexity analysis, and provides amecha-
nistic explanation of the two-dimensional tradeoff. Further,
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the analysis identifies modifications to the P/O ratio and the
flux allocation between glycolysis and pentose phosphate
pathway as potential mechanisms that enable the tradeoff
between glucose uptake rate and growth yield. Thus, the
rate-yield tradeoffs that governmicrobial adaptation to new
environments aremore complex than previously reported,
and they can be understood in mechanistic detail using a
multi-scale modeling approach.
K E YWORD S
rate-yield tradeoff, adaptive laboratory evolution, micriobial
growth, overflowmetabolism,ME-model, multi-scale modeling

1 | INTRODUCTION

Growth rate and yield are basic features of microbial life that are widely implicated in cell fitness, adaptation, and
evolution (Lipson, 2015). The specific growth rate µ represents number of doublings of bacterial density per unit time
(Monod, 1949). The yield,Y , is the ratio between the biomass dry weight produced and the weight of the substrate
uptaken (Monod, 1949; Pirt, 1965). There is great interest in developing quantitative descriptions of the relationship
between µ andY . The wide-ranging measurements of µ andY (Fig. 1A) across microbial communities and environments
raised interest into the exact nature of the µ–Y relationship (Lipson, 2015). At low µ, positive correlations between µ and
Y have been observed (Nanchen et al., 2006), and these can be explained by non-growth-associated cell maintenance
requirements that make slow growth inefficient (Pirt, 1965). At high µ, negative correlations between µ andY are
observed (Basan et al., 2015), and in Escherichia coli, these can be explained by a tradeoff betweenmetabolic efficiency
and enzymatic efficiency that lead to decreasedY when at high µ (Novak et al., 2006; Pfeiffer et al., 2001). In particular,
E. coli exhibits a tradeoff between respiration, which has higher energy yield per carbon substrate (moremetabolically-
efficient), and acetate fermentation, which requires less enzyme per carbon substrate (more proteome-efficient) (Basan
et al., 2015). Lipson proposes a synthesis of these observations where positive µ–Y correlation at low µ and negative
µ–Y correlation at high µ are different parts of a bell-shaped µ–Y curve (Lipson, 2015). However, recent experiments
suggest that adaptation to new environments canmodify the bell-shaped µ–Y tradeoff (LaCroix et al., 2015; Sandberg
et al., 2014; Bachmann et al., 2013).

Microorganisms rapidly adapt to environmental niches (Booth, 2002; Elena and Lenski, 2003), and adaptation
mechanisms can be studied directly through adaptive laboratory evolution (ALE) (Barrick and Lenski, 2013). When
strains are adapted through ALE for growth in a liquidminimal medium, they achieve higher µ compared to thewild-
type (Fig. 1A), ALE-adapted strains have been shown to rapidly acquire regulatorymutations that modify proteome
allocation, but they do not acquire new metabolic capabilities within the time frame of reported short-term (4 to 8
weeks) adaptation experiments (LaCroix et al., 2015; Sandberg et al., 2014; Utrilla et al., 2016). By analyzing ALE-
adapted strains, we can reveal the strategies that allow cells to optimize their proteome allocation for growth in an
environmental niche, subject to the constraints of their metabolic capabilities (i.e. their repertoire of pathways) and
constraints on the kinetic efficiencies of their enzymes (LaCroix et al., 2015; Utrilla et al., 2016; Ibarra et al., 2002).

Contrary to the expected negative µ–Y relationship at high µ, ALE experiments of E. coli selected for high µ in a
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minimal medium reveal an uncorrelated relationship between µ andY (LaCroix et al., 2015; Sandberg et al., 2014).
These experiments compared the phenotypes of highly-adapted, isogenic E. coli strains and revealed little variation in µ
between strains but high variation inY . Previous studies similarly reported that overflowmetabolism can be nearly
eliminated through genetic engineering without any effect on growth rate in E. coli (Peebo et al., 2014; Bekker et al.,
2009). Thus, the negative µ–Y correlation at high growth rates does not appear to be a fundamental constraint on
fast-growing cells. A mechanistic model of the full µ–Y relationship must be able to reconcile the bell-shaped curve
observed for individual strains with the uncorrelated µ–Y phenotypes seen in ALE-adapted strains (Fig. 1A).

A number of theoretical and computational models have been developed to describe rate-yield tradeoffs. For the
positive µ–Y correlation, maintenance requirements can be quantitatively described using algebraic growth laws (Pirt,
1965; Nanchen et al., 2006). This relationship can also be predicted for completemetabolic networks using genome-
scale models (GEMs) of metabolism that encode non-growth associatedmaintenance (NGAM) costs in an optimization
problem that can predict µ andY when substrate uptake rates are known (Varma et al., 1993). For the negative µ–Y
correlation, quantitativemodels of overflowmetabolism have been developed (Basan et al., 2015;Mori et al., 2016;
Molenaar et al., 2009). In particular, quantitative measurements of E. coli growth in well-controlled environments
revealed a linear-threshold response of acetate excretion (qac ) with increasing µ (Basan et al., 2015). To represent
the full range of the µ-Y relationship, a constraint allocation flux balance analysis model (CAFBA) was reported that
combines a GEMwith proteome allocation constraints (Mori et al., 2016). A similar solution can be formulated from
a bottom-up reconstruction of metabolism and macromolecular expression (ME-model,O’Brien et al. (2013)) that
incorporates the protein synthesis pathways into a GEMand applies coupling constraints related to enzyme kinetics
parameters on each individual reaction. However, none of these models have been used to explain experiments where µ
andY are decoupled through laboratory evolution or genetic engineering (LaCroix et al., 2015; Sandberg et al., 2014;
Peebo et al., 2014).

In this study, we show that the wide range of µ–Y observations in E. coli can be explained by a two-dimensional rate-
yield tradeoff, where the first dimension is the characteristic µ–Y tradeoff associated with acetate overflowmetabolism
and the seconddimension is a tradeoff between glucose uptake rate (qg l c ) andY that appears duringALEadaptation. We
employ amulti-scalemodeling approach to provide amechanistic description of the two-dimensional rate-yield tradeoff.
By deriving the relationship between theME-model and the previously reported small-scale proteome allocation model
(Basan et al., 2015), we are able to develop aworkflow for fittingME-model parameters to experimental data, andwe
achieve quantitative accuracy for simulations of µ–Y . This multi-scale modeling approach predicts a two-dimensional
rate-yield tradeoff, and it suggests that the second dimension of the tradeoff can be explained by changes in P/O ratio
and the flux balance between glycolysis and pentose phosphate pathway.

2 | RESULTS
2.1 | Adaptive laboratory evolution reveals a two-dimensional rate-yield tradeoff
To explore themetabolic constraints on E. coli growth, adaptive laboratory evolution (ALE) was used to adapt E. coliK-12
MG1655 tomaximize growth at 37°C in a liquid culture with aminimal medium containing glucose LaCroix et al. (2015).
Eight independent experiments were performed on an automated ALE platform to achieve 8.3 × 1012 to 18.3 × 1012
cumulative cell divisions Lee et al. (2011). Phenotypic characterization was performed on eight ALE endpoint strains,
including quantitativemeasurements of µ, qg l c , qac , and other commonmetabolic byproducts of E. coli (Methods).

A diversity of metabolic phenotypes was observed in the ALE endpoint strains. Through ALE, µ increased from
0.7 h-1 for wild-type (red triangles in Fig. 1A–D) to 0.95–1.10 h-1 (red circles with error bars in Fig. 1A–D). Based on
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previous reports, we expected a linear relationship between µ and qac . However, ALE endpoint strains achieved a wide
ranging qac from 3.9–11.4mmol gDW-1 h-1 (where wild-type qac was 3.9mmol gDW-1 h-1. While we did not observe a
correlation between µ and qac in these strains (Fig. 1B), there was a clear correlation between qg l c and qac (Fig. 1D).

These correlations have been observed previously for E. coli strains (LaCroix et al., 2015; Peebo et al., 2014;
Bekker et al., 2009), andmoreover, a bacterial engineering approach has been reported to vary qac bymanipulating the
substrate uptake system (Lara et al., 2008). In one of these studies, Bekker et al. (2009) showed that switching electron
transport chain (ETC) enzyme selection (and therebymodifying the P/O ratio) can cause a qg l c–Y tradeoff at a low µ
of 0.15 h-1. ALE gained qac andY decoupled from µ, which is seemingly contradict to the reported correlatedmu–Y
andmu–qac (Basan et al., 2015; Nanchen et al., 2006). TheME-model we used in this study is aiming to simulate the
relationships between these qg l c–qac and qg l c–Y tradeoffs, connecting to themechanisms of µ–Y tradeoffs (including
Lipson’s bell-shaped curve, Fig. 1A) by establishedmodels (Basan et al., 2015;Mori et al., 2016).

To enable our analysis, it is important to note that ALE endpoint strains rapidly acquire regulatorymutations, but
they do not acquire new metabolic capabilities within the time frame of these experiments (Sandberg et al., 2014;
LaCroix et al., 2015; Utrilla et al., 2016). The linear correlation between qac and µ reported previously was identified for
an isogenic strain (Nanchen et al., 2006; Basan et al., 2015). In contrast, our observations of a decoupling between qac
and µ appear when comparing adapted strains. However, because these adapted strains have only regulatorymutations,
their phenotypes represent the limits of what E. coli cells can achieve while bounded by metabolic and proteomic
constraints (but not by regulation). This type of adaptation and the associated phenotypic tradeoffs are useful for
understanding cellular adaptation to ecological niches where regulatory adaptation can occur rapidly (Elena and Lenski,
2003).

2.2 | ME-model data fitting with amulti-scalemodeling approach
To explain these experimental observations, we sought a modeling approach that could quantitatively predict the
µ–Y and µ–qac relationships. Ourmodeling approach starts with fitting the linear-threshold (blue line in Fig.1B)mu–
qac relation (Basan et al., 2015) using the framework of ME-model (O’Brien et al., 2013; Lloyd et al., 2018). We first
considered a previously reported coarse-grainedmodel of proteome allocation (Basan et al., 2015) that describes E. coli
overflowmetabolism (Fig. 1E). TheY -maximizing approach done by Basan et al. (2015) indicates that high-Y growth
strategies have a fitness benefit in spatially structured environments (like biofilms) that has been demonstrated through
aY -selection systemBachmann et al. (2013), andmore efficient strategies also leavemore resources for cells that are
hedging against future stresses Utrilla et al. (2016). The evolutionary history of E. coli includes growth in structured
environments and awide range of stresses that could have placed a selection pressure on increasingY . Therefore, we
focused on fitting the observed chemostat Nanchen et al. (2006) and uptake titration Basan et al. (2015) data for the
Y -maximized growth solution (green and blue curves in Fig. 2).

The coarse-grained proteome allocationmodel was intended tomake predictions at high µ and thus only captures
the negative µ–Y relation (Fig. 2A). The parameters in the coarse-grainedmodel have a strong experimental basis in
fine-grained protein abundances measurements in high growths, and themodel produces accurate predictions of µ–qac
(Basan et al., 2015).

We also considered the genome-scale ME-model iJL678-ME (Lloyd et al., 2018). With the default parameter
settings in theME-model, simulations had a poor quantitative prediction (O’Brien et al., 2013) of µ–qac to the uptake
titration data (Fig. S3F). This poor fit can be explained by inaccurate genome-wide enzyme turnover rates (kef f s) that
ME-model researchers have been seeking to improve (Lloyd et al., 2018; Ebrahim et al., 2016; Nilsson et al., 2017).
We sought to modify the kef f s to fit the µ–qac data. However, since each of the 5266 reactions in the genome-scale
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ME-model has a kef f parameter, it is difficult to directly fit the parameters tomeasured data.
Therefore, we pursued amulti-scale modeling approach where the coarse-grainedmodel was used to analyze the

effects of proteome-efficiency at the level of complete pathways, and this insightwas used to tune parameters in theME-
model in bulk. To connect themodels, we first found that the proteome efficiency (ε) parameters in the coarse-grained
model share a conceptual basis with the enzyme efficiency parameter kef f s inME-models ("2 Proteome constraints in
theME-model" in Appendix). Thus, wewere able to reformulate the coarse-grainedmodel within the framework of a
ME-model (Fig. S1). The resulting small-scaleME-model (SSME-model) has parameters directly analogous to those in the
genome-scaleME-model (See "4 SSME-model parameters derivation" and "5Matlab and COBRAme implementation" in
Appendix). The resulting SSME-model generates identical µ–Y and µ–qac predictions to the proteome allocationmodel.

Themost obvious difference between the SSME-model derived fromBasan et al. (2015) model andME-model for
these phenotypic predictions is the expanded solution space of theME-model (Fig. 2). However, much of theME-model
solution space corresponds to very low yield metabolic solutions. IfY is maximized during simulations of the SSME-
model andME-model (achieved byminimizing qg l c at a given µ), the resulting predictions are more similar between the
models and lie closer to experimental data (solid blue curves in Fig. 2).

To enableME-model fitting starting from the poor fit in Fig. S3F, we first analyzed parameter sensitivities in the
SSME-model. The SSME-model has a small number of kef f s, with only three pathways (respiration, fermentation,
biomass) with kef f s, making it easy to test the sensitivities of predictions to changes in kef f (Cheng, 2017). The
SSME-model shows that dropping the kef f for respiration decreases the slope of the µ–qac line without affecting µmax ,
suggesting that dropping the kef f s of TCA cycle enzymes in genome-scaleME-model would lead to amore accurate fit
("7 Experimental data fitting" in Appendix). However, only dropping the TCA kef f s leads to a µ–qac slope that is still not
gradual enough (Cheng, 2017). Next, we determined that secondary pathways in theME-model carry unrealistic fluxes,
and they could be responsible for the remaining prediction gap. We used an iterative approach to block themetabolic
reactions in theME-model ("7 Experimental data fitting" in Appendix) and achieved an accurateME-model prediction of
the µ–qac acetate line (solid blue line in Fig. 2D and Fig. S3F). The three global parameters unmodeled protein fraction
(UPF), growth-associatedmaintenance (GAM), and NGAM (Table S2 in Appendix) were then used to fit predictions to
individual datasets (green, blue and red curves in Figure 2).

2.3 | TheME-model predicts phenotypic diversity in ALE strains
As a result of data fitting, we achieved a quantitative fit of chemostat (Nanchen et al., 2006) and uptake titration
(Basan et al., 2015) data with theY -maximized ME-model solutions (blue and green curves in Fig. 2C,D). The ALE-
adapted strains (red circles in Fig. 2) do not align well with theY -maximizing solutions (red curves in Fig. 2), but they
are encompassed by theME-model solution space, and further analysis of these data points and the corresponding
ME-model solutions were used to understand the phenotypic diversity of these adapted strains.

Feasible solutions other than theY -maximized solution are achieved through the activation of alternativemetabolic
pathways. The SSME-model does not capture the ALE data points with high qac (red region in Fig. 2B), while the genome-
scaleME-model does (red region in Fig. 2D). Moreover, theME-model predicts feasible growth at lowerY in the µ–Y
solution space than the SSME-model. We sought to determine which pathways are responsible for the lowerY and
higher qac inME-model that was not captured by the SSME-model.

Removing reactions from the ME-model can decrease the size of the solution space (Fig. S4, “8 Solution space
variation” in Appendix), making the solution space more similar to the SSME-model solution space. We employed a
workflow to identify 24 reactions (Table S3 in Data) that are not activated in theY -maximized solutions but are used to
enable higher qac at lowerY . We observed that these 24 reactions are part of metabolically inefficient pathways that
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are alternatives to the highY pathways inY -maximized solutions. By extension, metabolically inefficient pathways
can be added to the SSME-model to increase the size of the solution space (Fig. 10), making it more similar to the
ME-model solution space. Thus, themodified SSME-model can achieve lowY (Fig. 10A) at high qac (Fig. 10C). Therefore,
the difference in predictions between the ME-model and SSME-model is a result of the greater range of metabolic
capabilities of the genome-scale model.

2.4 | The two-dimensional rate-yield tradeoff
We can now provide a theory to connect the correlations in µ–Y (Fig. 1A) (and the associated acetate curve in qac–Y ,
Fig. 1B) with the negative correlation in qg l c–Y (Fig. 1C) and positive qg l c–qac correlations (Fig. 1D).

To see the relationship between the three variables µ, qg l c , andY we generatedME-model solution spaces in qg l c
andY at increasing lower bounds of µ (Fig. 3A). These solution spaces represent the flexibility in themodel to achieve
a growth rate. At theY -maximed limit of these solution space, we see the established negative µ-Y tradeoff where
increasing growth rate requires decreasingY (dashed arrowmarked as “d1” in Fig. 3A) coupling with increasing qac (top
edges of solution spaces in Fig. 3B). This is the first dimension of the rate-yield tradeoff.

At a given µ, theME-model solution spaces extend toward lowerY andhigher qg l c , revealing an inverse proportional
relationship in qg l c -Y . This relationship is also observed in ALE endpoint strains with similar µ (Fig. 3A). This is the
second dimension of the rate-yield relationship (“d2” in Fig. 3A) defining the second-order rate-yield tradeoff. The
second dimension can also be seen in qac–qg l c where the ME-model predicts the qac–qg l c correlation observed in
ALE endpoint as the qac -minimized edge of the solution space (Fig. 3B). Interestingly, the solution spaces predicted by
ME-model show broad feasible ranges of acetate production at a given qg l c and µ ("bold" solution spaces in Fig. 3B), so
the qg l c–qac tradeoff is not required by themodel. On the other hand, the relationship between qg l c andY is a strict
tradeoff in the model ("thin" solution spaces in Fig. 3A), so we propose that qg l c–Y is the more fundamental second
dimension of the rate-yield tradeoff.

2.5 | Mechanisms for the additional rate-yield tradeoff
We sought to identify the particular alternate metabolic strategies in theME-model that could enable a qg l c–Y tradeoff
by identifying the differential pathway usage at a fixed high µ (1.05 h-1 in theME-model (Fig. 3C). Themodel predicts
that when qg l c increases from theY -maximized state (minimum qg l c ), flux through the proton-coupled NAD(P) transhy-
drogenase increases (reaction THD2pp, catalyzed by pntAB. In addition, a pathway switch between two different NADH
dehydrogenase reactions, NADH5 (ndh andNADH16pp (nuo, appears at high qg l c . In fact, each of or any combination of
the 24 reactions in Table S4 (Expanded view, Data) can be activated in theME-model to achieve high qg l c , high qac , and
lowY . There are two common threads among these pathway activations. First, they all decrease the P/O ratio in the
simulations (Fig. 3C). NADH5 contributes fewer protons to the periplasm per electron than NADH16pp. And increasing
THD2pp flux drains the proton gradient without contributing to ATP production, thereby decreasing P/O ratio (Fig. 3D).
Second, glycolytic flux increases (Fig. 3D) and pentose phosphate pathway flux decreases (Fig. 3C).

Experiments that introduce proton leakage have shown a shift towards high qac and lowY (Basan et al., 2015). It
has also been shown that the variation of P/O ratio can uncouple the regulation of cytochrome oxidase from the cellular
ATP demand (Bekker et al., 2009). More broadly, energy dissipation through proton leakage is known to be amethod of
metabolic control in bacteria (Russell and Cook, 1995; Russell, 2007). To clarify the effect of decreasing of P/O ratio
in the ME-model, we added a reaction in the model representing proton leakage (Methods). As a result, we see the
Y -maximized solution with decreased P/O ratios have higher qg l c , higher qac , and lowerY at a given µ (Fig. 4). Finally,
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experiments have shown that knocking out gnd leads to increased qg l c and qac and decreasedY with little change in µ
(Jiao et al., 2003). TheME-model also predicts that gnd knockoutmutants ("gnd knockout simulation"Methods)will have
increased qg l c , qac and decreasedY (Fig. 4). Thus, theME-model points to general mechanisms for this fundamental
second-order tradeoff, but the exact pathways involved can be determined in future experiments, and it may be that
multiple pathways work together to enable it.

Alternative explanations of the rate-yield tradeoff have been proposed, includingmembrane (Zhuang et al., 2011;
Szenk et al., 2017) and cytosolic crowding (Adadi et al., 2012; Vazquez andOltvai, 2016). It is difficult to rule out these
alternative constraints on cell growth, and itmay be thatmultiple constraints operate at once. However, it is encouraging
to see that the ME-model can explain the complex relationship between µ,Y , qac , and qg l c with only metabolic and
proteome allocation constraints. In the future, it will be possible to extendME-models with additional constraints. For
example, it has been proposed that the UPF parameter is growth-rate dependent, and thus existing proteome allocation
models with fixed UPF are inaccurate (Vazquez andOltvai, 2016). If this is indeed the case, then SSME- andME-models
with cytosolic crowding constraints can be developed to fully represent the interplay between crowding, proteome
allocation, and pathway selection.

3 | DISCUSSION
The E. coliME-model provides a mechanistic and predictive model of rate-yield tradeoffs. It successfully reconciles
several experimental data sets: i) uptake titration at low growth (Nanchen et al., 2006), ii) batch culture at higher growth
rates (Basan et al., 2015), and iii) ALE endpoint strains (this study). These data sets, when analyzed with theME-model,
show the existence of a two-dimensional rate-yield tradeoff. This two-dimensional tradeoff cannot be deciphered from
simpler intuitive models, but it can be derived from the comprehensive set of biochemical mechanisms represented by
theME-model.

Furthermore, this study employed amulti-scale modeling approachwhere a small-scale model was used to guide
parameter estimation in the genome-scaleME-model. This approach—which has been termed Tunable Resolution (TR)
modeling (Kirschner et al., 2014)—was essential to the success of the study, andwe expect that both small-scale and
genome-scale models will continue to play an important role in understanding the genotype-phenotype relationship.

The two-dimensional rate-yield tradeoff appears as a result of ALE selection for µ when alternative pathway
selection strategies achieve the same growth rate. Proton leakage and alternative ETC pathway selection are plausible
mechanisms for modifying the P/O ratio and creating the qg l c–Y tradeoff. In addition, the flux ratio between glycolysis
and the pentose phosphate pathway might play a significant role in the qg l c–Y tradeoff. Those mechanisms can be
tested experimentally. Finally, revealing the underlying regulation would be of great interest for establishing a deeper
understanding of rate-yield tradeoffs. CombiningME-models with known regulatorymechanisms to explain cellular
choices would achieve a long-standing goal in systems biology (Reed and Palsson, 2003).

4 | MATERIALS AND METHODS
Phenotypic data including µ, qg l c , qac , and excretion rates of other metabolic byproducts were collected for ALE
endpoint strains ("1 Phenotypic characterization of E. coli strains" in Appendix). Reference data points were collected
from published studies Nanchen et al. (2006); Basan et al. (2015). The coarse-grained proteome allocationmodel from
Basan et al. (2015) was reformulated as a small-scaleME-model (SSME-model, detail in "4 SSME-model parameters
derivation" in Appendix) and implemented by the COBRAme framework Lloyd et al. (2018) . The genome-scale model
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iJL1678-ME was modified to fit experimental data by modifying the kef f s of TCA cycle reactions, blocking target
reactions, and modifying UPF, GAM, and NGAM ("7 Experimental data fitting" in Appendix). Solution spaces were
generated using flux balance analysis (incorporated in COBRAme) in theME-model ("6 Solution space of theME-model"
in Appendix). To determine the effect of modifying P/O ratio onME-model solution spaces, a reaction representing
proton leakagewas added to theME-model ("9 P/O ratio manipulation" in Appendix). The effect of the gnd knockout
was demonstrated by blocking the reaction GND inME-model simulations ("10 gnd knockout simulation" in Appendix).

EXPANDED V I EW
| Appendix
The appendix includes the detailed introduction and discussions of thematerials andmethods.

| Data
Includes Tables S3–S10. Table S3 presents the blocked reactions in the ME-model to achieve a quantitative fit to
experimental data. Table S4 shows the essential exchange reactions that should be turned on formaintaining growth.
Tables S5 and S6 show the target reactions that vary the solution space of theME-model. Tables S7–S10 include all data
that are presented in the figures in the paper.
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F IGURE 1 E. coli growth phenotypes (Data on the plots are recorded in Table S7–10 in Data (Expanded view).) in
minimal media andmulti-scale modeling approaches. (A–D) Phenotypic data for E. coli strains includingY , µ, qac , and
qg l c data. Two datasets are presented from literature, for chemostat growth Nanchen et al. (2006) (green triangles) and
substrate titration Basan et al. (2015) (blue squares). These are compared to strains adapted for maximum growth rate
through ALE (this study; red circles; error bars for standard deviation across duplicates). The bell-shaped µ–Y
relationship proposed by Lipson (2015) is included for reference. (E) Diagram of the SSME-model derived fromBasan
et al. (2015). Themodel consists of three pathways: respiration (res) and fermentation (fer) generate different amounts
of energy, feeding the biomass (bms) pathway to synthesize biomass. (F) Diagram of the genome-scaleME-model that
includes a genome-scale reconstruction of metabolic pathways and detailed protein expressionmachinery (O’Brien
et al., 2013; Lloyd et al., 2018).

.
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A B

C D

F IGURE 2 Growth phenotypes from simulations of E. coli (A, B) using the SSME-model and (C, D) using the
ME-model. Simulations were fit to experimental data for each of the three datasets, for K-12MG1655 chemostat
(Nanchen et al., 2006) (green triangles)) and NCM3722 substrate titration (Basan et al., 2015) (blue squares)), and
strains adapted fromwild-type K-12MG1655 (red triangle, LaCroix et al. (2015) for maximum growth rate through ALE
(this study; red circles; error bars for standard deviation across duplicates). TheY -maximized solutions are displayed as
solid lines in all plots. For bothmodels, fitting was performed bymanipulating three global parameters: unmodeled
protein fraction (UPF), growth-associatedmaintenance (GAM), and non-growth associatedmaintenance (NGAM).
Details of the fitting approach are provided in theMethods.
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F IGURE 3 Analysis of the second dimension of the rate-yield tradeoff. (A) Two dimensions of the rate-yield tradeoff.
The first dimension "d1" is the negative µ–Y correlation at maximumY , and the second dimension "d2" is the negative
qg l c–Y correlation at a fixed µ. These correlations are observed inME-model simulations and experimental data from
ALE strains. (B) A correlation between qg l c and qac is also observed at fixed µ in both theME-model and ALE endpoint
data. Linear fits for the experimental data at similar growth rates are shown as dash-dotted (µ=0.95–0.97 h-1, dashed
(µ=1.00–1.04 h-1, and solid (µ=1.08–1.10 h-1 orange lines. These fits are described by the upper edges of the qg l c–qac
solution space at fixed µ. For growth between 1.00 and 1.04 h-1, r 2=0.931 and p=0.035. For growth between 1.08 and
1.1 h-1, r 2=0.986 and p=0.071. (C) The reaction fluxes inME-model simulations along the upper edge (maximizing qac )
of the solution space for µ=1.05 h-1. Notably, the P/O ratio (gray dashed curve) is decreasing with increasing qg l c . (D) A
pathwaymap of central metabolism showing the changes of the reaction fluxes with increasing qg l c and qac . "a1" and
"a2" represent the rate of proton flux through themembrane. Abbreviations. ac: acetate excretion; THD2pp: NAD(P)
transhydrogenase (catalyzed by the gene product of pntAB;NADH16pp: NADH dehydrogenase (nuoA–N;NADH5:
NADH dehydrogenase (ndh;GND: Phosphogluconate dehydrogenase (gnd;GAPD: Glyceraldehyde-3-phosphate
dehydrogenase (gapA;CS: Citrate synthase (gltA; PTAr: Phosphotransacetylase (pta and eutD;ATPS: ATP synthase
(atpA–I; PL: model reaction representing proton leakage (Methods).
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A B C

F IGURE 4 The second-order rate-yield tradeoff demonstrated by decreasing the P/O ratio and and knocking out
gnd ("∆gnd ") inME-model simulations. The drop of P/O ratio is achieved by inducing the proton leakage ("PL" in Fig. 3D)
reaction flux, as 0, 50mmol gDW-1 h-1 (labeled "50"), and 100mmol gDW-1 h-1 (labeled "100"). The newY -maximized
solution curves (solid red for "PL" flux variation, dashed grey for∆gnd ) and the qac–qg l c solution space contours (fixed
µ=1.0 h-1, solid blue for "PL" flux variation, dashed grey for∆gnd ) were simulated in theME-model.


