1

1 THE CENTRAL NERVIOUS SYSTEM ACTS AS A TRANSDUCER OF

2 STRESS-INDUCED MASCULINIZATION THROUGH CORTICOTROPIN-

3 RELEASING HORMONE B

- 4 Castañeda Cortés DC*, Arias Padilla LF*, Langlois VS[†], Somoza GM[#], Fernandino
- 5 JI*‡.
- 6 * Laboratorio de Biología del Desarrollo Instituto Tecnológico de Chascomús.
- 7 INTECH (CONICET-UNSAM), Argentina.
- 8 [†] Institut national de la recherche scientifique (INRS) Centre Eau Terre
- 9 Environnement, Quebec, Canada.
- 10 [#] Laboratorio de Ictiofisiología y Acuicultura INTECH (CONICET-UNSAM),
- 11 Argentina.
- 12 ‡To whom correspondence should be addressed. Dr. Juan Ignacio Fernandino +542241-
- 13 430323 ext. 107. E-mail: <u>fernandino@intech.gov.ar</u>
- 14 Keywords: Environmental stress, CRH, Masculinization, CRISPR/Cas9, Medaka

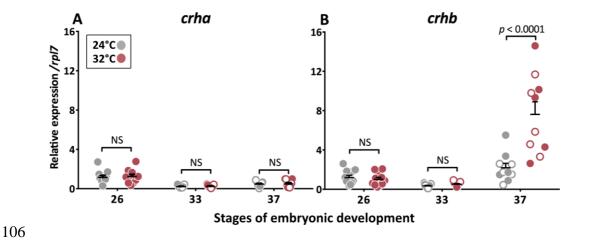
15 ABSTRACT

16	Exposure to environmental stressors during early development has important
17	implications for rescheduling many cellular and molecular mechanisms. In some fish
18	species, environmental stressors, like high temperatures (HT), cause an increase in
19	cortisol levels. In turn, this mechanism induces sex reversal of genotypic females,
20	overriding genetic factors related to development of the gonad. However, the
21	involvement of the brain in this process is not well clarified. In the present work, we
22	investigated the mRNA levels of corticotropin-releasing hormone b (crhb) and its
23	receptors (crhr1 and crhr2), and found out that they were up-regulated at HT during the
24	critical period of gonadal sex determination in medaka (Oryzias latipes), i.e., when the
25	gonadal primordium is sexually labile. In order to clarify their roles in sex reversal,
26	biallelic mutants for <i>crhr1</i> and <i>crhr2</i> were produced by CRISPR/Cas9 technology.
27	Remarkably, biallelic mutant of both loci (crhr1 and crhr2) did not undergo female-to-
28	male sex reversal upon HT exposition, whereas mutants for either crhr1 or crhr2
29	showed partial, or intersex phenotypes, suggesting that both crh receptors are required
30	for HT-induced masculinization. Inhibition of this process in double crhrs mutants
31	could be successfully rescued through the administration of the downstream effector of
32	the hypothalamic-pituitary interrenal axis, the cortisol. Taken together, these results
33	revealed for the first time the participation of the central nervous system acting as a
34	transducer of masculinization induced by thermal stress.

3

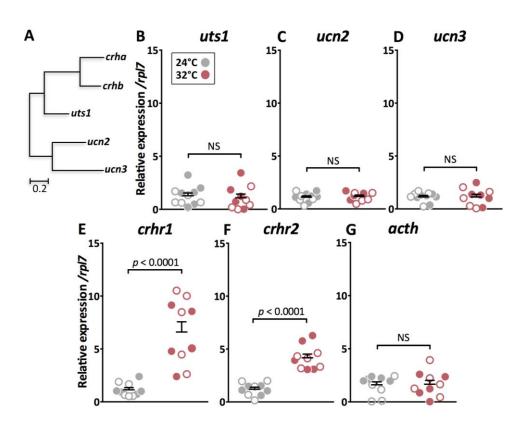
35 INTRODUCTION

36	As a general trend, the response of the neuroendocrine system to environmental
37	stressors produces the elevation of the hypothalamic corticotropin-releasing hormone
38	(CRH). CRH in turn stimulates the secretion and release of adrenocorticotropic
39	hormone (ACTH) from the pituitary gland (Aguilera & Liu, 2012; Kovacs, 2013),
40	regulating cortisol levels through the adrenal gland (Mommsen, Vijayan, & Moon,
41	1999). This axis is known as hypothalamic-pituitary-adrenal (HPA) or the -interrenal
42	(HPI) in tetrapods and fish, respectively. In this last group, two crh ohnologs, named as
43	crha and crhb, have been identified (Grone & Maruska, 2015). The expression of crha
44	has been mainly observed in the retina (Grone & Maruska, 2015; Kohei Hosono et al.,
45	2015), with weak expression in the brain (about 100 times less than in retina) of fish
46	(Kohei Hosono et al., 2015). On the other hand, the expression pattern of <i>crhb</i> was
47	mainly characterized in the central nervous system (CNS), i.e., in the preoptic area, the
48	hypothalamus, and the caudal neurosecretory system. For this reason, it has been related
49	with the control of Acth in the pituitary gland (Alderman & Bernier, 2009; Bernier,
50	Alderman, & Bristow, 2008; Carpenter, Maruska, Becker, & Fernald, 2014; Chen &
51	Fernald, 2008; Grone & Maruska, 2015).
52	The action of CRH in the pituitary is mediated by the binding and activation of two
53	highly conserved membrane receptors (CRH-R1 and -R2), which belong to class B of
54	the G protein-coupled receptors (Lovejoy, Chang, Lovejoy, & del Castillo, 2014).
55	Although in tetrapods, it has been reported that CRH has higher affinity for activate
56	CRH-R1 (Vaughan et al., 1995), in teleosts, both Crhs have similar affinity for both Crh


57	receptors (Kohei Hosono et al., 2015). Several studies in mammals have also
58	demonstrated the ability of CRH receptors antagonists to block stress responses, such as
59	anxiety or depression (Backstrom & Winberg, 2013; Grammatopoulos & Chrousos,
60	2002; Holsboer & Ising, 2008), placing CRH receptors at a critical point in regulation of
61	HPA axis.
62	The molecular and morphological processes of masculinization by stress have been
63	investigated at local, gonadal level, from nematodes (Christopher H. Chandler,
64	Chadderdon, Phillips, Dworkin, & Janzen, 2012; C. H. Chandler, Phillips, & Janzen,
65	2008), fish (Hattori et al., 2007; Hayashi et al., 2010; Kitano, Hayashi, Shiraishi, &
66	Kamei, 2012) and amphibians (M. Nakamura, 2009), to reptiles (Ge et al., 2018; Mork,
67	Czerwinski, & Capel, 2014; Yatsu et al., 2015), but the involvement of the brain in sex-
68	reversal is still under scrutiny. In all these vertebrates, exposure to environmental
69	stressors during early life has several implications in reproduction. For instance, when
70	reptiles and fish are exposed to stress during the critical period of gonadal
71	differentiation, a strong bias in sex ratios can be induced (Capel, 2017; Fernandino,
72	Hattori, Moreno Acosta, Strüssmann, & Somoza, 2013). The downstream factors
73	involved in stress-induced masculinization in fish are well known (Hattori et al., 2009;
74	Hayashi et al., 2010; Mankiewicz et al., 2013; Ribas et al., 2017; Tsalafouta et al., 2014;
75	Yamaguchi, Yoshinaga, Yazawa, Gen, & Kitano, 2010), which in turn can act by three
76	different mechanisms: (i) inhibition of estrogens synthesis (Kitano et al., 2012; Nozu &
77	Nakamura, 2015), (ii) elevation of androgen synthesis (Fernandino, Hattori, Kishi,
78	Strüssmann, & Somoza, 2012; Hattori et al., 2009), and (iii) apoptosis or meiotic arrest

5

79	of germ cells (Yamaguchi & Kitano, 2012; Yamamoto et al., 2013). However, the
80	molecular processes and key players controlling cortisol increase, that regulates these
81	three mechanisms, remain unexplored.
82	In this study we provide clear evidence of the role of CNS in the regulation of the HPI
83	axis, shedding light on the triggering mechanism of masculinization induced by
84	environmental factors.
85	
86	RESULTS
87	Expression of corticotropin-related genes reared at HT
88	First we examine the ontogeny of both crh paralogs regulation under normal and
89	masculinizing temperature. The mRNA levels of crha and crhb were analyzed in
90	medaka embryos at sages 26, 33 and 37, incubated at control (24 $^{\circ}$ C; CT) or high (32
91	°C; HT) temperatures (Fig. 1). No differences were detected for <i>crha</i> between
92	treatments, in any of the developmental stage (Fig. 1A). In contrast, we observed high
93	transcript levels of <i>crhb</i> at HT for stage 37, corresponding to the gonadal sex
94	determination period (Fig. 1B). Noteworthy, the expression levels of both crha and crhb
95	were not affected by the sex genotype (XX vs XY) (Fig. S1).
96	Based in the up-regulation of <i>crhb</i> at stage 37 in embryos incubated at HT, we analyzed
97	the transcript abundance of other HPI-related genes, such as crh receptors (crhrl and
98	crhr2), the three urocortins, i.e., the urocortin1 (Ucn1)/sauvagine (Svg)/urotensin 1


99 (Uts1), the urocortin2 (Ucn2), and the urocortin 3 (Ucn3) (Fig. 2A) (K. Hosono,

- 100 Yamashita, Kikuchi, Hiraki-Kajiyama, & Okubo, 2017); and *acth* (Liu et al., 2003).
- 101 Additionally, the expression of both *crhrs*, *crhr1* and *crhr2* (Fig. 2 E-F, respectively),
- 102 was up-regulated at HT. No significant differences were observed in the transcript
- abundance of the other Crh-like genes, i.e., uts1, ucn2, and ucn3 (Fig. 2B-D), and for
- 104 *acth* (Fig. 2G), suggesting that these HPI axis-related genes are not regulated at the
- 105 transcriptional level during exposure to thermal stress during early development.

107 Fig. 1. Developmental profiles of crha (A) and crhb (B) transcript abundance in embryos reared at 24 °C 108 (control temperature) and 32 °C (high temperature). Data were measured by qPCR analysis in whole 109 embryos at stages 26, 33, and 37. Gene expression levels are expressed relatively to the stage 26 group 110 from 24 °C treatment. Quantification method was performed using the $2^{-\Delta\Delta Ct}$ method and values were 111 normalized by the respective values of *rpl7*. Genotypic sex was determined at stages 33 and 37 by the 112 presence/absence of the dmy gene; XX and XY are represented by filled circles and open circles, 113 respectively. Horizontal bars indicate mean, with its respective standard error of the mean. The p values 114 are indicated when transcript abundance between temperature treatments at the same developmental stage 115 differ statistically (FgStatistics; p < 0.05).

7

116

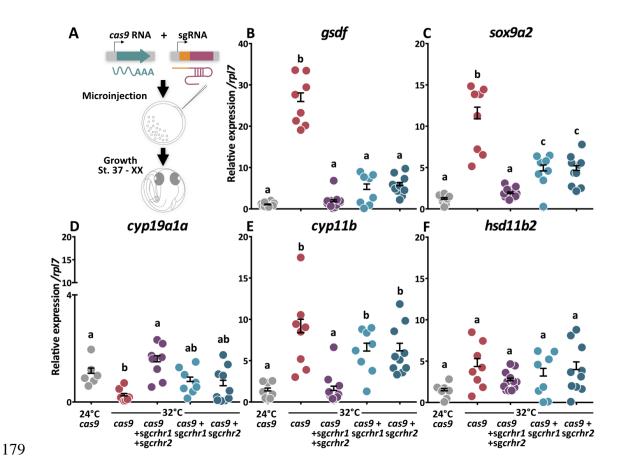
117 Fig. 2. (A) Phylogenetic tree showing the relationship among Crh family peptides in medaka, obtained by 118 Neighbor-joining method and a bootstrap test (MEGA 7.0 software). The scale beneath the tree reflects 119 sequence distances. Genbank accession sequences are provided in Table 1. Gene expression profiles of 120 urocortins (B-D), crh receptors (E-F), acth (G), and gsdf (H) in XX (filled circles) and XY (open circles) 121 embryos reared at 24 °C and 32 °C. These data were measured by qPCR analysis in whole embryos at 122 stage 37. Gene expression levels are expressed relatively to the 24 °C treatment. Quantification method 123 was performed using the $2^{-\Delta\Delta Ct}$ method and values were normalized by the respective values of *rpl7*. 124 Genotypic sex was determined by the presence/absence of the *dmy* gene, XX and XY are represented by 125 filled circles and open circles, respectively. Horizontal bars indicate mean, with its respective standard 126 error of the mean. The p values are indicated when transcript abundance between temperature treatments 127 at the same developmental stage differ statistically (FgStatistics; p < 0.05).

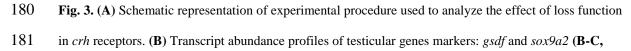
128 Generation of biallelic mutation of crhr1 and crhr2 using CRISPR/Cas9 technology

129	To analyze the participation of the HPI axis in temperature-induced masculinization, we
130	disrupted this axis through the biallelic mutations of crhr1 or/and crhr2 using
131	CRISPR/Cas9 technology. Biallelic mutations of both Crh receptors generated indels in
132	the transmembrane domain resulting in a receptor with a protein segment that fails to
133	anchor into the membrane lipid bilayer, and then unable to activate the intracellular G
134	coupled protein (Grammatopoulos, 2012). Thus, the sgRNAs for crhr1 and crhr2 genes
135	were designed at the exons 7 (located in the transmembrane helix 3) and 10 (located in
136	the transmembrane helix 6; Fig. S2A), respectively. These sgRNAs were synthesized in
137	vitro, and co-injected with nCas9n RNA (cas9) into one-cell-stage embryos. The
138	mutagenesis efficiency for each sgRNA was analyzed by the heteroduplex mobility
139	assay (HMA; Fig. S2B) (Ota et al., 2013), which reached 99.6 % for sgRNA-crhr1 and
140	100 % for sgRNA-crhr2 (Fig. S3A and S3B). Additionally, some biallelic positive
141	amplifications were sequenced to confirm the indels presence (Fig. S2C). Data indicate
142	that most cells contained biallelic indels, and consequently, loss of function in crhr1 and
143	crhr2 mutants. Additionally, the potential off-target sites for each sgRNAs were
144	searched in the medaka genome using the Medaka Pattern Match Tool
145	(http://viewer.shigen.info/meda-kavw/crisprtool/) and CCTop - CRISPR/Cas9 target
146	online predictor (Stemmer, Thumberger, del Sol Keyer, Wittbrodt, & Mateo, 2015).
147	None of the embryos analyzed presented indels on the off-target sites for each of the
148	injected sgRNAs (Fig. S3A and S3B).

9

149	Moreover, no morphological and survivals alterations were observed in a batch of
150	animals reared at 24°C (CT) up to 60 days post-hatching (dph) in term of morphological
151	and survival (Fig. S4).
152	Genotypic female biallelic crhrs mutants did not show HT-induced masculinization
153	In order to assess the participation of Crh-related genes in the sex reversion of genotypic
154	females to phenotypic males induced by HT, we analyzed the expression of well-known
155	gene markers for gonadal sex differentiation in fish, such as <i>gsdf</i> , sry-box9 type 2α
156	(sox9a2), gonadal aromatase (cyp19a1a, estrogen-related gene) and hydroxysteroid 11-
157	beta dehydrogenase 2 (hsd11b2, androgen-related gene) (Chakraborty, Zhou,
158	Chaudhari, Iguchi, & Nagahama, 2016; Fernandino et al., 2012; Imai, Saino, &
159	Matsuda, 2015; Kurokawa et al., 2007; S. Nakamura et al., 2012; Shibata et al., 2010;
160	X. Zhang et al., 2016; Zhou et al., 2016). Fertilized eggs were coinjected with cas9
161	RNA and sgRNA for each of <i>crhr</i> (<i>cas9</i> +sgRNA- <i>crhr1</i> or <i>cas9</i> +sgRNA- <i>crhr2</i>) alone or
162	together (<i>cas9</i> +sgRNA- <i>crhr1</i> +- <i>crhr2</i>); and they were then incubated at HT (32 $^{\circ}$ C).
163	Control fertilized eggs were injected only with cas9 and then incubated at CT and HT
164	(cas9-24 °C and cas9-32 °C, respectively; Fig. 3A). In all treatments, genotypic females
165	(XX, <i>dmy</i> ^{-/-}) that presented indels were selected for analysis of gene expression at stage
166	37. As expected, <i>cas9-32</i> °C individuals presented higher levels of <i>gsdf</i> and <i>sox9a2</i> , and
167	lower of cyp19a1a expression levels when was compared to cas9-24 °C individuals
168	(Fig. 3B, 3C and 3D, respectively), evidencing the molecular mechanism of action of
169	masculinization induced by HT. However, the double biallelic crhrs mutant of

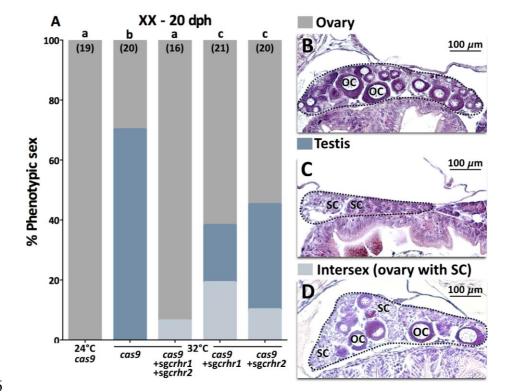

170 genotypic females at HT showed a female pattern of lower gsdf and sox92a expression


10

171 levels, and higher of *cyp19a1a*, resembling those of *cas9-24* °C group (Fig. 3B, 3C, and

172 3D).

- 173 When each biallelic *crhr* mutants of XX embryos were analyzed the gene expression
- 174 pattern showed an intermediate phenotype, with high gsdf, sox9a2 and cyp19a1a (Fig.
- 175 3B, 3C, and 3D). Here it is necessary to take into account that in the biallelic mutant of
- 176 each *crh* receptor as the *crhr* paralog is fully active. Moreover, we analyzed the
- 177 expression pattern of the androgen-related gene, *hsd11b2*, which did not show
- 178 differences between treatments (Fig. 3F).



182	respectively), the ovarian gene marker: cyp19a1a (D), interrenal gland gene marker cyp11b (E), and the
183	androgen-related gene hsd11b2 (F), in the control (cas9 injected embryos reared at 24 °C and 32 °C) and
184	biallelic crh receptors mutants: cas9+sgRNA-crhr1, cas9+sgRNA-crhr2 and cas9+sgRNA-crhr1+-crhr2
185	coinjected embryos reared at 32 °C. These data were measured by qPCR analysis in whole embryos with
186	genotypic sex XX at stage 37. Gene expression levels are expressed relative to $cas9$ at the 24 °C
187	treatment. Quantification method was performed using the $2^{-\Delta\Delta Ct}$ method and values were normalized by
188	the respective values of <i>rpl7</i> . Horizontal bars indicate mean, with its respective standard error of the
189	mean. Different letters indicate statistically significant differences between treatments (one-way
190	ANOVA, followed by a Tukey's multiple comparison test; $p < 0.05$).
191	Crhrs are necessary to elicit sex reversion by high temperature
192	Besides the expression of testis and ovary-related gene markers, we also analyzed
193	gonadal morphology of XX biallelic crhr mutants that were incubated at HT until
194	hatching and thereafter at 26 $^{\circ}$ C (breeding temperature) for 20 dph, when gonad could
195	be morphologically well differentiated. XX juveniles injected with cas9 (control) and
196	incubated at HT until hatching presented 68.8 % of sex reversion toward males, as
197	evidenced by testis morphology (Fig. 4A and 4C). At 24 $^\circ C$ no reversal was found, with
198	all fish showing normal ovary development (Fig. 4A and 4B). The double biallelic crhrs
199	mutant showed a wide-ranging insensitivity to HT-induced female-to-male sex reversal,
200	with all XX individuals presenting normal ovary morphology (Fig. 4A, and 4B).
201	Moreover, in case of the biallelic <i>crhr1</i> mutant sex-reversed individuals were observed

- 202 in 19 % of individuals (Fig. 4A and 4C). However, 19 % of intersex individuals were
- 203 obtained, i.e., animals with ovaries containing spermatocytes (ova-testis; Fig. 4D).

Finally, XX biallelic crhr2 mutant juveniles showed 35% of sex reversal and 10% of

205 intersex gonads (Fig. 4A, 4C and 4D).

Fig. 4. Participation of *crhrs* in the sex reversal induced by HT. (A) Percentages of genetic females (XX)

208 with sex-reversed testicular morphology, (B) ovary (OC, oocytes), (C) testis with spermatocytes (SC),

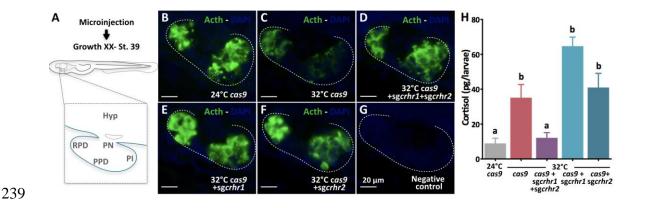
and (**D**) intersex (OC with SC) in embryos injected with *cas9* (control), *cas9*+sgRNA-*crhr1*,

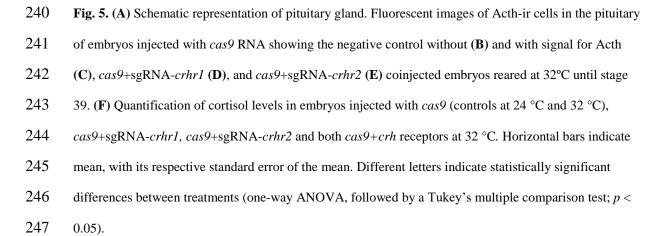
210 *cas9*+sgRNA-*crhr2* and *cas9*+sgRNA-*crhr1*+sgRNA-*crhr2*. The number of medaka juveniles analyzed

211 in each treatment is shown between brackets. Different letters indicate statistically significant differences

between treatments (one-way ANOVA, followed by a Tukey's multiple comparison test; p < 0.05).

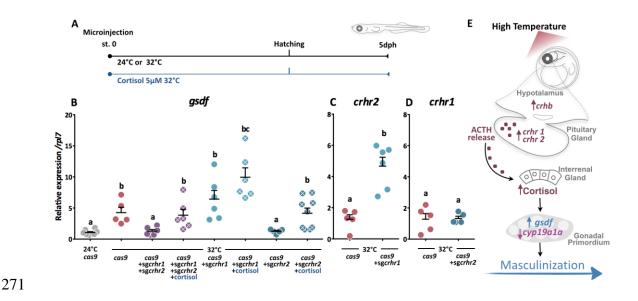
213 Biallelic mutations of crhr exhibit inhibition of Acth release and lack of cortisol


214 increase


215 As we previously did not observe a correlation between the up-regulation of *crhb* and

the *acth* transcript abundance (Fig. 1, and 2), we measured the Acth-immunoreactive

217	(Acth-ir) cells using immunofluorescence in the pituitary of genotypic female embryos
218	at stage 39, with or without functional receptors and incubated them at HT (Fig. 5A).
219	Firstly, we observed differences in the fluorescence intensity of the Acth-ir cells in XX
220	embryos incubated at control and high temperature (Fig. 5B, 5C, and 5H), suggesting
221	that thermal stress induces Acth release. Moreover, we measured Acth-ir in biallelic
222	crhrs mutants and observed higher fluorescence intensity in relation to embryos
223	incubated at HT (Fig. 5C, 5D, 5E, 5F, and S5), resembling the XX cas9 control
224	embryos (Fig. 5B, and S5). These results show that the biallelic mutation of <i>crhrs</i> in XX
225	embryos causes the accumulation of Acth in pituitary cells, indicating that both crh
226	receptors are mostly related to Acth release in stress response induced by high
227	temperature.
228	To corroborate that biallelic mutations of <i>crhr</i> s do disrupt the HPI axis, the level of
229	cortisol and the mRNA expression of P450 11-beta (cyp11b), enzyme expressed by the
230	interrenal gland involved in cortisol synthesis (Montero et al., 2015), were measured in
231	all treatment. We observed in both biallelic crhr1 and crhr2 mutants an increase of
232	cortisol levels at the end of the gonadal sex determination period. On the other hand, the
233	levels of cortisol in the double biallelic crhr mutant were completely suppressed (Fig.
234	5H). Moreover, cyp11b was up-regulated at HT and down-regulated in the double
235	biallelic crhrs mutant (Fig. 3E), showing that the gene involved in the synthesis of
236	cortisol is transcriptionally active; <i>hsd11b2</i> , which is involved in cortisol catabolism
237	and 11-oxygenated androgen synthesis, did not show differences between treatments
238	(Fig. 3F).


248 Cortisol exposure rescued the lack of sex reversal phenotype in crhrs mutants

In view that the entire HPI axis seems to be functional during the critical period of gonadal fate and the biallelic mutations in *crhrs* inhibited masculinization of genotypic females incubated at HT, we decided to test whether the addition of cortisol could rescue the absence of sex reversal in the mutants. Therefore, we performed an experiment in which all embryos were maintained in an embryo medium with or without cortisol (5 μ M) from fertilization to 5 dph (Fig. 6A) (Hayashi et al., 2010). The double biallelic *crhrs* mutants showed a transcription the phenotype of XX at HT, with

15

a low transcript abundance of *gsdf* (Fig. 6B), a typical XX-24 °C *gsdf* expression
pattern.

- 258 Finally, the treatments of XX biallelic crhr1 mutant, treated with or without cortisol at
- HT, presented high levels of *gsdf*, similar to control XX *cas9* injected larvae (Fig. 6B),
- suggesting that the XX biallelic *crhr1* mutant is not sufficient to induce a female (low)
- 261 pattern of *gsdf*. These results are in agreement with the high level of cortisol observed at
- stage 39 (Fig. 5I). However, XX biallelic *crhr2* mutants larvae reared at HT maintained
- low transcript abundance of *gsdf* (Fig. 6B), a typical female-like expression pattern.
- 264 Most importantly, XX biallelic *crhr2* mutant reared with 5 µM cortisol at HT showed a
- 265 male-like (high) gsdf expression pattern, similar to XX cas9-injected XX fish (Fig. 6B).
- 266 To better understand the compensatory molecular mechanism, we analyzed the
- transcript abundance of the *crhr2* and *crhr1* in the XX biallelic *crhr1* and *crhr2* mutant,
- respectively. We also observed an up-regulation of the *crhr2* in the XX biallelic *crhr1*
- 269 mutants (Fig. 6C), but not for *crhr1* in XX biallelic *crhr2* mutant larvae (Fig. 6D),
- 270 suggesting a molecular compensatory mechanism.

272 Fig. 6. Rescue of masculinization in biallelic *crhrs* mutants phenotype by cortisol treatment. (A) 273 Schematic representation of experimental procedure. (B) Gene expression profile of testicular gene 274 marker gsdf was analyzed in control (cas9), cas9+sgRNA-crhr1, cas9+sgRNA-crhr2, and cas9+sgRNA-275 crhr1+sgRNA-crhr2 treated with cortisol (5 µM) or vehicle (ethanol) between fertilization and 5 dph at 276 32 °C. Quantification of crhr2 (C) and crhr1 (D) expression in cas9+sgRNA-crhr1 and -crhr2 coinjected 277 larvae, respectively. Gene expression levels are expressed relatively to cas9+sgRNA-crhr1 without 278 cortisol treatment (for panel **B**) and to *cas9* treatment (for panels **C** and **D**). Data were measured by qPCR 279 in whole embryos with the genotypic sex XX. Quantification method was performed using the $2^{-\Delta\Delta Ct}$ 280 method and values were normalized by the respective values of rpl7. Horizontal bars indicate mean, with 281 its respective standard error of the mean. Different letters indicate statistically significant differences 282 between treatments (FgStatistics; p < 0.05). (E) Schematic representation of the proposed mechanism by 283 which the CNS, through the corticotropin releasing hormone b (crhb) and its receptors (crhr1 and crhr2) 284 are the transducer of stress-induced masculinization.

DISCUSSION

286	Environmental factors that act during the critical period of fish gonadal development are
287	able to alter sex ratios, especially toward males (Fernandino et al., 2013; Ospina-
288	Álvarez & Piferrer, 2008). Even presenting established genotypic sex-determining
289	mechanisms with known sex-determining genes, many fish species produce male-
290	skewed sex ratios when environmental temperatures are elevated during early
291	development. However, whether this phenomenon has any adaptive value or not is
292	unknown for the vast majority of species. Although the understanding of this
293	mechanism has great interest for basic biology and the perspective of global climate
294	change, the pathways that mediate environmental cues and gonadal fate, and the
295	involvement of extra-gonadal organs in this process are still unknown. Our results
296	demonstrate for the first time the fundamental role of the CNS as the transducer in a
297	form of environmental sex determination (ESD), through the regulation of the HPI axis.
298	In the current work we demonstrated that, during the gonadal sex determination period,
299	the HPI axis is active. Moreover, we proved that out of two crh paralogs, only crhb was
300	up-regulated at high masculinizing temperatures along embryonic development. In
301	medaka, the crha gene was previously misidentified as a new member of Crh family
302	and named as <i>telocortin</i> (<i>tcn</i>). The expression of <i>crha</i> has been mainly observed in the
303	retina, with a weak expression in the brain (Kohei Hosono et al., 2015). In another
304	teleost, Astatotilapia burtoni, the presence of crha has been related to the mediation of
305	social information or stress responses in the visual system, facilitating signal processing
306	before it even reaches the brain (Grone & Maruska, 2015). These previous results are in

307	concordance with our observations, in which crha transcription does not seem to be
308	induced by environmental stressors, such as high temperature. Besides crha and crhb,
309	other members of the crh family genes are present in the medaka genome, such as the
310	uts1, ucn2, and ucn3 (K. Hosono et al., 2017). Known as urocortins, these genes code
311	for neuropeptides that share structural similarity with crhs, and can act as additional
312	endogenous ligands for CRH receptors. In mice, they have been involved in stress
313	responses and also anxiety (Bale & Vale, 2004; Sztainberg & Chen, 2012).
314	Nevertheless, neither of the urocortins was up-regulated during the sex determination
315	period at high, masculinization temperature.
316	Regarding <i>crhb</i> , the high expression pattern at HT was in agreement with results of
317	other well-known stress responses, at its role in regulating the release of glucocorticoids
318	(Alderman & Bernier, 2009; Carpenter et al., 2014; Chen & Fernald, 2008; Grone &
319	Maruska, 2015). Moreover, a similar pattern was obtained for others genes of the Crh-
320	related pathway, crucial to the HPI axis is active (Lovejoy & de Lannoy, 2013), during
321	the gonadal sex determination period, as for the crh receptors, crhr1 and crhr2. In
322	medaka, the first peak of cortisol occurs in 2 dph larvae, when animals are reared at
323	normal breeding temperatures (Trayer, Hwang, Prunet, & Thermes, 2013). However,
324	Hayashi et al. (Hayashi et al., 2010) and our study showed an early rise in cortisol in
325	embryos reared at HT, at the time of the gonadal sex determination period, evidencing
326	an earlier activation of mechanisms involved in the surge of cortisol levels. On this
327	regard, the high expression of <i>crhb</i> and their receptors, <i>crhr1</i> and <i>crhr2</i> , in our study is
328	consistent with the timing of cortisol increase. Notably, the overlapping between the

329	timing of early activation of the HPI axis and the gonadal sex determination period is
330	crucial to understand how high levels of cortisol are triggered and are related to male-
331	skewed sex ratio (Hattori et al., 2009; Hayashi et al., 2010). Subsequently, in order to
332	validate our hypothesis, we disrupted the HPI axis with biallelic mutation in both <i>crhr</i> s.
333	These mutants were characterized by a lack of cortisol response at HT, down-regulation
334	of testicular gene markers, and the concomitant inhibition of sex reversal
335	(masculinization in XX) induced by stress. Thus, double biallelic crhrs mutants
336	phenocopied the previous results on the inhibition of cortisol synthesis, with the absence
337	of sex reversal in genotypic females (Hayashi et al., 2010). These observations
338	corroborate for first time the participation of the brain in the stress-induced
339	masculinization.
340	In all vertebrates, CRH regulates the synthesis and release of ACTH (Mommsen et al.,
341	1999; Wendelaar Bonga, 1997) through their transmembrane receptors in the pituitary
342	gland (Lovejoy et al., 2014). In the present work, although acth transcript abundance
343	did not show any change during the gonadal sex determination period and under stress
344	conditions, we detected low intensities of Acth-ir in HT embryos that could be
345	explained by a stimulation of Acth release by thermal stress. Moreover, biallelic
346	mutations of <i>crhr</i> s showed an accumulation of Acth in the pituitary, phenocoping the
347	high fluorescence pattern of control group. Furthermore, these Acth accumulation or
348	release are in concordance with the cortisol levels observed in each loss of <i>crhr</i> s
349	function mutants. In mammals, both CRH and CRHR1 are associated with the HPA axis
350	at the initial stress response whereas CRHR2 plays a major role during the chronic and

351	later response to stress (Lovejoy & de Lannoy, 2013). CRHR1 knockout mice showed
352	reduced stress-induced release of ACTH and corticosterone, providing evidence that
353	CRHR1 mediates stress-induced hormone activation (Smith et al., 1998; Timpl et al.,
354	1998). On the other hand, CRHR2-deficient mice possessed a generally normal
355	initiation of the stress-response, but later on an early disruption of the ACTH release,
356	suggesting that CRHR2 is also involved in the maintenance of HPA axis drive (Coste et
357	al., 2000). In view of these considerations, our data are in accordance with results
358	reported in mice, since the loss of function in each of receptors, <i>crhr1</i> or <i>crhr2</i> , or both
359	together, resulted in a decrease of Acth release. Such disruption in HPI axis was
360	demonstrated to be crucial for female-to-male sex reversal in our studies with medaka
361	under high, stressful temperatures.
362	An in depth analysis on the molecular responses in each crhrs loss-of-function under
363	thermal stress showed that, although embryos coinjected with cas9+sgRNA-crhr1 or
364	crhr2 presented an early inhibition of gsdf expression, an increased cortisol level was
365	observed at the end of the gonadal sex determination period when only one of the crhr
366	was biallelically mutated. However, the level of cortisol in the double crhr biallelic
367	mutant was completely suppressed. In each of biallelic crhr mutant is necessary taking
368	into account that the paralog is fully active, explaining these partial compensation, and
369	only half of sex reversal. In the second case, the strong decreased in cortisol level of the
370	double crhrs mutants resembled the absence of stress response observed without an
371	environmental stressor, with the concomitant absent of female sex reversal. In addition,
	environmental suessor, with the concommant absent of remain sex reversal. In addition,

373	inhibition in medaka (Hayashi et al., 2010), with the absence of sex reversal. Taken
374	together, these results highlight the importance of the involvement of both Crh receptors
375	in fish masculinization induced by environmental stressors.
376	Once the HPI axis has translated the stimulus of an environmental stressor, is important
377	to know how cortisol transduces this response to masculinize the gonad. In some fish,
378	including medaka, has been proposed that gonadal aromatase, an enzyme involved in
379	estradiol synthesis, or other genes related to its regulation, such as FTZ-F1 - the
380	ortholog of mammalian steroidogenic factor1 – are inhibited by cortisol (Hayashi et al.,
381	2010; Navarro-Martin et al., 2011; Yamaguchi et al., 2010). Furthermore, in pejerrey
382	(Odontesthes bonariensis) has been suggested that androgens, synthetized through the
383	action of hsd11b2, are considered as mediators of stress (Fernandino et al., 2012;
384	Fernandino et al., 2013). Our results confirm that cyp19a1a transcription is suppressed
385	at HT, and demonstrated that high transcription levels can be rescued in double biallelic
386	crhrs mutants.
387	Three different results, including (i) disruption of HPI axis, (ii) the increase of testicular
388	gene markers with the concomitant decrease of sex reversal of genotypic females, and
389	(iii) the rescue of masculinization with cortisol, support the fact CNS is involved in the
390	sex reversal induced by environmental stressors (as summarized in the Fig. 6E), as

391 contrasting to genotypic sex determination in which the sexual fate decision begins from392 the gonad.

22

394 MATERIAL AND METHODS

395 Source of animals and experimental conditions

- 396 Fertilized eggs of *O. latipes* were incubated in Petri disks of 70 mm with embryo
- medium (17 mM NaCl, 0.4 mM KCl, 0.27 mM CaCl₂2H₂O and 0.66 mM MgSO₄; pH
- 398 7) at 24 °C (CT) or 32 °C (HT). Sampling was performed at stages 26, 33, 37, 39, and at
- 399 5, 20 or 60 days after hatching (dah) (Iwamatsu, 2004). These stages corresponded to
- 400 the end of primordial germ cells (PGCs) migration and the formation of the gonadal
- 401 primordium (stage 26), the beginning of *dmy/dmrt1bY* transcription in gonadal somatic
- 402 cells (stage 33), the sexual dimorphism in PGCs proliferation (stage 35-37), and to the
- 403 maximum PGCs proliferation in XX embryos and latest embryo stage of the gonadal
- 404 sex determination period (stage 39) (Saito et al., 2007). Based on previous work, we
- 405 know that 5-dph larvae are sensitive to cortisol treatment (Hayashi et al., 2010), that 20-
- 406 dph fish can easily be assessed for gonadal sex morphology, and that 60-dph animals
- 407 have grown as adult fish to assess survivorship. The strain hi-medaka (ID: MT835) was
- 408 supplied from the National BioResource Project (NBRP) Medaka
- 409 (www.shigen.nig.ac.jp/medaka/). All fish were maintained and fed following standard
- 410 protocols to medaka (M. Kinoshita, Murata, Naruse, & Tanaka, 2012). Fish were
- 411 handled in accordance with the Universities Federation for Animal Welfare Handbook
- 412 on the Care and Management of Laboratory Animals (<u>www.ufaw.org.uk</u>) and internal
- 413 institutional regulations.

414 **RNA** and quantification by **RT-qPCR**

415	Total RNA was extracted from individual embryos using the RNAqueos®-Micro kit
416	(Ambion by Life Technologies) for stage 26, the Illustra RNAspin Mini was used for
417	stage 33, and 350 μ L of TRIzol® Reagent (Life Technologies) used for stage 37, 39,
418	and 5 dph, following the manufacturer's instructions. To perform the cDNA synthesis,
419	RNA of each individual sample (250 ng) was treated with Deoxyribonuclease I
420	Amplification Grade (Life Technologies) and reverse-transcribed using SuperScript II
421	(Life Technologies) with oligo(dT) following the manufacturer's instructions. Each
422	primer pair was previously validated analyzing the melting curve, efficiency between
423	95-105%, with a slope of around -3.30 and a R2 value > 0.99 . Real-time PCR primers
424	are listed in Table S1. Samples were analyzed with Step One Plus Real-Time PCR
425	System (Applied Biosystems). The amplification protocol consisted of an initial cycle of
426	1 min at 95 °C, followed by 10 s at 95 °C and 30 s at 60 °C for a total of 45 cycles. The
427	subsequent quantification method was performed using the $2^{-\Delta\Delta Ct}$ method (threshold
428	cycle; www.appliedbiosystems.com/support/apptech) and normalized against reference
429	gene values for ribosomal protein L7 (rpl7) (Z. Zhang & Hu, 2007).

430 Sexing of embryos by PCR

431 Each embryo of stages 33, 37, 39, and 5-dph and 20-dph larvae was analyzed to

- 432 determine its genotypic sex. Animals were subjected to DNA analysis for the presence
- 433 of the *dmy/dmrt1bY* gene. For this purpose, we collected DNA from each RNA
- 434 extraction following manufacturer's instructions. A PCR analysis was then performed
- 435 using primers for *dmy* (Nanda et al., 2002) and the presence of β -actin gene was used as

24

- 436 a DNA loading control (Table S1) (Hattori et al., 2007). The PCR products were
- 437 analyzed on a 1% agarose gel.

438 CRISPR/Cas9 target site design and single guide RNA (sgRNA) construction

- 439 CRISPR/Cas9 target sites were designed using the CCTop CRISPR/Cas9 target online
- 440 predictor (crispr.cos.uni-heidelberg.de/index.html)(Stemmer et al., 2015), which
- 441 identified sequence 5' GG-(N18)-NGG3' in exon 7 of crhr1
- 442 (TTGAGGAACATCATCCAC TGG) and exon 10 of *crhr2*
- 443 (GAGGCAGCAAGACGAGTG TGG) (Fig. S2A and S2C). Each sgRNA was
- 444 synthesized by cloning the annealed oligonucleotides into the sgRNA expression vector
- 445 pDR274 (Addgene #42250) (Hwang et al., 2013) followed by *in vitro* transcription,
- 446 previously established by Ansai and Kinoshita (Ansai & Kinoshita, 2014). Briefly, a
- 447 pair of oligonucleotides at final concentration of 10 mM each was annealed in 10 mL of
- 448 annealing buffer (40 mM Tris-HCl [pH 8.0], 20 mM MgCl₂, and 50 mM NaCl) by
- 449 heating to 95°C for 2 min and then cooling slowly to 25°C. Then, the pDR274 vector
- 450 was digested with BsaI-HF (New England Biolabs), and the annealed oligonucleotides
- 451 were ligated into the pDR274 vector. The sgRNA expression vectors were digested by
- 452 DraI, and the sgRNAs were synthesized using the MEGAshortscript T7 Transcription
- 453 Kit (Thermo Fisher Scientific). The synthesized sgRNAs were purified by RNeasy Mini
- 454 kit purification (QIAGEN). These RNA sequences were diluted to 50 ng/ μ L.
- 455 Capped Cas9 RNA synthesis

456	The capped cas9 (nCas9n RNA) was transcribed from pCS2-nCas9n plasmid (Addgene
457	#47929). First, the plasmid was linearized by NotI and capped <i>cas9</i> was synthesized by
458	mMESSAGE mMACHINE SP6 kit (Life Technologies). The synthesized cas9 was
459	purified by RNeasy Mini kit purification (QIAGEN). These RNA sequences were
460	diluted to 200 ng/µL.
461	Microinjection into embryos
462	Microinjection was performed into fertilized medaka eggs before the first cleavage as
463	described previously (Masato Kinoshita, Kani, Ozato, & Wakamatsu, 2000). For
464	CRISPR/Cas9 system, 25 ng/µl sgRNA and 100 ng/µL cas9 were coinjected in 4.6 nL of
465	RNA mixture. Embryos injected with cas9 were used as controls. Microinjection was
466	performed with a Nanoject II Auto-Nanoliter Injector (Drummond Scientific) coupled to
467	a stereomicroscope (Olympus).
468	DNA extraction to Heteroduplex mobility assay (HMA)
469	To analyze the efficiency and specificity of the CRISPR/Cas9 system, 3 days post-
470	fertilization embryos were used (Ansai & Kinoshita, 2014). Genomic DNA was
471	extracted by incubating each medaka embryo in 25 μL of 5 mM NaOH, 0.2 mM EDTA
472	at 95°C for 5 min. After cooling to room temperature (RT) 25 μL of 40 mM Tris-HCl,
473	pH 8.0, was added to the extract. The supernatant was used as template for PCR to
474	HMA. Conventional PCR analysis was performed with genomic DNA using primers
475	listed in Table S1. Electrophoresis performed in 12 % acrylamide gel (Ota et al., 2013),

26

476 stained with ethidium bromide for 15 min before examination. PCR products v

477 sequenced to confirm the presence of indels (Ansai & Kinoshita, 2014).

478 Off-target analysis

- 479 Potential off-target sites in the medaka genome were searched using a "Pattern Match"
- 480 tool in New Medaka Map (beta) at the NBRP medaka web site
- 481 (http://viewer.shigen.info/medakavw/patternmatch). All potential off-target sites
- 482 identified were analyzed by HMA using the primers listed in Table S1.

483 Biallelic mutant screening

- 484 Crispant (injected embryos with *cas9*+sgRNA) fish were mated with wild-type ones
- 485 from Himedaka strain. Genomic DNA was extracted from each F1 embryos for analysis
- 486 of mutations by HMA, as described previously (Table S1). Mutant alleles in each
- 487 embryo were determined by direct sequencing of the *crhr1* or *crhr2* gene region.

488 Histological analysis

- 489 Samples for histological examination of gonadal sex (n = 15 25/per group) were taken
- 490 at 20 dph and analyzed following the criteria reported above (5). Firstly, the caudal fin
- 491 was taken for gDNA extraction using conventional saline buffer extraction to determine
- 492 genotypic sex and for HMA analysis (Aljanabi & Martinez, 1997). The body trunk was fixed
- 493 in Bouin's solution and processed according to standard protocols for preparation of
- 494 hematoxylin-eosin stained histological sections. These preparations were examined
- 495 under the Nikon ECLIPSE Ni-U microscope (Nikon) and captured with a Digit Sight
- 496 DS-Fi2 digital camera (Nikon).

497 Immunofluorescence analysis of Acth

498 Medaka embryos at stage 39 from the different treatments were used. All individuals 499 were processed under the same condition for fixation, washing and incubation with 500 serum and antibody. The stage 39 was chosen to analyze the release of Acth upon up-501 regulation of *crhb*, which was detected at stage 37. The tail was used for sex genotying 502 by PCR and HMA analysis and the rest of the body was fixed in Bouin's solution 503 overnight. Sections were then washed with 0.1 M phosphate-buffered saline (PBS pH 504 7.4) and blocked in 0.1 M PBS containing 0.5% of bovine serum albumin (Sigma-505 Aldrich) for 60 min before overnight incubation with a mixture of primary antibody 506 against ACTH-NIDDK-anti-hATCH-IC-3 (rabbit, 1:250; kindly provided by Dante Paz, 507 Universidad de Buenos Aires) at RT. After incubation, the sections were washed twice 508 in PBS for 10 min each and incubated at RT for 90 min with the secondary antibody 509 goat-anti-rabbit IgG (Life Technologies) conjugated with Alexa Fluor 488 (green), at a 510 dilution of 1:2000 in PBS. Separate sets of slides were treated only with secondary 511 antibody (negative controls). After incubation, sections were rinsed twice with PBS and 512 mounted with mounting medium Fluoromount (Sigma Aldrich) containing 4',6-513 diamidino-2-phenylindole (DAPI, 5 µg/ml, Life Technologies). Section photographs 514 were taken using the Nikon Eclipse E7000 and the Image Pro Plus (Media Cybernetcs) 515 at same capture conditions of exposure and gain to all samples. Finally, images were analyzed and measured for fluorescence using ImageJ (https://imagej.nih.gov/ij/) 516 517 employing the relation of the fluorescence intensity of the area of pituitary gland and the 518 mean fluorescence of background.

519 Levels of cortisol

530	Rescue of biallelic mutant phenotype by cortisol treatment.
529	ranged from 4 to 13%.
528	the cold-spike method to be 0.85% and the intra- and inter-assay variation (CV%)
527	2100C, Hong Kong) following the kit instructions. The recovery rate was estimated by
526	resuspended in 2 mL EIA buffer and analyzed in a microplate reader (Rayto Model RT-
525	two times. After evaporation of the diethyl ether, samples were immediately
524	and used for steroid extraction with 1 mL of diethyl ether. This procedure was repeated
523	embryos both sexes were immediately frozen at -80 °C, homogenized in 0.2 mL of PBS,
522	and previously used by our group (Fernandino et al., 2012). Briefly, pools of 23-25
521	according to instructions from the manufacturer (Cayman Chemical, Ann Arbor, USA)
520	Enzyme immunoassay (EIA) was performed using the Cortisol Express EIA Kit

Both cas9+sgRNA-crhr1 and/or +sgRNA-crhr2 coinjected fish were treated with 5 μ M of cortisol (18) (11 β -11,17,21-trihydroxypregn-4-ene-3,20-dione; Sigma-Aldrich) from fertilization to 5 dph. Briefly, after the injection with a mixture of sgRNA (*crhr1* and/or *crhr2*) and *cas9*, the embryos were placed in Petri dish of 70 mm with embryo rearing medium (25 mL) supplemented with cortisol or vehicle control (with the same volume of stock solvent: 4.53 μ L ethanol, 0.018%). The medium was changed every day. Both groups were reared at HT.

538 Statistical analysis

All values are presented as mean \pm standard error of the mean (SEM). Fold change and
statistical analysis of RT-qPCR quantifications were performed by using FgStatistics
interface (http://sites.google.com/site/fgStatistics/), based on the REST method from
Pfaffl et al. (Pfaffl, Horgan, & Dempfle, 2002). The immunohistochemistry
quantification was analyzed using χ^2 -distribution and statistical analyzes were
performed using SPSS v20 program, using one-way Analysis of Variance (ANOVA),
followed by a Tukey's multiple comparison test. The differences on sex ratio were
analyzed with the Hypothesis Testing to Compare Two Population Proportions. All
statistical differences were accepted as significant when $p < 0.05$.
ACKNOWLEDGMENTS
We thank Gabriela C. López (INTECH) for helping with histological and
immunohistochemical preparations. We also thank Masato Kinoshita (Kyoto
University) for teaching and helping with CRISPR/Cas9 technique, Adrián Mutto
(Insituto de Investigaciones Biotecnológicas-UNSAM) for helping with microinjections,
and Ricardo S. Hattori (Unidade de Pesquisa e Desenvolvimento de Campos do Jordão,
APTA/SAA) for helpful advice. We are grateful to NBRP Medaka
(https://shigen.nig.ac.jp/medaka/) for providing hi-medaka (Strain ID: MT835).
THIS WORK WAS SUPPORTED BY GRANTS FROM: Consejo Nacional de

559 Investigaciones Científicas y Técnicas, Fellowship Program for partial financing for a

560	short training period D2979/16	(to J.I.F.), Agencia Nacional de Promoción Científica y
500	short duming period D2277710	(to sini), rigenera racional de riendited y

- 561 Tecnológica Grants 1565/14 and 2501/15 (to J.I.F.), and 2783/15 (to G.M.S.). This
- 562 work was also supported by a Discovery Grant from the Natural Sciences and
- 563 Engineering Research Council (NSERC) of Canada (RGPIN 418576-2012) and a
- 564 Canada Research Chair (CRC) to VSL. DCCC and LFAP were supported by a PhD
- scholarship from the National Research Council (CONICET). JIF and GMS are
- 566 members of the career of scientific researcher at the CONICET. DCCC and LFAP are
- 567 Ph.D. scholarship from CONICET.
- 568

569 ADDRESS ALL CORRESPONDENCE AND REQUESTS FOR REPRINTS TO:

- 570 Juan Ignacio Fernandino, Av. Intendente Marino Km. 8.2 (B7130IWA). Chascomús,
- 571 Provincia de Buenos Aires, Argentina. E-mail: <u>fernandino@intech.gov.ar</u>.
- 572
- 573 **DISCLOSURE SUMMARY:** The authors have nothing to disclose.
- 574

575 **REFERENCES**

- Aguilera, G., & Liu, Y. (2012). The molecular physiology of CRH neurons. *Frontiers in Neuroendocrinology*, *33*(1), 67-84. doi: 10.1016/j.yfrne.2011.08.002
- Alderman, S. L., & Bernier, N. J. (2009). Ontogeny of the corticotropin-releasing factor
 system in zebrafish. *General and Comparative Endocrinology*, *164*(1), 61-69.
 doi: 10.1016/j.ygcen.2009.04.007
- Aljanabi, S. M., & Martinez, I. (1997). Universal and rapid salt-extraction of high
 quality genomic DNA for PCR-based techniques. *Nucleic acids research*,
 25(22), 4692-4693.

584 585	Ansai, S., & Kinoshita, M. (2014). Targeted mutagenesis using CRISPR/Cas system in medaka. <i>Biol Open</i> , <i>3</i> (5), 362-371. doi: 10.1242/bio.20148177
586	Backstrom, T., & Winberg, S. (2013). Central corticotropin releasing factor and social
587	stress. Front Neurosci, 7, 117. doi: 10.3389/fnins.2013.00117
588	Bale, T. L., & Vale, W. W. (2004) CRF and CRF Receptors: Role in Stress
589	Responsivity and Other Behaviors. Vol. 44. Annual Review of Pharmacology
590	and Toxicology (pp. 525-557).
591	Bernier, N. J., Alderman, S. L., & Bristow, E. N. (2008). Heads or tails? Stressor-
592	specific expression of corticotropin-releasing factor and urotensin I in the
593	preoptic area and caudal neurosecretory system of rainbow trout. Journal of
594	Endocrinology, 196(3), 637-648. doi: 10.1677/joe-07-0568
595	Capel, B. (2017). Vertebrate sex determination: evolutionary plasticity of a fundamental
596	switch
597	Nature Reviews Genetics, 18, 675. doi: 10.1038/nrg.2017.60
598	Carpenter, R. E., Maruska, K. P., Becker, L., & Fernald, R. D. (2014). Social
599	opportunity rapidly regulates expression of CRF and CRF receptors in the brain
600	during social ascent of a teleost fish, Astatotilapia burtoni. PLoS ONE, 9(5),
601	e96632. doi: 10.1371/journal.pone.0096632
602	Coste, S. C., Kesterson, R. A., Heldwein, K. A., Stevens, S. L., Heard, A. D., Hollis, J.
603	H., Stenzel-Poore, M. P. (2000). Abnormal adaptations to stress and
604	impaired cardiovascular function in mice lacking corticotropin-releasing
605	hormone receptor-2. Nature Genetics, 24(4), 403-409. doi: 10.1038/74255
606	Chakraborty, T., Zhou, L. Y., Chaudhari, A., Iguchi, T., & Nagahama, Y. (2016). Dmy
607	initiates masculinity by altering Gsdf/Sox9a2/Rspo1 expression in medaka
608	(Oryzias latipes). Scientific Reports, 6, 19480. doi: 10.1038/srep19480
609	Chandler, C. H., Chadderdon, G. E., Phillips, P. C., Dworkin, I., & Janzen, F. J. (2012).
610	Experimental evolution of the Caenorhabditis elegans sex determination
611	pathway. Evolution, 66(1), 82-93. doi: doi:10.1111/j.1558-5646.2011.01420.x
612	Chandler, C. H., Phillips, P. C., & Janzen, F. J. (2008). The evolution of sex-
613	determining mechanisms: lessons from temperature-sensitive mutations in sex
614	determination genes in Caenorhabditis elegans. Journal of Evolutionary
615	<i>Biology</i> , 22(1), 192-200. doi: 10.1111/j.1420-9101.2008.01639.x
616	Chen, C. C., & Fernald, R. D. (2008). Sequences, expression patterns and regulation of
617	the corticotropin-releasing factor system in a teleost. General and Comparative
618	Endocrinology, 157(2), 148-155. doi: 10.1016/j.ygcen.2008.04.003
619	Fernandino, J. I., Hattori, R. S., Kishi, A., Strüssmann, C. A., & Somoza, G. M. (2012).
620	The cortisol and androgen pathways cross talk in high-temperature induced
621	masculinization: 11 β -hydroxysteroid dehydrogenase as a key enzyme.
622	Endocrinology, 153(12), 6003-6011. doi: 10.1210/en.2012-1517
623	Fernandino, J. I., Hattori, R. S., Moreno Acosta, O. D., Strüssmann, C. A., & Somoza,
624	G. M. (2013). Environmental stress-induced testis differentiation: Androgen as a
625	by-product of cortisol inactivation. General and Comparative Endocrinology,
626	192, 36-44. doi: 10.1016/j.ygcen.2013.05.024
627	Ge, C., Ye, J., Weber, C., Sun, W., Zhang, H., Zhou, Y., Capel, B. (2018). The
628	histone demethylase KDM6B regulates temperature-dependent sex

629	determination in a turtle species. Science, 360(6389), 645-648. doi:
630	10.1126/science.aap8328
631	Grammatopoulos, D. K. (2012). Insights into mechanisms of corticotropin-releasing
632	hormone receptor signal transduction. <i>Br J Pharmacol</i> , <i>166</i> (1), 85-97. doi:
633	10.1111/j.1476-5381.2011.01631.x
634	Grammatopoulos, D. K., & Chrousos, G. P. (2002). Functional characteristics of CRH
635	receptors and potential clinical applications of CRH-receptor antagonists. <i>Trends</i>
636 637	<i>in Endocrinology and Metabolism, 13</i> (10), 436-444. doi: 10.1016/S1043-2760(02)00670-7
638	Grone, B. P., & Maruska, K. P. (2015). Divergent evolution of two corticotropin-
639	releasing hormone (CRH) genes in teleost fishes. <i>Frontiers in Neuroscience</i> ,
640	9(OCT), 365. doi: 10.3389/fnins.2015.00365
641	Hattori, R. S., Fernandino, J. I., Kishii, A., Kimura, H., Kinno, T., Oura, M.,
642	Watanabe, S. (2009). Cortisol-induced masculinization: does thermal stress
643	affect gonadal fate in pejerrey, a teleost fish with temperature-dependent sex
644	determination? PLoS ONE, 4(8), e6548. doi: 10.1371/journal.pone.0006548
645	Hattori, R. S., Gould, R. J., Fujioka, T., Saito, T., Kurita, J., Strüssmann, C. A.,
646	Watanabe, S. (2007). Temperature-dependent sex determination in Hd-rR
647	medaka Oryzias latipes: Gender sensitivity, thermal threshold, critical period,
648	and DMRT1 expression profile. Sex. Dev., 1(2), 138-146. doi:
649	10.1159/000100035
650	Hayashi, Y., Kobira, H., Yamaguchi, T., Shiraishi, E., Yazawa, T., Hirai, T., Kitano,
651	T. (2010). High temperature causes masculinization of genetically female
652	medaka by elevation of cortisol. Mol Reprod Dev, 77(8), 679-686. doi:
653	10.1002/mrd.21203
654	Holsboer, F., & Ising, M. (2008). Central CRH system in depression and anxiety -
655	Evidence from clinical studies with CRH1 receptor antagonists. European
656	Journal of Pharmacology, 583(2-3), 350-357. doi: 10.1016/j.ejphar.2007.12.032
657	Hosono, K., Kikuchi, Y., Miyanishi, H., Hiraki-Kajiyama, T., Takeuchi, A., Nakasone,
658	K., Okubo, K. (2015). Teleocortin: A Novel Member of the CRH Family in
659	Teleost Fish. Endocrinology, 156(8), 2949-2957. doi: 10.1210/en.2015-1042
660	Hosono, K., Yamashita, J., Kikuchi, Y., Hiraki-Kajiyama, T., & Okubo, K. (2017).
661	Three urocortins in medaka: identification and spatial expression in the central
662	nervous system. 29(5). doi: 10.1111/jne.12472
663	Hwang, W. Y., Fu, Y., Reyon, D., Maeder, M. L., Tsai, S. Q., Sander, J. D., Joung,
664	J. K. (2013). Efficient genome editing in zebrafish using a CRISPR-Cas system.
665	Nat Biotechnol, 31(3), 227-229. doi: 10.1038/nbt.2501
666	Imai, T., Saino, K., & Matsuda, M. (2015). Mutation of Gonadal soma-derived factor
667	induces medaka XY gonads to undergo ovarian development. Biochemical and
668	Biophysical Research Communications, 467(1), 109-114. doi:
669	10.1016/j.bbrc.2015.09.112
670	Iwamatsu, T. (2004). Stages of normal development in the medaka <i>Oryzias latipes</i> .
671	Mechanisms of Development, 121(7-8), 605-618. doi:
672	10.1016/j.mod.2004.03.012

673	Kinoshita, M., Kani, S., Ozato, K., & Wakamatsu, Y. (2000). Activity of the medaka
674	translation elongation factor 1α -A promoter examined using the GFP gene as a
675	reporter. Development, Growth & Differentiation, 42(5), 469-478. doi:
676	10.1046/j.1440-169x.2000.00530.x
677	Kinoshita, M., Murata, K., Naruse, K., & Tanaka, M. (2012). Medaka: Biology,
678	Management, and Experimental Protocols. Iowa, USA: Wiley-Blackwell.
679	Kitano, T., Hayashi, Y., Shiraishi, E., & Kamei, Y. (2012). Estrogen rescues
680	masculinization of genetically female medaka by exposure to cortisol or high
681	temperature. <i>Mol Reprod Dev</i> , 79(10), 719-726. doi: 10.1002/mrd.22080
682	Kovacs, K. J. (2013). CRH: the link between hormonal-, metabolic- and behavioral
683	responses to stress. J Chem Neuroanat, 54, 25-33. doi:
684	10.1016/j.jchemneu.2013.05.003
685	Kurokawa, H., Saito, D., Nakamura, S., Katoh-Fukui, Y., Ohta, K., Baba, T.,
686	Tanaka, M. (2007). Germ cells are essential for sexual dimorphism in the
687	medaka gonad. Proceedings of the National Academy of Sciences of the United
688	States of America, 104(43), 16958-16963. doi: 10.1073/pnas.0609932104
689	Liu, N. A., Huang, H., Yang, Z., Herzog, W., Hammerschmidt, M., Lin, S., & Melmed,
690	S. (2003). Pituitary corticotroph ontogeny and regulation in transgenic zebrafish.
691	<i>Mol Endocrinol</i> , 17(5), 959-966. doi: 10.1210/me.2002-0392
692	Lovejoy, D. A., Chang, B. S. W., Lovejoy, N. R., & del Castillo, J. (2014). Molecular
693	evolution of GPCRs: CRH/CRH receptors. Journal of Molecular
694	<i>Endocrinology</i> , <i>52</i> (3), T43-T60. doi: 10.1530/JME-13-0238
695	Lovejoy, D. A., & de Lannoy, L. (2013). Evolution and phylogeny of the corticotropin-
696	releasing factor (CRF) family of peptides: Expansion and specialization in the
697	vertebrates. J Chem Neuroanat, 54, 50-56. doi: 10.1016/j.jchemneu.2013.09.006
698	Mankiewicz, J. L., Godwin, J., Holler, B. L., Turner, P. M., Murashige, R., Shamey, R.,
699	Borski, R. J. (2013). Masculinizing effect of background color and cortisol
700	in a flatfish with environmental sex-determination. Integr Comp Biol, 53(4),
701	755-765. doi: 10.1093/icb/ict093
702	Mommsen, T., Vijayan, M. M., & Moon, T. (1999). Cortisol in teleosts: dynamics,
703	mechanisms of action, and metabolic regulation. Fish Physiol. Biochem., 211-
704	268. doi: 10.1023/A:1008924418720
705	Montero, D., Terova, G., Rimoldi, S., Tort, L., Negrin, D., Zamorano, M. J., &
706	Izquierdo, M. (2015). Modulation of adrenocorticotrophin hormone (ACTH)-
707	induced expression of stress-related genes by PUFA in inter-renal cells from
708	European sea bass (Dicentrarchus labrax). Journal of Nutritional Science, 4,
709	e16. doi: 10.1017/jns.2015.6
710	Mork, L., Czerwinski, M., & Capel, B. (2014). Predetermination of sexual fate in a
711	turtle with temperature-dependent sex determination. Developmental Biology,
712	386(1), 264-271. doi: https://doi.org/10.1016/j.ydbio.2013.11.026
713	Nakamura, M. (2009). Sex determination in amphibians. Seminars in Cell and
714	Developmental Biology, 20(3), 271-282. doi: 10.1016/j.semcdb.2008.10.003
715	Nakamura, S., Watakabe, I., Nishimura, T., Toyoda, A., Taniguchi, Y., & Tanaka, M.
716	(2012). Analysis of medaka sox9 orthologue reveals a conserved role in germ
717	cell maintenance. <i>PLoS ONE</i> , 7(1), e29982. doi: 10.1371/journal.pone.0029982

718	Nanda, I., Kondo, M., Hornung, U., Asakawa, S., Winkler, C., Shimizu, A., Schartl,
719	M. (2002). A duplicated copy of DMRT1 in the sex-determining region of the Y
720	chromosome of the medaka, Oryzias latipes. Proc. Natl. Acad. Sci. U. S. A.,
721	99(18), 11778-11783. doi: 10.1073/pnas.182314699
722	Navarro-Martin, L., Vinas, J., Ribas, L., Diaz, N., Gutierrez, A., Di Croce, L., &
723	Piferrer, F. (2011). DNA methylation of the gonadal aromatase (cyp19a)
724	promoter is involved in temperature-dependent sex ratio shifts in the European
725	sea bass. PLoS Genet., 7(12), e1002447. doi: 10.1371/journal.pgen.1002447
726	Nozu, R., & Nakamura, M. (2015). Cortisol administration induces sex change from
727	ovary to testis in the protogynous wrasse, Halichoeres trimaculatus. Sexual
728	Development, 9(2), 118-124. doi: 10.1159/000373902
729	Ospina-Álvarez, N., & Piferrer, F. (2008). Temperature-dependent sex determination in
730	fish revisited: Prevalence, a single sex ratio response pattern, and possible
731	effects of climate change. PLoS ONE, 3(7), e2837. doi:
732	10.1371/journal.pone.0002837
733	Ota, S., Hisano, Y., Muraki, M., Hoshijima, K., Dahlem, T. J., Grunwald, D. J.,
734	Kawahara, A. (2013). Efficient identification of TALEN-mediated genome
735	modifications using heteroduplex mobility assays. Genes Cells, 18(6), 450-458.
736	doi: 10.1111/gtc.12050
737	Pfaffl, M. W., Horgan, G. W., & Dempfle, L. (2002). Relative expression software tool
738	(REST©) for group-wise comparison and statistical analysis of relative
739	expression results in real-time PCR. Nucleic acids research, 30(9), e36. doi:
740	10.1093/nar/30.9.e36
741	Ribas, L., Liew, W. C., Díaz, N., Sreenivasan, R., Orbán, L., & Piferrer, F. (2017).
742	Heat-induced masculinization in domesticated zebrafish is family-specific
743	& amp; yields a set of different gonadal transcriptomes. Proceedings of the
744	National Academy of Sciences of the United States of America, 114(6), E941-
745	E950. doi: 10.1073/pnas.1609411114
746	Saito, D., Morinaga, C., Aoki, Y., Nakamura, S., Mitani, H., Furutani-Seiki, M.,
747	Tanaka, M. (2007). Proliferation of germ cells during gonadal sex differentiation
748	in medaka: Insights from germ cell-depleted mutant zenzai. Dev. Biol., 310(2),
749	280-290. doi: 10.1016/j.ydbio.2007.07.039
750	Shibata, Y., Paul-Prasanth, B., Suzuki, A., Usami, T., Nakamoto, M., Matsuda, M., &
751	Nagahama, Y. (2010). Expression of gonadal soma derived factor (Gsdf) is
752	spatially and temporally correlated with early testicular differentiation in
753	medaka. Gene Expression Patterns, 10(6), 283-289. doi:
754	10.1016/j.gep.2010.06.005
755	Smith, G. W., Aubry, J. M., Dellu, F., Contarino, A., Bilezikjian, L. M., Gold, L. H.,
756	Lee, K. F. (1998). Corticotropin releasing factor receptor 1-deficient mice
757	display decreased anxiety, impaired stress response, and aberrant
758	neuroendocrine development. <i>Neuron</i> , 20(6), 1093-1102. doi: 10.1016/S0896-
759	6273(00)80491-2
760	Stemmer, M., Thumberger, T., del Sol Keyer, M., Wittbrodt, J., & Mateo, J. L. (2015).
761	CCTop: An Intuitive, Flexible and Reliable CRISPR/Cas9 Target Prediction
762	Tool. <i>PLoS ONE</i> , <i>10</i> (4), e0124633. doi: 10.1371/journal.pone.0124633

763	Sztainberg, Y., & Chen, A. (2012). Neuropeptide Regulation of Stress-Induced
764	Behavior: Insights from the CRF/Urocortin Family In D. W. Pfaff & J. E.
765	Levine (Eds.), Handbook of Neuroendocrinology (pp. 355-375). San Diego:
766	Academic Press.
767	Timpl, P., Spanagel, R., Sillaber, I., Kresse, A., Reul, J. M. H. M., Stalla, G. K.,
768	Wurst, W. (1998). Impaired stress response and reduced anxiety in mice lacking
769	a functional corticotropin-releasing hormone receptor 1. <i>Nature Genetics</i> , 19(2),
770	162-166. doi: 10.1038/520
771	Trayer, V., Hwang, P. P., Prunet, P., & Thermes, V. (2013). Assessment of the role of
772	cortisol and corticosteroid receptors in epidermal ionocyte development in the
773	medaka (Oryzias latipes) embryos. General and Comparative Endocrinology,
774	194, 152-161. doi: 10.1016/j.ygcen.2013.09.011
775	Tsalafouta, A., Papandroulakis, N., Gorissen, M., Katharios, P., Flik, G., & Pavlidis, M.
776	(2014). Ontogenesis of the HPI axis and molecular regulation of the cortisol
777	stress response during early development in <i>Dicentrarchus labrax</i> . <i>Scientific</i>
778	Reports, 4. doi: 10.1038/srep05525
779	Vaughan, J., Donaldson, C., Bittencourt, J., Perrin, M. H., Lewis, K., Sutton, S.,
780	Vale, W. (1995). Urocortin, a mammalian neuropeptide related to fish urotensin
781	I and to corticotropin-releasing factor. <i>Nature</i> , 378(6554), 287-292.
782	Wendelaar Bonga, S. E. (1997). The stress response in fish. <i>Physiol. Rev.</i> , 77, 591-625.
783	Yamaguchi, T., & Kitano, T. (2012). High temperature induces cyp26b1 mRNA
784	expression and delays meiotic initiation of germ cells by increasing cortisol
785	levels during gonadal sex differentiation in Japanese flounder. <i>Biochem</i> .
786	Biophys. Res. Commun., 419(2), 287-292. doi: 10.1016/j.bbrc.2012.02.012
787	Yamaguchi, T., Yoshinaga, N., Yazawa, T., Gen, K., & Kitano, T. (2010). Cortisol is
788	involved in temperature-dependent sex determination in the Japanese flounder.
789	<i>Endocrinology</i> , 151(8), 3900-3908. doi: 10.1210/en.2010-0228
790	Yamamoto, Y., Hattori, R. S., Kitahara, A., Kimura, H., Yamashita, M., & Strussmann,
791	C. A. (2013). Thermal and endocrine regulation of gonadal apoptosis during sex
792	differentiation in pejerrey <i>Odontesthes bonariensis</i> . Sex Dev, 7(6), 316-324. doi:
793	10.1159/000353506
794	Yatsu, R., Miyagawa, S., Kohno, S., Saito, S., Lowers, R. H., Ogino, Y., Iguchi, T.
795	(2015). TRPV4 associates environmental temperature and sex determination in
796	the American alligator. Scientific Reports, 5, 18581. doi: 10.1038/srep18581
797	Zhang, X., Guan, G., Li, M., Zhu, F., Liu, Q., Naruse, K., Hong, Y. (2016).
798	Autosomal gsdf acts as a male sex initiator in the fish medaka. <i>Scientific</i>
799	<i>Reports</i> , 6, 19738. doi: 10.1038/srep19738
800	Zhang, Z., & Hu, J. (2007). Development and Validation of Endogenous Reference
801	Genes for Expression Profiling of Medaka (<i>Oryzias latipes</i>) Exposed to
802	Endocrine Disrupting Chemicals by Quantitative Real-Time RT-PCR.
803	<i>Toxicological Sciences</i> , 95(2), 356-368. doi: 10.1093/toxsci/kf1161
804	Zhou, L., Charkraborty, T., Zhou, Q., Mohapatra, S., Nagahama, Y., & Zhang, Y.
805	(2016). Rspo1-activated signalling molecules are sufficient to induce ovarian
806	differentiation in XY medaka (<i>Oryzias latipes</i>). Scientific Reports, 6, 19543. doi:
807	10.1038/srep19543