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ABSTRACT 

Recordings with a large number of intracranial electrodes in eight neurosurgical subjects offered a 
unique opportunity to examine the fast temporal dynamics of face processing simultaneously across a 
relatively large extent of the human temporal cortex (TC).  Measuring  the power of slow oscillatory 
bands of activity (θ, α, β, and γ) as well as High-Frequency Broadband (HFB, 70-177 Hz) signal, we found 
that the HFB showed the strongest univariate and multivariate changes in response to face compared to 
non-face stimuli. Using the HFB signal as a surrogate marker for local cortical engagement, we identified 
recording sites with selective responses to faces that were anatomically consistent across subjects and 
responded with graded strength to human, mammal, bird, and marine animal faces. Importantly, the 
most face selective sites were located more posteriorly and responded earlier than those with less 
selective responses to faces. Using machine learning based methods, we demonstrated that a sparse 
model focusing on information from the human face selective sites performed as well as, or better than, 
anatomically distributed models of face processing when discriminating faces from non-faces stimuli. 
Lastly, we identified the posterior fusiform (pFUS) site as causally the most relevant node for inducing 
distortion of face perception by direct electrical stimulation. Our findings support the notion of face 
information being processed first in the most selective sites - that are anatomically discrete and 
localizable within individual brains and anatomically consistent across subjects – which is then 
distributed in time to less selective anterior temporal sites within a time window that is too fast to be 
detected by current neuroimaging methods. The new information about the fast spatio-temporal 
dynamics of face processing across multiple sites of the human brain provides a new common ground 
for unifying the seemingly contradictory modular and distributed models of face processing in the 
human brain. 
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INTRODUCTION 

Studies using lesion methods(1, 2), functional imaging tools(3-6) or scalp encephalography (EEG) (7) and 
magnetoencephalography (MEG)(8, 9) have offered invaluable causal, spatial, and temporal information 
about the neural mechanisms of face processing in the human brain. Work in non-human primates (10-
15) has also provided important novel insights. However, despite great progress, the long lasting 
controversy between modular versus distributed models of face processing has persisted in the literature 
(16). Some studies have revealed face-selective responses only in anatomically consistent regions of the 
temporal cortex (TC) (5), and other observations have shown that the pattern of responses to face stimuli 
can be discerned from sampled data from non–selective regions of the TC (17) suggesting that face 
information is anatomically distributed. Both theories have unfortunately relied on information with 
limited temporal resolution averaged over multiple seconds or from methods using regions of interest 
and averaging across subjects, or direct recordings from a single or a pair of recording sites. Thus, the fast 
temporal dynamics of face processing across a large extent of the cerebral cortex within individual brains 
remains poorly explored.  

Intracranial recordings in neurosurgical subjects with a large number of electrodes spread over a relatively 
large surface of the cortical surface, a method known as electrocorticography (ECoG) (18) offers a new 
opportunity for acquiring fast temporal information from precisely localizable sources of signal. This 
method offers millisecond temporal resolution and millimeter anatomical precision - in the subject’s own 
native brain space. Unlike the uniform spatial coverage of imaging methods, intracranial EEG relies 
unfortunately on sampling from a limited number of implanted areas and leaves behind regions outside 
the coverage zones. While this introduces the problem of limited anatomical sampling, it may provide 
sufficient coverage for recording simultaneously from many sites within each individual brain in order to 
explore the spatiotemporal dynamics of activity across different cortical sites within each individual brain. 
In addition, the intracranial approach also allows delivering electrical pulses to discrete neuronal 
populations while causal changes in the subjective experience of the participant can be probed. 

Using simultaneous recording across a relatively large area of the human brain one could test the 
hypothesis that face information is first processed within the most face-selective sites that are 
anatomically discrete and localizable within individual brains and anatomically consistent across subjects, 
and that the information is then distributed to less selective sites.  

While recent intracranial recordings and stimulation studies (19-24), including our own (25-28), have 
addressed the neurophysiological underpinnings of face processing in the human brain, to our knowledge, 
these studies have yet to address the notion of anatomical selectivity and temporal distribution of face 
information using a multiprong approach (i.e., univariate and multivariate methods of recording and 
causal probing with electrical stimulation). The current study was designed to combine these methods to 
test our proposed alternative hypothesis.  

We like to emphasize here that the aim of the study was not to decipher the complex computational code 
of face perception in the human brain. Studies in primate brains are perhaps much better suited for that 
purpose. The main purpose of the study was simply twofold: 1) to explore if regions of the temporal cortex 
that are selectively responsive to face stimuli are engaged earlier in time than those that are not face-
selective, and 2) whether the stimulation of selective or non-selective ones cause the same effect in 
conscious viewing of faces. As one can imagine, these two questions could not be addressed with imaging 
methods because of their limited temporal resolution, or with single cell recordings because doing singe 
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cell recordings from tens of cortical sites is not ethically or clinically possible in the human brain and or 
feasible even in the primate brain. Moreover, question 2 pertains changes in the conscious and subjective 
processing of faces and as such we could not do the study in animals since they cannot report such 
changes.  

 

RESULTS  

We recruited 8 neurosurgical patients implanted with ECoG electrodes as part of their presurgical invasive 
evaluation for medication-resistant focal epilepsy. Subjects had unilateral electrode implantation in the 
right (5 subjects) or left (3 subjects) hemisphere (Table S1). Electrodes across all subjects (n=357) provided 
suitable coverage over the ventral and lateral TC.  

We recorded from each of the 357 implanted electrodes with high temporal resolution (>1000 samples 
per second) while the subjects performed a visual task in which they viewed images of faces (human, 
mammal, bird, marine), and non-faces, including bodies without faces (same 4 categories), limbs (human), 
objects and places. They were instructed to press a button when a red hashtag sign appeared (Figure 1). 

 

 

Figure 1: Experimental stimuli. Experimental task conditions with one exemplar of each image category 
displayed. The categories include human face, body and limb, mammal face and body, bird face and body, 
marine face and body, place and object. The subject was instructed to press a key when the target stimulus 
was presented (i.e. red hashtag sign). Low-level features were not different across categories. Four 
categories of face stimuli are shown here in different colors, and all non-face stimuli in gray frames only 
to correspond to the same colors used to denote these categories in the next figures.  
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We quantified the face information (i.e. the ability to discriminate faces from non-faces stimuli) in narrow 
bands of frequencies (θ: 4-7Hz, α: 8-12Hz, β1: 13-29Hz, β2: 30-39Hz and γ: 40-69Hz) as well as High-
Frequency Broadband (HFB, 70-177 Hz) signal using univariate tests and a Multiple Kernel Learning 
(MKL)(29) method configured for intracranial EEG signals (30). Compared to the power of any other 
frequency band, the signal in the HFB showed the strongest univariate and multivariate changes in 
response to faces relative to non-faces (Figure 1a and Table S2). Given this finding, we focused further 
analyses on the HFB power and its profile of response across anatomical sites and task conditions.  

We are mindful that the richness of the intracranial electrophysiological signal could have been explored 
by analyzing the power or phase of slower frequencies, or their coupling with higher frequencies(31). 
However, the HFB signal is well suited for the purpose of testing our predictions not only because of our 
MKL findings (Figure 1b and Table S2), but also because of the large body of evidence from other 
human(32-37) and non-human(38-43) studies (as summarized in (18)) that have confirmed HFB power as 
a reliable correlate of hemodynamic signal and averaged single and multi-unit activity of a population of 
neurons in a given cortical site. More importantly, HFB has a more precise anatomical source (i.e., 
micrometers around the recording electrode) compared to lower frequencies (several millimeters)(18). 
While the HFB signal (similar to BOLD signal) provides a suitable marker for the engagement of a given 
cortical site in a given function and as such, the time of onset and the power of HFB provide valuable 
information about the time and level of engagement of a population of neurons within tens or hundreds 
of micrometers of the recording electrode (41, 42).   

We remind the reader that the purpose of the study was not to decipher the computations that are 
involved in each region of the brain during face perception. We simply wanted to identify the timing and 
level of cortical engagement and compare it across tens of different recording sites. As mentioned above, 
it should be noted that, compared to slower oscillations, the signal in the HFB showed the strongest 
univariate and multivariate changes in response to faces relative to non-faces.  

Using HFB activity, we found a heterogeneous profile of responses across recordings sites (Table S3). Of 
the recorded sites (n=357), 53.22% (n=190) had significant responses to at least one category of stimuli 
relative to baseline (i.e., “active” sites). 13.45% recording sites (n=48) showed selective activations to 
human faces (i.e., “human face selective” sites) compared to any other stimuli (Figure 2a). Only 10.64% of 
the recording sites (n=38) showed face selective responses (comparing all sub-categories of faces to all 
non-faces; i.e., “face selective” sites). The (human) face selective sites were clustered in the fusiform gyrus 
or lateral occipital gyrus. Interestingly, While there was clear overlap between the “face selective” and 
“human face selective” sites, a few sites (17 out of 357 sites) showed selective responses to human faces 
while lacking significant responses to other face stimuli (Figs S1 and S2). In further analyses, we refer to 
“task active” sites as the sites that were assessed as “active” and that are not face or human face selective. 

To explore whether biological similarity of the face stimuli (humans and mammals versus birds or 
marine) influences the neural responses in the face selective sites, we compared responses to faces of 
different categories. This analysis showed clearly that human faces induced the strongest activations on 
face selective sites (median=5.21dB, n=1579) followed by mammal faces (median=4.06dB, n=1609), bird 
faces (median=3.48dB, n=1666) and marine faces (median=3.48dB, n=1706, Figure 2c left). All pairs of 
face subcategories showed a significant difference in HFB power (permutation test, p<0.05 after 
Bonferroni correction), except for the comparison of bird and marine faces (human-mammal: p<0.0001, 
human-bird: p<0.0001, human-marine: p<0.0001, mammal-bird: p=0.0012, mammal-marine: 
p=0<0.0001, bird-marine: p=0.9896). In comparison, the amplitude of responses to subcategories of 
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faces in the task active sites showed lower HFB power for the face categories (human faces=0.73dB, 
n=5761, mammal faces=0.91dB, n=5497, bird faces=0.67dB, n=5837, marine faces=0.79dB, n=5808, 
Figure 2c right). Only mammal faces elicited significantly higher responses than did human and bird 
faces (mammal-human: p<0.001, mammal-bird: p<0.0001). Other pairwise comparisons did not show 
differences in terms of HFB amplitude across the four subcategories of faces (p>0.05, after FDR 
correction). Please note that these univariate results were not driven by physical differences in the 
stimuli (Supplementary S4). 

 

Figure 2: Effect of species on face coding. (a) Task active and human face selective sites across subjects 
in HFB. Among the 357 included TC sites (represented by black diamonds), 190 were task active 
(represented by circles) as defined by permutation tests (i.e. presenting a significant response to at least 
one category). The difference between their response to human faces and non faces stimuli are displayed 
as a color coded fill. 48 task active sites were identified as selective for human faces (represented with a 
pink contour) (b) HFB activity has the highest contribution in the discrimination between human faces and 
non-faces, within and across subjects. The results of the MKL model are plotted as box plots of the 
frequency band contributions to the model across the eight subjects, with the median represented by a 
red line. (c) HFB amplitude averaged within the [150 500]ms time window after onset for each of the 4 
subcategories, at face selective (left) and task active sites (right). Coloring and initials represent the face 
subcategories: Human (H/pink), Mammal (M/blue), Bird (B/orange) and Marine (Ma/green). Given the 
size of the recording electrodes, and that the HFB represents the averaged neuronal population 
responses, it is likely that the electrodes labeled to be face selective sites recorded the activity of not only 
the face selective population of neurons but also their adjacent non-selective populations. For face 
selective sites, significant differences can be found (paired permutation tests, displayed by a black 
bracket) between the HFB responses to human faces and the mammal, bird and marine faces, as well as 
between the mammal and the bird and marine faces. There is no significant difference between the 
responses to bird and marine faces. For task active sites (i.e. active but not face selective), significant 
differences can be found between the bird faces and the human and mammal faces. 
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Given that the HFB responses to human faces had the highest signal to noise ratio, further analyses 
focused on the processing of human face stimuli.  

To address the earlier imaging reports of distributed face processing (17), we investigated decoding of 
face information across human face and task active sites. To this end, we referred to a framework (45) 
which allows inferring causal relationships between the stimuli and the observed EEG activity in encoding 
(e.g. univariate analyses) and decoding (e.g. machine learning based modeling) settings. This is of interest 
as decoding performance or machine learning model contribution cannot be directly causally related to 
the source of the signal. Instead of referring to decoding performance, this framework assesses the 
‘relevance’ of both face and task active sites in discriminating between human face and non-face epochs. 
A feature is assessed as ‘relevant’ in decoding settings if, when removed, the performance of the model 
is significantly affected. This is similar to the procedure used in a recent publication(46), in which the face 
information shared across regions of interest was taken into account. In encoding settings, features are 
relevant if they display significant responses/contrasts in a univariate test. Features assessed as 
(respectively not) relevant in both encoding and decoding settings are (respectively not directly) causally 
related to the stimuli. In our work, we ran three machine learning schemes discriminating between human 
face and non-face stimuli, using signals from different sets of sites. The results from all models are 
displayed in Table S5 and Figure 3a.  For each subject, Model I incorporated data from all TC sites (results 
displayed by dark grey triangles on Figure 3a). For all subjects, Model I was able to significantly 
discriminate between human faces and non-faces (permutation test p<0.05, FDR corrected for number of 
subjects). Model II used the same classification but excluding the face selective sites (red triangles in 
Figure 3a). Significant discrimination between faces and non-faces was only observed in 2 subjects out of 
8 (permutation test, p<0.05 FDR corrected for number of subjects). In these 2 subjects, the significant 
decoding accuracy suggests that at least one site contains information about the discrimination at hand. 
This could however be related to selective responses to non-face stimuli, as we had not excluded sites 
selective to one or more subcategories of non-face stimuli. Comparing Models I and II revealed that there 
is a significant decrease in accuracy when excluding face selective sites from the classification across 
subjects (Wilcoxon signed rank test, p=0.0078, n=8). This result suggests that face sites are relevant in 
decoding settings for face processing (45).To test whether random subsets of task active sites are relevant 
in decoding, we built 499 models that included the same number of sites as Model II by randomly selecting 
task active and face selective sites, but including at least one face selective site. This means that across 
the 499 models (referred to as ‘random set’ models), the proportion of face selective sites varied, but was 
non-null. The performance of these models is represented by colored dots on Figure 3a, their color 
displaying the proportion of face sites included in the model (dark blue is 1 face site, light green is all face 
sites). Across subjects, removing random sets of task active and face selective sites did not affect the 
model performance significantly (Wilcoxon signed-rank, p=0.5781), nor did it within subjects for 7 out of 
8 (Table S5). For Subject 2, a multimodal distribution is observed reflecting whether or not a specific face 
selective site is included in the model (leading to accuracies higher than 79%) or not (accuracy lower than 
70%, 83 models out of 499). There is a significant difference in model performance when this site is 
included or excluded from the model (p<0.0001). These results suggest that task active sites were not 
relevant for the decoding model. It is further supported by the fact that non-significant classification 
accuracy is observed in Model II for 6 out of 8 subjects. It is also interesting to note that there is a 
significant relationship between the proportion of face sites included in the analysis (i.e. from one face 
site to all sites, randomly selected in the 499 models) and the model performance for 6 out of 7 subjects 
(Table S5, n= 499). This result could arise from two scenarios (or a combination of the two): either face 
information on face sites is not redundant, i.e. each face site brings unique face information and/or 
including more sites leads to better signal-to-noise ratio of the face pattern. In both cases, this result 
suggests that the pattern can be more easily identified when more human face sites are included. 
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The degree of inter-subject variability (both for Model II and the ‘random set’ model) could not be 
explained by the number of trials (ρ(Model II - #trials) = 0.5073, p=0.1994, n=8; ρ(median random sets - 
#trials) = 0.0068, p=0.9872, n=8) or of sites included in the analysis (ρ(Model II - #sites) = -0.1221, 
p=0.7734, n=8; ρ(median random sets - #sites) = 0.00156, p=0.9708, n=8). The inter-subject variability, 
however, could be explained by various factors such as signal-to-noise ratio, amount of correlated noise 
or placement of the electrodes, which are complex to quantify. See Materials S6 for a discussion on 
circular analysis and its effect on the presented results. 

To explore the results further, we performed an additional machine learning model to assess the 
anatomical distribution of face processing in the human TC. In this analysis, the classification is the same 
as for Model I, except that the considered algorithm enforces sparsity at the site level, i.e. it automatically 
selects a subset of sites to perform the classification. Comparing sparse and non-sparse modeling 
techniques is a common machine learning strategy to investigate data properties: SVM (i.e. Model I) 
assumes that the information is fully distributed across features, by construction. If this assumption is 
correct, it should perform better than a sparse model. By contrast, if the sparse model performs better 
than Model I, it suggests that the information contained in the selected subset of sites is sufficient to 
perform the classification and that the non-selected features might increase the noise (i.e. not bring 
relevant information). As in previous publications(30, 47), we used the simpleMKL algorithm (29) to 
perform the sparse modeling. Please note that the basis algorithm for the simple MKL is an SVM, hence 
the effect of implementation on the results is limited (29). The results are displayed in Figure 3b and Table 
S7. In all subjects, the sparse model performs either significantly better than, or equally well as, the 
distributed SVM model (Wilcoxon signed-rank test, p=0.0312, n=5). In Subjects 5, 6 and 8, the difference 
in model performance between Model I (SVM) and Model IV (sparse MKL) is not significant (Wilcoxon 
signed-rank test, p=0.1250, n=3). Of note, in two subjects the accuracy of the model was over 90%, which 
left little room for improvement.  
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Figure 3: Relevance of TC sites in decoding settings. (a) Dark grey triangles represent the performance of 
Model I, i.e. including all TC sites. Performance of Model II is represented by red triangles. Each colored 
dot represent one of the ‘random set’ models (499 models per subject), their color representing the 
proportion of face sites were included in the model (dark blue is 1 face site, light green is all face sites). 
Violin plots represent the distribution of the ‘random set’ model performances compared to Model I and 
Model II. (b) Sparse models perform as well as or better than distributed models. Bar plot representing 
the balanced accuracy for Model I compared to the model accuracy of sparse Model IV, for each subject. 
(c) Site contributions to the sparse model, plotted across subjects. The contribution of the site (in %) is 
represented by a color-coded fill. Black diamonds have a perfectly null contribution to the model while 
circles had a positive contribution to the model. Sites assessed as human face selective by the univariate 
analysis are highlighted by a pink rim. 

In addition, the sparse model weight maps significantly overlapped with the univariate maps of human 
face selectivity across subjects (ρ = 0.4708, p<0.0001, Figure 3c) and within subjects for 7 out of 8 
subjects (except Subject 8, Table S7 and Figure S3). This result shows that MKL relies heavily on face 
selective sites for the classification. For Subject 8, the classifier seems to rely on non-face information, as 
the site with highest contribution contains signals larger for all non-face categories than for human faces 
(pooled non-face>face: p<0.05). 

Our univariate and multivariate results display that face sites are ‘relevant’ for human face processing. 
However, we also showed that including more face sites to the model increases model performance 
(random set models). We then explored the relationship between selectivity, anatomy and timing of the 
HFB responses on face and task active sites during human face processing. 

While the face sites displayed significant responses to human face stimuli, the selectivity of their 
responses decreased from posterior to anterior sites as demonstrated by correlating the MNI y-
coordinate with selectivity (ρ= -0.6191, p= 3.51e-06, n= 47). For task active (i.e. not face selective) sites, 
selectivity to human faces increased from posterior to anterior sites (ρ= 0.2744, p= 0.0011, n= 139).  

Our fast event-related paradigm combined with simultaneous recordings across selective and non-
selective sites with high sampling rate allowed us to compare the latency of neuronal population 
responses to faces within the first 500ms of stimulus presentation.  We measured the Response Onset 
Latency (ROL) to human face stimuli across human face selective sites and task active sites based on 
unsmoothed, normalized signals (Figure 4). We found a clear posterior-to-anterior lag in time of onset of 
HFB responses to both human face selective and task active sites. More posterior human face selective 
neuronal populations responded significantly earlier than did more anterior ones (i.e. ROL values across 
human face selective sites were significantly correlated with the y-coordinate of the corresponding site, 
ρ= 0.4692, p=0.0034, n= 37). Interestingly, the posterior-to-anterior lag was also significant for task active 
sites (ρ= 0.6567, p=7.1995e-07, n= 46). It is noteworthy that the ROL technique identifies task active sites 
that respond non-selectively to human faces (see methods) to assess a latency value. More importantly, 
the group level findings presented here were also present at the individual subject level for human face 
selective sites, when calculating the ROL for each site relative to the most human face selective site within 
subject (Figure 4b,c): ρ(ROL-y) = 0.7593, p=1.7911e-06, n=29 and ρ(selectivity-y) = -0.5680, p=0.0013, 
n=29. In other words, the posterior to anterior ROL gradient was not driven by one or a few subjects who 
happened to have coverage over a specific region of the TC. For task active sites (Figure S4a-b), the 
correlation between ROL and y-coordinate was also significant: ρ = 0.6756, p=2.5957e-7, n=46. On the 
other hand, there was no significant correlation between anatomical position and selectivity when 
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compared to the most face selective site: ρ = -0.2221, p=0.1380, n=46. There is no significant difference 
in ROL values between human face selective and task active sites (p=0.9452, Wilcoxon rank sum test). 

Importantly, the effect presented here does not result from biases to signal amplitude or slope in our ROL 
method (supplementary information S8 and Figure S5). 

 

Figure 4: Temporal distribution of human face information. (a) Response Onset Latency (ROL) over 
human face selective sites for the human face category, as represented by a purple color scale fill on the 
MNI cortex with the best (i.e. most human face selective) site in each individual chosen as the point of 
reference. (b) Selectivity in each subject, when compared to MNI y-coordinate with the best site (i.e. most 
human face selective) in each individual chosen as the point of reference. The best site is represented as 
a black circle, at the crossing of the 2 axes. Selectivity is related to anatomical position. (c) ROL in each 
subject, when compared to MNI y-coordinate with the best site in each individual chosen as the point of 
reference. Latency is related to anatomical location of the electrodes.  

 
Lastly, we explored the effect of electrical perturbation of face selective sites on subjective processing of 
faces. For this, we hypothesized that the stimulation of more posterior sites (with most selective and 
earliest responses) would cause more salient effects than the anterior sites. This hypothesis has not been 
addressed in prior electrical stimulation studies showing distortion in conscious viewing of faces (26-28, 
48, 49) or naming of famous faces (50, 51). Subjects were instructed to view a human face at the bedside 
while we performed active or sham (zero current) stimulations of selective, task active or non-responsive 
sites. Subjects then reported whether the face remained the same or was distorted. We emphasize that 
this anecdotal report departs from the well-controlled experimental procedures that could be performed 
in non-human primates (14, 52). However, the limitation of performing the procedure in a clinical setting 
and in patient populations precluded such experimentally rigorous studies in our subjects.  
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The complete report of the face-related stimulations, verbal prompts from the doctor, and the patient’s 
verbal and non-verbal responses can be found in Supplementary S9.  Distortion of human face perception 
was reported only with real (and not sham) stimulation of some, but not all, face selective sites, with 
stimulation of more posterior sites causing the perceptual perturbations (Supplementary S9). Stimulation 
of only a few face selective sites in Subjects 4, 5, 6, 7, and 8 resulted in the distortion of human face 
perception, while stimulation of other selective or task active sites in the same individuals caused no 
change (Figure 5). Given the anatomical locations of these sites, the general trend indicated that 
stimulation of more posterior fusiform sites causes distortion of face perception while the stimulation of 
face selective electrodes located in relatively more anterior areas tends not to yield the same change in 
face perception.  
 
In one subject (Subject 8), we probed the effect of stimulations across two patches of the fusiform face 
area (FFA, numbered as 1, 2 and 3 in Figure 5a). Using bipolar (adjacent pair of sites stimulated together) 
or unipolar (site was paired with a distant reference) stimulations, we elicited distortions in seeing faces 
when the subject looked at his own face in the mirror, looked at a cartoon face drawn on a piece of paper, 
and focused on the eyes or the lips of the face. He also reported induced perceptions of a face during 
electrical stimulation while his eyes were closed. The subject’s verbal reports after stimulation include 
“one side of the face changed”; “facial features [turned] into a cartoon”; one eye “became someone 
else’s”; “face wiggled a little bit”; and “face looked familiar” (Video in Figure 5). More importantly, the 
effects were observed only when site #3 was stimulated. To explore the anatomical location of site #3, we 
localized the posterior fusiform face area (pFUS) and the medial fusiform face area (mFUS) onto Subject 
8’s native neuroanatomical space. Using methods described in (53) the calculated field of electrical 
stimulation of site #3 is precisely localized in the pFUS (Figure 5a). The other face selective sites (#1 and 
#2), located in medial fusiform area (mFUS) failed to cause any distortions even though they were only 
1cm away from site #3. In our previous stimulation report (28), we stimulated both mFUS and pFUS in a 
bipolar manner. This study is, to our knowledge, the first to differentiate the effect of pFUS versus mFUS 
stimulation using unipolar stimulation.  

 
Figure 5: Electrical Brain Stimulation. The effect of bipolar stimulation of two electrodes is shown in 
orange lines (face distortion) or blue (no face distortion). (a) Sites 1, 2, and 3 are located in the fusiform 
gyrus and given their anatomical coordinates represent the fusiform face areas (FFA). In the box, the 
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location of electrode 1, 2, and 3 are shown on top of a functional mapping of mFUS (green) and pFUS 
(purple). The estimated cortical area affected by the stimulation on electrode 3 was calculated using the 
relationship between the estimated charge per trial and the cortical area affected (Winawer & Parvizi 
2016) and is shown with a blue circle around it. Site #3 is the site whose stimulation caused distortion of 
faces when it was stimulated in pairs with sites #1 (another face elective site), nearby site #4 (task active 
site) or a remote reference electrode (in the motor cortex). Middle panel shows the HFB responses to 
human faces (pink) and non-faces (grey) of the sites that were stimulated. The right panel has an 
imbedded video of subject S8’s verbal responses after being stimulated. The patient has consented to the 
use of his video in this publication. (Dear Reviewer, due to the large size of the video, we were unable to 
submit the video along with this manuscript. Please download it from  
https://www.dropbox.com/s/kdgmex01c4sn3g2/Figure5Video.mp4?dl=0. (b). Localization of stimulated 
electrodes on Subjects 1, 3, 4, 5, 6, and 7 are depicted using the same convention as in Figure S2. 

 

DISCUSSION  

Our study addresses the spatiotemporal distribution of face information based on univariate measures, 
timing analysis, machine learning based modeling, and direct cortical stimulation. Using this multi-
pronged approach and by leveraging the temporal resolution of the ECoG method, we confirmed that the 
majority of recording sites in the human TC do not show any significant change of activity in response to 
visual presentation of faces while a minority of sites respond non-selectively to all categories of visual 
stimuli and only fewer sites, which are anatomically consistent across individual, respond selectively to 
face stimuli.  

Our results suggest that removing face selective sites from machine learning based classification 
significantly drops the decoding accuracy of the model. In addition, task active sites were not assessed as 
relevant when discriminating human face from non-face stimuli. This was further supported by an 
improvement in model performance when considering a sparse approach. This is in disagreement with 
the previous imaging findings suggesting that face information can be decoded from non-selective sites. 
This discrepancy may be due to the differences in the number of recording sites, the time scales 
considered, and the methodology used. For instance, the number of anatomical samples in each subject 
is limited with the ECoG method, which can reduce the power of the algorithm in detecting weak, 
distributed patterns. To maximize the detection of small effects, we used Support Vector Machine 
classifiers, which are known for their ability to detect subtle, distributed patterns and we focused our 
analysis on the high signal-to-noise ratio of HFB responses induced by human face versus non-face stimuli. 
While we could not relate the number of sites to model performance (see Results), it is possible that the 
signal in task active sites is too weak to be detected across a few tens of anatomical samples in each 
subject.  On the other hand, the novelty of our data is in part due to the high temporal resolution of ECoG 
that enabled us to measure the fast temporal dynamics of face processing in the human brain. For 
instance, our electrophysiological analysis relied on the responses elicited within 500ms of stimuli 
presented in an event related paradigm for 300ms and with an inter-stimulus interval of 400ms. This is in 
stark contrast to some of the classic neuroimaging studies whose temporal window included >10 seconds 
of signal processing (e.g., 24 or 16s long blocks of visual stimuli for each category (17)).  

In a recent study(46), a multivariate analysis was performed on fMRI data to discriminate between 
different visual categories (faces, fruits/vegetables, letters and vehicles) in seven pre-defined regions of 
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interest (ROI). The analyses were performed on each ROI separately, then on all regions together except 
one. The latter aims to display the unique contribution of each ROI to the discrimination, i.e. any shared 
information across ROIs will be taken into account in this scheme. The authors concluded that face 
information is both localized and distributed, but due to limited temporal resolution of the imaging 
method, authors could not confirm the hypothesis of distribution in time, as we have done here.  

Another methodological caveat that needs to be considered is that the task active areas in humans may 
be variable in their relative size and primary cytoarchitectonic composition (54). Therefore, hubs of 
activity in posterior to anterior TC may have different sizes or shapes of physiological responses or 
locations on the surface of gyri vs. depth of sulci.  As such, the results we report here could represent an 
idiosyncrasy of our intracranial EEG method. However, it is still noteworthy that responses to faces were 
significantly faster in the posterior sites than the anterior face selective sites. By using ECoG recordings, 
our results clearly confirm our overarching hypothesis that face information is anatomically localized but 
temporally distributed. However, we note that our study was not designed to determine the path of 
information flow, namely whether the face information in the non-selective sites comes directly from 
posterior face selective sites.  

Additionally, our findings support the causal link between some, but not all, face selective sites of the 
fusiform gyrus and conscious processing of faces as suggested previously by us (26-28) and others (49, 
50), but clearly demonstrate that stimulation of different face selective sites leads to different effects on 
conscious processing of faces. Moreover, our work suggests that the perturbation of the pFUS is more 
important for conscious face processing than the stimulation of mFUS. This is an intriguing finding that 
needs to be verified in a larger sample of subjects. As demonstrated in non-human primates (14, 52), and 
also in the human lateral occipital cortex (19, 22), we acknowledge that the face selective sites outside 
the fusiform gyrus might also play important and causal roles in face processing. A recent study in non-
human primates clearly showed that the micro-stimulation of the very anterior face selective patch (area 
AM) severely distorted the monkey’s percept of facial identity, such that faces depicting the same identity 
appeared to depict different identities (52).  

In closing, our data suggest that a few anatomically consistent sites play a crucial role in processing face 
information and that there is a time delay in their processing of the same information. However, our study 
does not suggest that the conscious perception of faces solely depends on the operation of these isolated 
patches of face selective sites. We acknowledge that different facets of face processing may occur in 
different patches of face responsive sites and that these neuronal patches are embedded in a larger 
network of visual and other association areas of the brain, and their function should not be seen in 
isolation from this wider integrated brain network (16, 55). Future studies with simultaneous recording 
across face selective and other association areas are needed to determine how different facets of face 
information is decoded in each of the face patches and how their function is embedded and relayed to 
the rest of the brain for serving human cognition and behavior. 
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All analyses were performed in Matlab (www.mathworks.com). Pre-processing and univariate analyses 
were performed based on SPM (http://www.fil.ion.ucl.ac.uk/spm/) and in-house routines available at 
https://github.com/LBCN-Stanford/Preprocessing_pipeline. ROL in-house codes are available on Github 
at https://github.com/LBCN-Stanford/. Multivariate analyses were performed using a development 
version of PRoNTo (30, 56). This code will be released as PRoNTo v3 and be available at 
https://github.com/JessicaSchrouff. The code to build semi-simulated data is available at 
https://github.com/JessicaSchrouff/Simulated_ECoG, along with the rest data from subject S1 used to 
generate the noise structure. 
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METHODS 

Demographics and recordings: Eight subjects (six males, two females, aged between 23 and 68 years) 
were implanted with intracranial electrodes to localize the source of drug-resistant seizures. The 
procedure was approved by the Stanford Institutional Review Board (IRB) and the subjects provided 
written informed consent to participate in the study. The location of the grids was determined by clinical 
needs (Figure S1, three left hemisphere implantations, five right). Data were obtained at 1525.88 Hz 
through a 128-channel recording system (Tucker Davis Technologies, http://www.tdt.com) for the first 
seven subjects while a Nihon Kohden Technology system with simultaneous video monitoring was used 
to perform 1 kHz recordings in subject S8. Each electrode was a platinum plate, either 2.3mm or 1.15mm 
in diameter (exposed recording area) with center-to-center spacing of 4–10 mm between adjacent 
electrodes on the grid or strip. Electrodes containing artifacts or pathological activity were discarded from 
further analyses. 

Anatomical localization of electrodes: Structural MRIs were acquired with a GE 3-Tesla Sigma scanner at 
Stanford University equipped with a head coil of a T1-weighted SPGR pulse sequence was AC-PC aligned 
and was resampled to 1mm isotopic voxels, then segmented to separate gray and white matter. Post-
implantation CT images were aligned to the pre-op MRI anatomical brain volume (57). Electrodes were 
visualized on the subject’s own brain volume and reconstructed onto a 3D cortical surface allowing for 
accurate anatomical localization of electrodes. The electrode positions were also transposed into the MNI 
space and displayed on a MNI cortex file for visualization of results across subjects. 

Experimental paradigm: The experiment was administered using psychtoolbox 
(http://psychtoolbox.org/) running on Mac OSX. The laptop was placed ~70 cm from the subject’s eyes at 
chest level. Screen resolution was 1280x800. Each image was subtended 5 visual degrees at its longest 
dimension. Each subject underwent a visual task during which images of different categories were 
presented at the center of the screen for 300ms, with an ISI of 400ms (see Figure 1 for representative 
examples). The categories included human face, human body, mammal face, mammal body, bird face, 
bird body, marine face, marine body, human limbs, object and place. The image backgrounds were phase-
scrambled at 3% in order to reduce visual artifact. The visual dimensions of the image plus its scrambled 
background were 11.10cm x 11.10cm, and the visual angle was 9 degrees. Each category comprised 25 
images, presented twice. This hence leads to 50 stimuli per category and 550 visual stimuli in total. During 
image presentation, the subject was asked to press a key (‘press 1’) when the pattern ‘###’ appeared in 
red at the center of the screen (further referred to as a ‘Response Block’). The onset of each stimulus was 
recorded by a photodiode signal generated by a luminance change in the display at image onset. 

Signal Preprocessing: All preprocessing steps were performed using Matlab (The MathWorks, Inc., Natick, 
Massachusetts) and the SPM (www.fil.ion.ucl.ac.uk/spm) toolbox in custom routines 
(https://github.com/LBCN-Stanford/Preprocessing_pipeline). The data was first down-sampled to 1000 
Hz and filtered for power-line noise (band-stop between 57 and 63Hz) and harmonics (117 to 123 Hz, 177 
to 183 Hz).  Sites underwent an automatic quality assessment: sites with variances 5 times larger or 
smaller than the average variance across all sites were labeled as pathological and excluded. Sites with 3 
times more ‘jumps’ (defined as changes in the signal derivative larger than 100 μV) than the average 
across sites were considered as spiky and excluded. The signal was then re-referenced to the average of 
the signal over all selected sites. Each event was extracted (i.e., epoched) in the -200 to 700ms time 
window around its onset and baseline correction was performed (using the [-200 to 0]ms time window 
around onset as baseline). Events were marked as artifacts if they contained spikes of >100μV, and were 
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discarded from further analyses. A time-frequency decomposition was then computed using a 7-cycle 
Morlet wavelet, with frequencies ranging from 70 to 177Hz (steps of 1Hz, avoiding discarded frequencies 
from Notch filtering). A similar 5-cycle Morlet wavelet time-frequency decomposition was performed for 
frequencies ranging from 1 to 69Hz. The power in each frequency and time bin was rescaled using the log-
power of the [-100 0] ms window around stimulus onset. Six frequency bands were considered in this 
work: θ (4-7Hz), α (8-12Hz), β1 (13-29Hz), β2 (30-39Hz), γ (40-69Hz), and High Frequency Broadband (HFB, 
70-177Hz). The signal was finally averaged across frequency bins within each band considered and 
smoothed with a 50ms width Gaussian window. The HFB power in the [-100 600] ms window around 
stimulus onset was considered for further analysis (see supplementary S2 for justification). 

Relevance of TC sites in encoding: For each subject, sites were defined as ‘active’ if they displayed a 
significant HFB response in the [150 500]ms after stimulus onset for at least one category, when compared 
to the event baseline ([-100 0]ms before onset). Paired non-parametric permutation tests (50,000 
permutations) assessed the significance of the response (p<0.05, FDR corrected for the number of sites 
tested). Out of the active sites, ‘face selective’ sites were identified as sites where significantly higher 
responses were seen to the 4 face categories (human, mammal, bird, marine) pooled compared to all 
other stimuli pooled (non-parametric permutation tests, FDR corrected) in the time window [150 500]ms 
after onset. Finally, ‘human face selective’ sites displayed significantly higher responses to human faces 
compared to all non-faces stimuli pooled (non-parametric permutation tests, FDR corrected) in the [150 
500]ms after onset window. Active sites that were not assessed as face selective or human face selective 
are further referred to as ‘task active’ sites. Sites assessed as (human) face selective were considered as 
relevant in encoding settings for face processing(45). These analyses were performed for the HFB signal 
but also for other frequency bands (see supplementary S2). In Supplementary S4, we investigate the 
influence of low-level image features on the univariate results. The four face subcategories were then 
compared on both the ‘face selective’ and ‘task active’ sites based on the amplitude of their HFB response 
averaged in the [150 500]ms time window after onset. Permutation tests assessed the significance of 
potential differences between subcategories (10,000 permutations, FDR corrected for the number of tests 
(n= 12, 6 binary comparisons for face sites and 6 for non-face sites)). Please note that there is no circularity 
in this analysis as the contrast to select sites (i.e. faces versus non-faces) is different from the effect 
investigated (i.e. human faces vs mammal faces vs bird faces vs marine faces). 

Frequency information for faces: For each frequency band, a univariate analysis assessed active, face 
selective and human face selective sites. In addition, a multiple kernel learning (MKL) (29) model assessed 
the contribution of each frequency band to the discrimination between human faces and non-faces (30). 
In this case, a linear kernel is built for each frequency band. Those kernels are then combined during the 
modeling step, based on a sparsity constraint. The model outputs a contribution for each kernel that can 
be interpreted as the weight of each frequency band in the classification. All modeling parameters were 
kept consistent with models I, II and IV (see ‘Relevance of TC sites in decoding’).  

Low-level image features: To ensure that low-level features in the stimulus images did not drive our 
results, we performed multiple control analyses. 

Stimulus features: First, spatial frequency power spectrum with rotational average was calculated for 
each stimulus and averaged across categories. Averagedspatial frequency power spectrums were 
compared using the one-way Anova and post-hoc analysis was performed using 'Tukey-Kramer’ method. 
Power spectral analysis returned 153 values for each image, which were averaged within each category 
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(n=153). We also computed the mean luminance across pixels in each category, pooling all non-faces 
together. 

Univariate analysis: we investigated the effect of mean luminance on the univariate results (i.e. on sites 
defined as ‘face’ selective). To this end, we plotted the histogram of mean luminance in the faces and in 
the non-faces category. We defined as low (resp. high) luminance faces, face stimuli with a mean 
luminance smaller (resp. larger) than 120 (threshold defined arbitrarily). The neural signals in each 
category was compared on all face sites (high luminance faces: n=45, human:15, mammal:12, bird:7, 
marine:11, low luminance faces: n= 55, human:10, mammal:13, bird:18, marine:14), using permutation 
tests.  

Relevance of TC sites in decoding: We then assessed the relevance of face and task active sets of sites in 
decoding settings. To this end, a machine learning model discriminating between human face epochs and 
non-face epochs was estimated based on three different site sets: (I) All TC sites included for analysis 
(referred to as the ‘TC’ model); (II) All TC sites, excluding the ones assessed as ‘human face selective’ by 
the univariate, permutation tests (referred to as the ‘TC-sign’ model); and (III) 499 random subsets of task 
active and face sites, including at least on face site. In scheme (III), further referred to as the ‘random sets’ 
model, the number of sites (i.e. features) included for modeling is identical as for Model (II). However, the 
proportion of face sites randomly varies, from 1 to all face sites. The different models aim at answering 
the following questions: (I) Is it possible to significantly discriminate human face from non-face trials in 
each subject? (II) Are face selective sites relevant for the discrimination between human faces and non-
faces? I.e. do we observe a significant change in model performance when removing the set of face 
selective sites? Accessorily, is it still possible to significantly discriminate between human face and non-
face trials? Or, on the contrary, is the information in those human face selective sites necessary for 
significant classification? (III) Are task active sites relevant for the discrimination between human face and 
non-face stimuli? I.e. is model performance significantly affected when removing random sets of task 
active sites? This analysis was conducted in PRoNTo version 3.0 (30, 56). The data considered focused on 
the [150 500]ms after stimulus onset. The ‘mammal body’, ‘bird body’, ‘marine body’, ‘human body’, 
‘object’, ‘place’ and ‘limbs’ categories were pooled together to form the ‘non-face’ category. As this leads 
to imbalances in terms of the number of trials in each class (maximum 50 human faces compared to 
maximum 350 non-faces), epochs from the ‘non-face’ category were randomly subsampled to closely 
match the number of epochs in the ‘human face’ category. During this process, care was taken to include 
approximately the same number of epochs from each sub-category (e.g. 7 ‘mammal body’, 8 ‘bird body’, 
7 ‘marine body’, 7 ‘human body’, 8 ‘object’, 7 ‘place’ and 7 ‘limbs’). A linear kernel matrix was built based 
on the data from all sites considered in the feature set (number of features: number of sites x 351 time 
points). This matrix corresponds to a similarity matrix between each pair of epochs (dot-product). The 
similarity matrix was then input into a Support Vector Machine classifier. It should be noted that SVM is 
an L2-norm regularized technique. This means that it does not assume or enforce a sparse distribution of 
the model weights. It should hence, in theory, be able to identify subtle, distributed patterns over the TC. 
Model performance was computed based on a 5-folds cross validation, i.e. 20% of the epochs were left 
out before training the model on the 80% remaining epochs (non-overlapping). The model was then tested 
on the left out 20% epochs and the predictions it returned were compared to the ‘true’ targets. This 
partitioning of the data was performed 5 times in total, each partition corresponding to a ‘fold’. The model 
performance in this work was averaged across folds. To estimate model performance, the sensitivity for 
each class was computed (corresponding to the class accuracies for ‘faces’ and ‘non-faces’). Those values 
were then averaged to provide a global measure of model performance, further referred to as ‘balanced 
accuracy’. Within each fold, another 4-folds cross-validation was performed to optimize the soft-margin 
hyperparameter of the SVM model (C = 0.01, 0.1, 1, 10 or 100). The significance of the obtained model 
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performance (at p<0.05) was assessed using 1,000 permutations (58). Classification accuracy was 
considered significant if the balanced accuracy was significant. In addition, the difference between each 
model and the ‘TC’ model (I) was tested for significance based on Wilcoxon signed-rank test at the 
population level (n=8). To ensure a fair comparison between those models, all modeling parameters were 
identical, including cross-validation folds, epochs considered and permutations of the labels. Only the sets 
of sites considered for modeling differed across the three schemes. 

Sparse versus distributed decoding information: Assessing relevance in encoding and decoding settings 
assumes the interpretation of negative results. As negative results are by nature inconclusive, we here 
investigate the effect of priors on model performance. For one model (Model I), the algorithm used 
assumes a ‘distributed’ prior (SVM, L2-regularization), i.e. all features contribute to the model. If this prior 
is appropriate, model performance should be high, and potentially higher than other types of prior. We 
test this hypothesis by comparing Model I to a model that enforces sparsity on the sites. Thereby, if the 
sparse model performs better or as well as a distributed model, the face information is likely localized in 
a few sites and other features bring no further relevant information. The sparse model, further referred 
to as Model IV, is based on the sparse Multiple Kernel Learning method (30) described in Supplementary 
S2. The main difference with Model I is that sparsity is enforced at the site level. In practice, one linear 
kernel is built per site (i.e. number of features: 1 x 351 time points) and those kernels are combined 
through a sparse prior (L1-norm regularization). Some sites will hence not be considered in the final model 
(i.e. their contribution is zero). All modeling parameters are identical between Model I and Model IV. 
Furthermore, the implementation of the sparse algorithm relies on an SVM (for each kernel), which limits 
the effect of implementation on the results. From the output of Model IV, a ‘contribution’ map can be 
built, which displays the contribution of each site to the final decoding model. Interpreting contribution 
maps is controversial(59) as the amplitude of the contribution does not necessarily reflect the presence 
or absence of the signal of interest on a site. In this work, we correlate (Pearson correlation) the model 
contribution at each site with its human face selectivity to ensure that decoding is performed using 
information from face selective patches, both within and across subjects. 

Circular analysis and univariate analysis of visual localizer: In this work, we perform various analyses on 
the same data set, and more importantly, the contrasts investigated are identical in the univariate and 
multivariate analyses. The ideal solution would be to split our data set in two parts: one to identify face 
and human face selective sites using univariate methods, the other to build the machine learning based 
models. However, with numbers of trials as low as 30 for human faces after artifact rejection, splitting our 
data set would be detrimental for both analyses. In this section, we perform univariate analyses on 
another visual task recorded on the same subjects that includes human faces and non face stimuli, to 
investigate the amount of task dependence on the identified sites. It is important to note that this visual 
task comprises a different contrast from our main task, as the visual task mostly comprises images of 
words and numbers, and not pictures. This explains why we chose not to include this task in our main 
analyses. 

Experimental design: All subjects underwent a visual localizer comprising images of human faces, animal 
(faces with bodies), places, objects, logos, false fonts, English and Spanish words, numbers and Persian 
numbers. Each image was presented for 400ms, with an inter-stimulus time interval of 500ms. During the 
stimuli presentation, the patient was asked to pay attention to the center of the screen where a dot that 
would randomly change color (from red to blue) was displayed. The patient was asked to respond using a 
keyboard (‘press 1’) when the dot changed color. 
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Analysis: This session was pre-processed similarly to the main task presented in the manuscript and 
univariate testing was performed to identify face selective and human face selective sites (permutation 
testing, FDR corrected). For face selective sites, the human face and animal categories were pooled 
together, while all other categories formed the non-face category. The time window considered for this 
analysis was amended to account for shorter presentation duration to [100 400]ms. 

Temporal distribution of face information: We implemented a technique to estimate the onset of the 
task-induced trial-by-trial HFB response on each site. Importantly this analysis was performed on the non-
smoothed data to eliminate any confound associated with temporal smoothing. For each trial of one 
category, we normalize the signal with respect to peak amplitude and implement a sliding window with 
30ms bins with 28ms overlap.  Next, we estimate the signal average and standard deviation in a baseline 
time window of [-200 0]ms before onset (averaged across trials) and identify 25 consecutive bins in which 
the average HFB power exceeds the baseline average plus one standard deviation. This criterion allows us 
to identify the task-induced signal as opposed to more transient pathological activity or artefactual 
spiking. The earliest time point of the first bin in this sequence is marked as the signal onset for a specific 
trial. In the case that 25 consecutive bins surpassing the baseline threshold are not found, we exclude that 
trial from further analysis. In the present work, we calculate the median over trial-by-trial ROL estimates 
in order to assign singular ROL values for specific sites. Sites for which a ROL value could not be obtained 
in 50% of the trials or more were discarded from the analysis. 

We investigated whether the response onset to human faces is related to the site’s anatomical position 
or selectivity. To this end, we computed the ROL of the HFB amplitude generated by human face stimuli 
on human face selective sites. The obtained ROL values (n=40) were then correlated (Spearman 
correlation) with the sites’ anatomical position (the ‘y’-coordinate in MNI space, estimating how posterior 
or anterior in the TC a site is). Similarly, the ROL values for human face selective sites were correlated 
(Spearman correlation) with the site’s selectivity to human faces. The same analysis was performed for 
task active sites (n=94) for comparison.  Our ROL analyses are subject to imprecisions, due to temporal 
smoothing related to the time-frequency decomposition and to the averaging of the HFB signal in 30ms 
bins. Hence our focus is on estimating relationships between ROL and anatomical positions. Absolute 
values of ROL should be considered with care as different techniques lead to different ROL values (60). To 
this end, we estimated the same correlations but subtracting the ROL value from the most face selective 
site within each subject. These results, plotted in Figure 4b,c and S4a,b ensure that the reported 
correlations are not driven by specific subjects or systematic errors in timing estimation. 

Effects of signal amplitude and slope on ROL: Our method performs response onset detection at the trial 
level, based on unsmoothed data. However, different parameters of the signal could affect the obtained 
ROL values, including noise, signal amplitude and signal slope. In this section, we used semi-simulated 
data to investigate the effect of signal amplitude and slope on the obtained ROL values. The level of noise 
is the one that is naturally present in ECoG data. 

The semi-simulated data used in this work have been designed for other work(61) and are described in 
detail below. The data and code for generating the simulation are available open-source 
(https://github.com/JessicaSchrouff/Simulated_ECoG). 

Original data: The data was recorded from Subject S1, during a 5-minute wakefulness rest period, with 
eyes closed. Sites assessed as ‘pathological’ by medical doctors were discarded from further analysis. 
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Simulated design: A fake experimental design was simulated: 2 conditions, ‘A’ and ‘B’, presented at 
random every 1.9 seconds. The stimuli are further assumed to last for 1 second. This yielded 146 stimuli, 
73 for each category. 

Preprocessing: Signal pre-processing was performed with specific ECoG routines 
(github/LBCN/Preprocessing_Pipeline) using Matlab (www.mathworks.com) and SPM12 
(www.fil.ion.ucl.ac.uk/spm). First, the data was converted to SPM format and downsampled to 1kHz. The 
continuous signal was filtered for line noise and harmonics (stop-band: 57-63Hz, 117-123Hz, 177-183Hz) 
and an automatic quality assessment identified ‘noisy’ or ‘spiky’ sites based on their variance and number 
of ‘jumps’ (i.e. signal derivative>100µV), leaving 38 ‘good’ sites. The data was re-referenced to the average 
of all good channels before being epoched in the [-400, 1400]ms window around ‘onset’ and baseline 
corrected using the [-400, 0]ms window. Epochs displaying flat segments of more than 4ms or ‘jumps’ 
larger than 100µV were discarded from further analysis. The signal was then decomposed using a 5-
wavelets decomposition in the 70 to 170Hz frequency band (step: 10Hz, avoiding 120Hz) to estimate High 
Frequency Broadband (HFB) power. The time-frequency signal was z-scored based on the pooled 
baselines of all events in the [-300, 0]ms window before onset to avoid edge effects and smoothed in the 
[-200, 1200]ms window after onset by a 50ms Gaussian window. Epochs displaying z-scores larger than 8 
were discarded, leaving 60 trials for condition ‘A’ and 56 for ‘B’. This pre-processing procedure is very 
similar to the one used in the main part of the work, including bad channel rejection. 

Simulated signals: All modifications of data structure were performed on the pre-processed data to avoid 
an effect of the pre-processing on the obtained results. To simulate neural signal, a ramp window was 
added to all epochs of condition ‘A’ starting 0ms after ‘onset’ with a slope of 3 until 500ms, on all ‘good’ 
sites. The amplitude of the signal in condition ‘A’ was varied by modifying the Signal-to-Noise Ratio (SNR) 
between trials ‘A’ and ‘B’. Hence, varying signal amplitude is strongly correlated with varying the 
selectivity of sites to condition ‘A’. The amplitude of the signal in the ramp window was computed based 
on a desired SNR on each site: 

𝑋𝐴,𝑒𝑓𝑓  =  𝑋𝐴  + 𝑆𝑁𝑅𝑖𝑛 ∗  𝑠𝑡𝑑(�̅�𝐵) 

 

Where 𝑋𝐴,𝑒𝑓𝑓 represents the amplitude of the effective simulated signal for condition ‘A’ trials, 𝑋𝐴, the 

amplitude of the signal for trials ‘A’, 𝑆𝑁𝑅𝑖𝑛, a fixed number representing the desired SNR and �̅�𝐵, the 
average trace of B trials. 𝑆𝑁𝑅𝑖𝑛 was varied from 2 to 10 by steps of 0.5. In our real dataset, the distribution 
of estimated SNR varies from -2 to 17 on human face selective sites, with only 3 sites with SNR>10. 

To estimate the effect of signal slope on the ROL results, we performed the same simulation but 
normalizing the amplitude of the signal in each trial before ROL detection (Linf -norm, i.e. dividing by the 
maximum amplitude). This simulated dataset hence varies the slope of the signal, but not the amplitude 
(set to maximum of 1). 

ROL analysis: For each SNR level, ROL detection is performed at the trial level, for the ‘A’ trials on each 
‘good’ site. All parameters are identical to the technique reported above. Trials with less than 50% of 
detected onsets were excluded from the results. This analysis was performed on both the un-normalized 
(i.e. varying amplitude at fixed slope) and the normalized (i.e. varying slope at fixed amplitude) simulated 
data. 
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Causal importance of face selective sites for face perception: A set of electrical brain stimulations (EBS) 
was performed on seven of the eight subjects. The sites of stimulations were chosen based on a priori 
knowledge about their HFB responses to face and non-face stimuli. During the procedure, face selective 
and task active sites were stimulated with electrical charge while the subjects were instructed to look at 
various real-world face stimuli (persons at the bedside). Across the seven subjects, the instructions given 
included A) looking at the face, B) looking at the lips, C) looking at the nose, D) looking at self in the mirror, 
E) looking at a cartoon face on a sheet of paper, or F) close eyes and imagine a face. Between 3 to 8 mA 
(depending on the excitability of the stimulated site) were delivered at a duration ranging from 1 to 3 
seconds at 50 Hz frequency and 200 μs pulse width, of a square wave electrical waveform in unipolar 
(subject S8) or bipolar montage (S8 and other subjects). In unipolar montage a TC site and a remote 
cortical reference site were stimulated whereas in the bipolar montage, a pair of adjacent electrodes were 
stimulated. Sham stimulations were also administered at 0 mA.  Continuous EEG monitoring showed no 
after-discharges or epileptic activity during the sessions. Verbal reports were collected following each 
stimulation. See Figure 5 legend for criteria used to define a site as active during EBS procedure. We 
recognized an electrode as a catalyst in face perception change if A) the stimulation of this electrode 
yielded a face-specific change; B) the stimulation of this electrode paired with any other electrode still 
yielded a change; and C) the result of the stimulation and its resulting face-perception change was 
replicable across multiple stimulation trials. In addition, in subject S8, the estimated cortical area affected 
by the stimulation on electrode 3 was calculated using the relationship between the estimated charge per 
trial and the cortical area affected(62) and is shown with a blue circle around it. The charge deposited per 
trial (μC) was calculated as a product of the pulse width (ms), current (mA), frequency (Hz), and duration 
(s) of stimulation for each trial; then, we estimated the cortical area (mm2) affected by the stimulation as 
a function of the charge deposited per trial (μC) according to the methods described in (62). 

Statistical testing: Throughout this work, statistical testing was performed using non-parametric 
permutations. When suited, the tests were paired (e.g. when comparing 2 conditions in terms of ROL 
value on the same set of sites, or when comparing the HFB response of a stimulus category to its baseline). 
A minimum of 1,000 permutations was performed, to ensure a good estimation of the null distribution. 
False Discovery Rate (FDR) or Bonferroni correction was applied when multiple comparisons tested for 
the same effect (e.g. testing for human face selectivity on each site, or comparing ROL between the 4 face 
subcategories using binary comparisons). Significance was determined at p<0.05, after correction if 
applicable. Population statistics for the decoding models I to IV was performed using Wilcoxon signed-
rank tests (58).  
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SUPPLEMENTARY INFORMATION 

 

 

 

 

Supplementary figures: 

 

 

Figure S1: Human face selective sites, within subjects. For each subject, the sites are represented on the individual cortex 
map. Sites represented by black diamonds were not assessed as task active. The first three subjects have left hemisphere 
implantation, while subjects S4 to S8 have right implantation. Sites displayed by circles were assessed as task active. 
Among those, sites highlighted by a pink rim were further assessed as human face selective. The human face selectivity of 
each site (in dB) is displayed via a color-coded fill of the task active sites. 
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Figure S2: Face selective sites, within subjects. For each subject, the sites are represented on the individual cortex map. 
Sites represented by black diamonds were not assessed as task active. The first three subjects have left hemisphere 
implantation, while subjects S4 to S8 have right implantation. Sites displayed by circles were assessed as task active. 
Among those, sites highlighted by a yellow rim were further assessed as face selective (four face subcategories pooled). 
The face selectivity of each site (in dB) is displayed via a color-coded fill of the task active sites. 
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Figure S3: Individual plots of site contribution to Model IV. For each subject, the sites are displayed on the individual 
cortex mesh. Sites represented by black diamonds have a null contribution to Model IV. Sites represented by a circle have 
a positive contribution to Model IV, the amplitude of their contribution being color-coded using a purple fill. Sites assessed 
as human face selective by our univariate analysis are highlighted with a pink rim. 
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Figure S4: Temporal distribution of human face information on task active sites.  (a) Selectivity in each subject, when 
compared to MNI y-coordinate with the best (i.e. most human face selective) site in each individual chosen as the point 
of reference. The best site is represented as a black circle, at the crossing of the 2 axes. Selectivity is not related to 
anatomical position. (b) ROL in each subject, when compared to MNI y-coordinate with the best site in each individual 
chosen as the point of reference. Latency is related to anatomical location of the electrodes.  
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Figure S5: Effect of signal amplitude and of slope on ROL. (a) Simulated ramp signals, for varying imposed SNR, for an 
example site. The onset time is 0ms after ‘onset’. In the present case, the slope is fixed and the amplitude varies with 
imposed SNR. (b) Simulated ramp signals after normalizing by the maximum amplitude (i.e. Linf-norm), for the same 
example site. In this case, the slope varies but the maximum amplitude is fixed at 1. (c) Example obtained semi-simulated 
signals for one site, at imposed SNR = 3. The average trace for condition ‘A’ is displayed in green (with shaded standard 
error), and condition ‘B’ (unused in this work), in grey. The amount of noise represented is the on-going resting activity 
from the recorded data. (d) When varying amplitude at fixed slope (i.e. un-normalized signals), SNR does not affect 
significantly the detected ROL across sites (ρ = 0.0613, p = 0.1198). (e) Similar results are obtained when varying slope at 
fixed amplitude, i.e. normalizing the signals (ρ = 0.0245, p = 0.5335). Please note that the effect of noise is displayed by 
the variability in ROL across sites for each SNR. 
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Supplemental Information: 

 

Supplementary Table S1: Demographics. 

 

Subject # Age Gender Native 
Language 

Language 
Lateraliza
tion 

Hande
dness 

Type of 
epilepsy 

Side of 
implantation 
(Number of 
electrodes) 

IQ Duration 
of 
epilepsy 

1 47 male English Bilateral left Right 
temporal 
lobe epilepsy 

left (64) 74 13 years 

2 44 male Spanish N/A right Left 
Temporal 
lobe epilepsy 

left (106) N/A 41 years 

3 23 male English Left right Left temporal 
oligodendrog
lioma 

left (125) 100 6 years 

4 68 male Korean N/A right Right 
temporal 
lobe 

right (96) N/A 32 years 

5 65 female English Right right Right 
temporal 
lobe epilepsy 

right (110) 113 4 years 

6 35 male German; 
fluent in 
English  

Left right Right fronto-
temporal 
lobe  

right (126) 129 18 years 

7 36 female English N/A right Right 
temporal 
lobe epilepsy 

right (128) 102 6 years 

8 *** male English *** 
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*** Because we are enclosing a video of this subject, we are keeping his information confidential.  

 

 

Supplementary 2: Frequency information for faces 

Table S2 suggests that other frequency bands carry (human) face information. However, the MKL model strongly prefers 
the HFB to discriminate human faces from non-faces, in all subjects (Figure 2b). This result suggests that either the human 
face information carried by other bands is weaker, or it is highly correlated with the HFB human face information (as the 
MKL model only selects non-correlated information). Therefore, using the amplitude of the HFB power as an index of 
neural population activity for investigating (human) face distribution over the TC seems reasonable. 

 

Supplementary table S2: Task active and (human) face selective sites in each frequency band. The number of identified 
task active, face selective and human face selective sites is displayed, summed over all subjects. 

Band Task active Face selective Human Face selective 

θ 122 2 2 

α 104 5 7 

β1 98 17 25 

β2 80 9 23 

γ 114 21 30 

HFB 193 37 48 

 

  

Supplementary Table S3: TC sites and category-specific responses. For each participant, the number of sites located in 
the TC is displayed. Sites were excluded from further analysis if they exhibited epileptic activity or excessive noise artifacts. 
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The number of task active (3rd column), face selective (4th column) and human face selective (last column) sites are also 
displayed. The total for each column is displayed at the bottom of the table. 

 

Patient TC sites Task active Face selective Human face selective 

S1 39 17 0 1  

S2 29 12 3  4  

S3 50 20 4 7 

S4 49 45 6 15 

S5 59 23  9 6  

S6 55 16 4  3 

S7 30 21 6  6  

S8 46 36 5  6  

Total 357 190 37 48 

 

 

 

Supplementary S4: Low-level image features 

Stimulus features 
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There were no significant differences in spatial information when comparing the 11 categories, pair-wise (p-values = 
0.9999). Mean luminance was significantly different between human faces and non-faces (p=9.93e-09, n= 200), mammal 
faces and non-faces (p=6.3e-08, n=200), bird faces and non-faces (p=4.5e-04, n=200) and marine faces and non-faces 
(p=6.2e-07, n=200). No significant differences were found between human and mammal faces (p=0.88, n= 25), human and 
bird faces (p=0.15, n=25), human and marine faces (p=0.71, n=25), mammal and bird faces (p=0.67, n=25), mammal and 
marine faces (p=0.99, n=25) and bird and marine faces (p=0.84, n=25). 

 

 

Univariate analysis 

When comparing low and high luminance faces, no site displayed a significant difference between the two categories (5 
before FDR correction, Table S4). These results need to be considered with care, as these negative results cannot 
completely reject the null hypothesis (they might be under-powered). However, the obtained results suggest that there is 
no effect of luminance on our main findings. 

 

Supplementary Table S4: Effect of luminance on face sites. P-values of univariate analyses comparing low luminance 
face stimuli with high luminance face stimuli. 

Number p-value(High vs. Low luminance face) 

1.  0.235 

2.  0.217 

3.  0.030 

4.  0.218 

5.  0.046 

6.  0.315 

7.  0.354 

8.  0.302 

9.  0.112 
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10.  0.371 

11.  0.227 

12.  0.029 

13.  0.367 

14.  0.458 

15.  0.088 

16.  0.160 

17.  0.272 

18.  0.422 

19.  0.347 

20.  0.306 

21.  0.352 

22.  0.064 

23.  0.399 

24.  0.109 

25.  0.199 

26.  0.332 

27.  0.467 

28.  0.366 
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29.  0.371 

30.  0.307 

31.  0.060 

32.  0.408 

33.  0.134 

34.  0.399 

35.  0.416 

36.  0.297 

37.  0.220 

38.  0.393 

39.  0.346 

40.  0.271 

41.  0.337 

42.  0.352 

43.  0.228 

44.  0.342 

45.  0.341 

46.  0.158 

47.  0.066 
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48.  0.306 

49.  0.001 

50.  0.046 

51.  0.184 

52.  0.352 

53.  0.444 

54.  0.221 

 

 

 

Supplementary Table S5: Relevance of face and non-face sites in decoding. The first column displays the balanced 
accuracy for Model I, with the p-value that it differs from the distribution defined by the ‘random set’ models. The second 
column displays the performance of the same model when discarding human face selective sites (Model II), with the p-
value that it differs from the ‘random set’ models. Column 3 displays the balanced accuracy of the same model when 
random subsets of sites are discarded (‘random set’, median across 499 models). Finally, column 4 displays the correlation 
between the accuracy of ‘random set’ models and the proportion of human face sites included in the model. Significant 
results are displayed in bold (p<0.05, corrected). Results displayed in italic show a trend (p<0.05 uncorrected). 

 

 

Patient ‘TC’ (I, in %) ‘TC-sign’ (II, in %) ‘random set’ (in %) Corr(F,acc) 

S1 68.00 (p=0.4980) 61.71 (p=0.0020) 68.00  N.a. 

S2 85.54 (p=0.3000) 62.82 (p=0.0680) 84.64  0.4697 

S3 75.22 (p=0.2340) 58.27 (p=0.0060) 72.52  0.2441 

S4 94.98 (p=0.7620) 69.48 (p=0.0020) 95.58  0.2060 
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S5 98.08 (p=0.1340) 53.89 (p=0.0020) 98.00  -0.2144 

S6 80.10 (p=0.6180) 73.41(p=0.0020) 80.55  0.0971 

S7 85.86 (p=0.6080) 64.16 (p=0.0020) 86.82  0.4119 

S8 94.10 (p=0.0580) 60.45 (p=0.0020) 91.59  0.2611 

 

 

 

Supplementary S6: Univariate results on visual localizer 

Table S6 displays the number of sites identified as face and human face selective on this task, as well as the number of 
sites commonly identified in both tasks. It reveals that 60.53% of sites identified on the main task were reported as face 
selective in both tasks, while 58.33% of sites were reported as human face selective in both tasks. Although the two tasks 
have fundamentally different contrasts (the visual localizer contains more images of words than of pictures, and the animal 
category contains both face and body), the overlap of selected face and human face sites is significant. It is therefore 
unlikely that our reported results are driven by task specific features. 

 

Supplementary table S6: Consistence of face and human face selective sites identification across tasks. Number of face 
and human face selective sites identified on a visual localizer task (‘Loc’), and identified on both our main task and the 
visual localizer (‘both’). 

Patient Face selective (Loc) Face selective (both) Human face selective 
(Loc) 

Human face selective 
(Both) 

S1 6 0 3 1 

S2 3 2 2 2 

S3 5 2 2 2 

S4 2 0 8 6 
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S5 9 5 16 5 

S6 10 4 6 3 

S7 10 7 7 5 

S8 7 3 5 4 

Total 52 23 49 28 

 

 

Supplementary table S7: Distributed versus sparse anatomical prior. The first column copies the accuracy from Model I 
(balanced accuracy, in %), for easy comparison. The second column displays the balanced accuracy (in %) obtained from 
a sparse Multiple Kernel Learning model. The third column displays the correlation (with p-value) between site 
contributions to the model and the human face selectivity as identified by the univariate test ‘human faces versus pooled 
non-faces’. 

Patient ‘TC’ (I, in %) sMKL (IV, in %) Corr(beta,uni) 

S1 68.00 76.95 0.4426 (p=0.0048) 

S2 85.54  90.71 0.6714 (p<0.0001) 

S3 75.22 80.07 0.6773 (p<0.0001) 

S4 94.98  96.00 0.7635 (p<0.0001) 

S5 98.08  96.15 0.8681 (p<0.0001) 

S6 80.10  77.57 0.7272 (p<0.0001) 

S7 85.86  90.86 0.6855 (p<0.0001) 
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S8 94.10 91.78 -0.1405 (p=0.3517) 

 

 

Supplementary S8: Effects of signal amplitude and slope on ROL 

Examples of simulated ramp signals and obtained semi-simulated signals are presented in figure S5 (a-c), on one example 
site. Figure 5a displays the simulated signal obtained for different SNRs when varying amplitude while Figure 5b displays 
the simulated signal obtained for different SNRs when varying slope (i.e. normalizing the signal). 

The ROL-SNR relationships are displayed in Figure S4 for the un-normalized (d) and normalized signals (e). When varying 
amplitude at fixed slope, correlation between detected onset and estimated SNR was close to 0 (ρ = 0.0613, p = 0.1198) 
across all 38 sites (displayed as grey dots on the scatter plot). When varying slope at fixed amplitude, similar results were 
found (ρ = 0.0245, p = 0.5335). In either case, the average ROL varies at most by 6 (un-normalized) or 12 (normalized) ms 
between SNR = 2 and SNR =10. This scale of variation is much smaller than the effect reported between posterior and 
anterior sites in the main text. 

The proposed ROL detection method is independent of signal amplitude and slope. In addition, the size of a potential bias 
is limited and much inferior to the effect reported in the main text. In conclusion, it is unlikely that the reported effects 
result only from biases in our ROL method. 

 

Supplementary table S9: Subject responses during electrical stimulation trials.  

Subject 1 

Stimulated 
Pair 

Current 
(mA) 

Duration 
(sec) 

Prompt Result 

STG 7-STG 1 6 1.7 sec 
Instructed to look at a face. 

"How about now?" 
"Nothing." 

STG 1-STG 2 6 1.7 sec "Changed or no?" "No." 

STG 3-STG 2 6 1.4 sec 
Instructed to look at hand in 

front of face. "1, 2, 3." 
"Nothing." 

STG 3-STG 2 6 1.4 sec "Face. 1, 2, 3." "Nothing." 
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STG 2-STG 8 6 1.5 sec 
Instructed to look at face. 

"How about now?" 
"It changed a little bit." 

      "Can you describe it?" "Just that one side changed." 

STG 4-STG 3 6 1.1 sec "How about face?" "Nothing." 

STG 9-STG 3 6 1.5 sec "Look at her face. 1, 2, 3." "Nothing." 

STG 10-STG 
4 

6 1.5 sec "Now face. 1, 2, 3." "No." 

STG 7-STG 8 6 1.7 sec "Ok, now?" "I didn't see anything." 

STG 13-STG 
7 

6 1.6 sec 
"Now look at her face. Did 

anything change?" 
"Nothing." 

STG 9-STG 
10 

6 1.6 sec 
"Ok. Now you are going to look 

at the face. Ready? 1, 2, 3." 
"Nothing." 

STG 9-STG 
10 

Sham Sham 
"One more time. 1, 2, 3. 

Nothing?" 
Nothing 

STG 9-STG 
15 

6 1.6 sec "Now look at her face. 1, 2, 3." "No." 

STG 10-STG 
16 

6 1.4 sec "How about the face? 1, 2, 3." "Nothing." 

STG 14-13 6 1.5 sec 
"Can you look at her face now? 

1, 2, 3. Did it change?" 
"Yeah. It changed a little." 

      "In what sense?" 
"Just that left side of her face 

changed." 

      
"Was it very similar to the 

previous feelings?" 

 "That one looked like it changed a 
little different. It looks like my wife's 

cousin or something." 
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STG 19-STG 
13 

6 1.7 sec "Now look at the clock. 1, 2, 3." "I didn't really see anything." 

STG 20-STG 
14 

6 2.5 sec 
"Ok. Alright. Now look at her 

face and try to describe exactly 
what's happening." 

"It looks like my neighbor's wife or 
something on one side."  

      
"How old is your neighbor's 

wife?" 
"Uh, forty-something." 

      
"So, you think she was looking 

older?" 
"No. She wasn't looking older?" 

      
"But you could still know who 

she was?" 
"I had an idea." 

STG 14-STG 
15 

6 1.8 sec "How about now?" 

"That one was like, eh, it was like a 
face in a movie I've seen but I can't 
remember the movie, just the half 

part [changed]." 

      

"Let me ask you this question. 
Were you seeing a face or did 
the face change to something 

non-face?" 

"No. It changed to a face." 

      "It changed to another face?" 
"Yeah. Just half of it changed to 

another face." 

STG 15-STG 
16 

6 1.6 sec "How about now?" 
"About the same thing. It looks like a 

person I've seen in a movie." 

      
"Person you've seen in a 

movie?" 
"Yeah." 

STG 15-STG 
21 

6 1.7 sec 
"Look straight ahead. 1, 2, 3. 

Did anything change?" 
"Very little [changed], not too much." 

      "What did change?" 
"Same thing. It was just that one 

side." 
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"Ok. Compared to the previous 

one?" 
"Not as much as the previous one." 

      
"Was the intensity different or 
was it the character that was 

different?" 

"It was the same person or 
something that I had seen in movies 

before." 

      "Why was it less?" "Oh, I don't know, but it was less." 

STG 19-STG 
20 

4 1.5 sec 
"Ok. Look at my face. How 

about now? Did you see any 
change?" 

 "Yeah, it changed. That side [the pt's 
right side] changed." 

      "Tell me more." 
"It stayed the same size and 

everything. It just changed a little bit 
on that one side." 

      
"Was it shaking… Did I turn into 

somebody else?" 
"It looked like that side [PT's right 
side] turned into somebody else." 

      
"Someone you have known 

before or what?" 
"Nah. I didn't really recognize him." 

STG 20-STG 
21 

6 1.7 sec 

"Look at her face again one 
more time and let's see if it 

changes. You're looking at her 
face? And that's normal 

looking? How about now?" 

 "It changed. I couldn't pinpoint the 
person who it was." 

      "It was a familiar face?" 
"It was like somebody that I knew, 
that I've seen, just on the left side." 

      
"It was a familiar face? 

Somebody you had seen 
before?"  

"Yeah." 

      "But it wasn't her face?" "No." 
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      "Can you say a little bit more?" 
"I can't really pinpoint exactly who it 

was…" 

      
"Were the eyes in the same 

place?" 
"Yeah. Same place." 

      
"Did the face kind of change to 

a different shape?" 
"No. It pretty much stayed the 

same?" 

      "Male or female?" "That time it wa male." 

      "But someone familiar?" "Someone familiar." 

 

 

 

 

 

SUBJECT 3 

OC 26-27 7 1 sec 
"Can you look at our face 

instead? Any change?" 
"No." 

OC 27-28 7 1 sec "Look at my face. Any change?" "No." 

OC 28-29 7 1 sec "Look at my face. No change?" Nothing 

 

 

 

SUBJECT 4 
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PST 1-PST 9 3 1 sec 
Instructed to look at a face. "1, 

2, 3. Any change?" 
Nothing 

PST 2-PST 3 
& PST 11-

PST 12 
4 1 sec 

"Ok, how about now? 1, 2, and 
3." 

"The same… the right eyes cross… it's 
not a circle… it"  

      
"Can you draw what 

happened?" 
*draws what happened, looks like a 

square* 

      
"But the whole face is the 

same?" 
"The whole face, not much changed." 

PST 2-PST 3 
& PST 11-

PST 12 
4 1 sec 

"Concentrate on the whole 
face. Ready? One last time. 1, 

2, 3. Did anything change?" 
"Just eyes." 

      "Just eyes?" "Same as before." 

PST 2-PST 
10 

3 1 sec "1, 2, 3. Any change?" 
 "His right eye… looks like some 

stone." 

PST 2-PST 
11 

4 2 sec 

 "Look at her face and tell me 
what you notice. Just look 
straight ahead and tell me 

what happens. Did anything 
change? Explain." 

"Her right eye looks like a dance 
motion."  
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"Was the whole face the 

same?" 

"I didn't see the whole face." 
Translator: "Initially he was 

concentrating on her right eye but 
the face also had some fading." 

      "Was the face distorted?" 
"The whole face stays about the 
same… only the eyes change." 

 PST 2-PST 
12  

4  1 sec  
 "Look straight ahead. Look at 
his nose and pay attention to 

his face. 1, 2, 3."  

 "No change, but there was some 
twist [gesturing to bridge of nose]."  

PST 2-PST 3 
& PST 11-

PST 12 
Sham Sham 

"Just look at her. Ready? 1, 2, 
and 3. Anything change?" 

"No, it's not changed." 

 PST 3-PST 
11  

4  1 sec   "Just look at his face. Ok, go."  

 "[The pt] was looking at my eye and 
he said that initially it looked like a 

circle but then it turned into a 
rectangular shape."  

      
 "Did the whole face remain 
the same or did it change?"  

 [No answer]  

 PST 3-PST 
11  

4  2 sec  
 "How about now? Look 

straight ahead to his face."  
 "The right eye looked normal and 

then it twisted."  
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 "Just the eyes or was the nose 

the same?"  
 "Just the eyes."  

 PST 3-PST 
11  

3  1 sec   "1, 2, 3. Any change?"  
 "His right eye… some square… a little 

square" Translator: "I think he's 
talking about a diamond shape."  

 PST 3-PST 
11  

3  2 sec  

 Instructed to look into a 
mirror. "See what happens to 

your face when I do this. 
Ready? 1, 2, 3. Did anything 

change?"  

 "My right eye, a little more bigger. 
And left eye, a little smaller."  

       "Your nose stayed the same?"   "Same."  

       "Your lip was the same?"   "Same."  

 PST 4-PST 
11  

3  1 sec  
 "Look straight ahead. 1, 2, 3. 

Any change?"  
 "His right eye… some little twist."  

 PST 4-PST 
12  

3  1 sec  
 "Straight ahead. Did anything 

change?"  
  "The chin looks a little droopy."  

 PST 4-PST 
13  

3  1 sec   "1, 2, 3."  
 "It looked like he was watching me 
straight but turned around a little 

toward the left side."  

PST 1-PST 9 3 1 sec 
Instructed to look at a face. "1, 

2, 3. Any change?" 
Nothing 
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PST 2-PST 
10 

3 1 sec "1, 2, 3. Any change?" 
 "His right eye… looks like some 

stone." 

PST 17-25 4 1 sec 
"Look straight ahead or look at 
his face. 1, 2, 3. Did anything 

change?" 
"No, the same." 

 

 

SUBJECT 5 

PST 8-9 
4 mA - 
50 Hz 

2 sec 

Instructed to look at face. 
"How about now? 1, 2, 3. Any 

change? Yes or no? Did her 
face change?" 

"No." 

PST 8-10 sham sham "1, 2, 3. Did her face change?"  "I didn't see her face change." 

PST 8-10 
4 mA - 
50 Hz 

2 sec 
"How about now? Did it 

change?" 
"No." 

PST 8-10 
8 mA - 
50 Hz 

1 sec "How about now? 1, 2, 3." "I don't think so." 
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 PST 9-10  
 6 mA - 
50 Hz  

 2 sec  
 Instructed to look at face. "Ok. 

Ready? 1, 2, 3."  

 "Yes, but that was opthomologically, 
as if you were at the eye doctor and 

you turn the lens like that [makes 
flipping motion]. It made your shirt 

become… I could see the ridges 
more, and it was like seeing it with a 

better glasses prescription."  

       "Where were you looking?"  
 "I might have moved my eye to focus 

better."  

PST 9-10 
4 mA - 
50 Hz 

2 sec 
"Ok. Look at her nose this time. 

1, 2, 3. Any change?" 
 "No, I would not notice anything that 

time." 

      
"Nothing changed? Nothing of 

her nose, shirt?" 
"No." 

MST 15-PST 
9 

5 mA 1 sec 
"Look at her nose. 1, 2, 3. Did 

anything change?" 
"It's just too subtle." 

MST 15-PST 
9 

6 mA 1 sec 
"Ok. How about now? 1, 2, 3. 

Yes? No?" 
"I didn't see anything." 

MST 15-PST 
9 

8 mA 1 sec 
"How about now? 1, 2, 3. Did 

you see any changes in her 
face?" 

"Well, it looks harder and harder." 
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      "In what sense?" 

 "I don't know, it just looks harder 
and harder. I see your mom and your 

brother, but you aren't the person 
I'm thinking of… You're different 

people." 

 

 

 

SUBJECT 6 

MST 2 - 3 4 1 sec 

"Look at 
Jennifer's 

face. See if 
you notice any 
change. 1, 2, 
3. Nothing 
changed?" 

"No, nothing changed." 

MST 2 - 3 6 1 sec 
"How about 

now? 1, 2, 3." 
"No, nothing." (AD) 

MST 3 - 4 4 1 sec 

"How about 
now? Did 
anything 
change?" 

"No." 

MST 4 - PST 
8 

6 1 sec 

"Look at her 
face and see if 
it changes. 1, 

2, 3." 

"No." 

MST 4 - PST 
8 

8 0.5 sec 
"How about 
now? Did it 
change?" 

"No." 
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PST 7 - 8 4 1 sec 

"Now open 
your eyes and 

look at her 
face. And tell 

me if it 
changes. 1,2, 

3. Did her face 
change?" 

"Not that I could… no." 

PST 4 - 5 6 1 sec 
"Looking at 

her face. Did it 
change?" 

"You know what, I'm sorry. I just totally glanced up, 
and I think the light's been… I glanced a glimmer, right 
above her head… And you know what, I think I might 
have noticed that and it didn't click for me until right 
now. I apologize… On a few of the other ones, maybe 

even also, and that's my mistake. I apologize." 

 

 

SUBJECT 7 

STG 8-9 6 mA 0.5 sec 
"Look at Dr. 

Razavi's face. 
Any change?" 

"No." 

STG 9-10 6 mA 1 sec 
"How about 

now? No 
change?" 

"No." 

STG 3-4 6 mA 0.5 sec 
"Could you 
look again? 
Did my face 

"No." 
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get distorted 
or not?" 

STG 2-3-4 4 mA 1 sec 

"Can you look 
at my face, 
right here? 
Did you see 
any change? 
Did anything 

change?" 

"No." 

      "Not at all?" "No." 

STG 2-4 6 mA 0.5 sec 

"How about 
you look at Dr. 
Razavi's face? 
Did anything 

change?" 

"Nothing." 

 

 

SUBJECT 8 

MT3 - MT4 6 2 
Did my face 

change?  
[Shakes head] 

MT3 - MT4 8 2 
How about 

now?  
[Shakes head] 

MT3 - MT4 8 2 

Can you look 
at my face 
again? And 
tell me if it 
happens 

again. 

Not this time.  

 MT4 - PT13  8 2 
 How about 

now?   
 Your eye on your right side changed a little bit.  
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 MT4 - PT13  8 2 

 Open your 
eyes 

wide...Did my 
face change, 

or not?  

 Your eye did.  

 MT4 - PT13  8 2 
 Close your 
eyes. What 
happened?  

 I don’t recognize it. It turned into a cartoon. Your 
right eye side. The right eye. It’s something I don’t 

recognize.  

 MT4 - PT13  8 2 
 How about 

now?  

 I see part of a cartoon. I don’t see it really good 
images in my mind, it’s just like a brain image but 
not a mind image. I saw this distorted face. The 

side… Part of the upper.  

 MT4 - PT13  8 2 

 Open your 
eyes wide. Tell 
me if you see 

a face 
distorted.  

 Right eye was starting to distort… The right eye is 
reminding me of Lassie back when I was a kid. It was 
a tv show and the dog Lassie. Just the right eye part.  

RLG 64 - 
PT13 

Sham 
Tell me if it 

gets distorted 
or not. 

[Shakes head] 

 RLG 64 - 
PT13  

8 2 

 One more 
time, can you 
tell me what 

exactly 
happened?  

 [Your right eye] becomes somebody’s else, I mean, 
somebody else’s...I recognized it...it looked familiar.  
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 RLG 64 - 
PT13  

8 2 

 Look at 
yourself [in 
the mirror]. 

Look at 
yourself, and 
tell me if your 
face changes  

 Yeah, [my left] eye changed...The eyeball is 
somebody else’s...It was just the eye change, but I 

still recognized myself.  

 PT13 - PT14  8 1 

 I’m going to 
ask you to 
look at my 

lips. Forget my 
eyes, just my 
lips...Did my 
face change?  

 Yeah, it just kind of wiggled a little bit. It reminded 
me of somebody. Familiar in movies…Just the right 

hand side looked like somebody's.  

 PT13 - PT14  8 1 

 Look at my 
whole face. 

Don’t look at 
just my eyes 
or lips. Just 
look at my 
whole face 
and tell me 

what 
happens.  

 Just for one eye for about two seconds... I guess like 
the whole face.  

 PT13 - PT14  8 1 

 I’m going to 
show the 
patient a 

cartoon face 
right here… 
Look at the 
whole face 

and tell me if 
that changes 

too.  

 The right eye. It like looked sideways.  
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