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Abstract (200 words) 1 

Root-associated microbes play a key role in plant performance and productivity, making 2 

them important players in agroecosystems. So far, very few studies have assessed the impact 3 

of different farming systems on the root microbiota and it is still unclear whether agricultural 4 

intensification influences network complexity of microbial communities. We investigated the 5 

impact of conventional, no-till and organic farming on wheat root fungal communities using 6 

PacBio SMRT sequencing on samples collected from 60 farmlands in Switzerland. Organic 7 

farming harboured a much more complex fungal network than conventional and no-till 8 

farming systems. The abundance of keystone taxa was the highest under organic farming 9 

where agricultural intensification was the lowest. The occurrence of keystone taxa was best 10 

explained by soil phosphorus levels, bulk density, pH and mycorrhizal colonization. The 11 

majority of keystone taxa are known to form arbuscular mycorrhizal associations with plants 12 

and belong to the orders Glomerales, Paraglomerales, and Diversisporales. Supporting this, 13 

the abundance of mycorrhizal fungi in roots and soils was also significantly higher under 14 

organic farming. To our knowledge, this is the first study to report mycorrhizal keystone taxa 15 

for agroecosystems, and we demonstrate that agricultural intensification reduces network 16 

complexity and the abundance of keystone taxa in the root microbiota. 17 
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Introduction 18 

Agricultural intensification is one of the most pervasive problems of the 21st century [1]. To 19 

keep pace with the ever-increasing human population, the total area of cultivated land 20 

worldwide has increased over 500% in the last five decades [2] with a 700% increase in the 21 

fertilizer use and a several-fold increase in pesticide use [3, 4]. Agricultural intensification 22 

has raised a wide range of environmental concerns, including poor nutrient-use efficiency, 23 

enhanced greenhouse gas emissions, groundwater eutrophication, degradation of soil quality, 24 

and soil erosion [4, 5]. Alternate farming systems such as conservation agriculture (e.g., no-25 

till) and organic farming have been widely adopted to reduce such adverse environmental 26 

effects [6, 7]. Organic farmlands represent 2.5% of the total arable lands in Europe, and over 27 

3.5% in Switzerland [8], although they may reduce yield and yield stability [9]. The adoption 28 

of no-till globally has increased by approximately 233% in the last decade and it is over 3% 29 

of the total arable lands in Switzerland [10]. These farming systems are adopted to maintain 30 

environmental sustainability and ecosystems services, and at the heart of ecosystem services 31 

lies the contribution of microbial communities [11–13].  32 

Microbial communities play an indispensable role in ecosystems and render a wide 33 

range of services [12, 14–16]. In agroecosystems, microbes modulate a number of processes, 34 

including nutrient cycling, organic matter decomposition, soil aggregate stabilization, 35 

symbiotic and pathogenic interactions with plants, and thereby play an essential role in the 36 

productivity and sustainability of agroecosystems [5, 12, 17]. The agricultural intensity with 37 

high resource-use and low crop diversity can affect soil- and plant-associated microbiota, 38 

with subsequent impact on ecosystem services [18, 19]. Increasing adoption of no-till and 39 

organic farming also warrants an investigation of their effects on microbial communities. 40 

Previous studies comparing the effects of conventional, no-till and organic farming have 41 
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mostly focused on the soil microbiome [20–22], and our understanding of the impact of these 42 

farming systems on root-associated microbiota is minimal. 43 

Root-associated microbiota plays a key role in determining the above-ground 44 

productivity  [23, 24]. No-till farming may affect root architecture and root distribution in 45 

soil, with a subsequent effect on microbial recruitment into the roots [25]. However, very few 46 

studies have assessed the effect of no-tillage on root microbial communities, and the ones that 47 

investigated root microbiota have only focused on root bacteria [26] or specific fungal 48 

groups, including arbuscular mycorrhizal fungi (AMF) using traditional techniques [27, 28]. 49 

Furthermore, the impact of agricultural intensification on the overall root fungal communities 50 

is still poorly understood [29, 30]. Plant root harbours a diverse assemblage of endophytic 51 

fungi that form symbiotic, parasitic or pathogenic associations, and through such 52 

associations, play a key role in plant diversity, community composition and performance 53 

[31]. The widespread symbiosis of AMF and the array of benefits rendered by these fungi are 54 

now well-established [32, 33]. Moreover, mycorrhiza like endophytes, Piriformospra indica, 55 

also promote plant growth, stress tolerance and induce local and systemic resistance to 56 

pathogens [34]. Trichoderma spp. have also been shown to enhance plant growth and 57 

systemic resistance to plant pathogens [35]. Thus, the structure and composition of root 58 

fungal communities play an important role in agroecosystems, and yet the effect of 59 

agricultural intensification on root fungal communities remains poorly understood.  60 

The structure of a microbiome has substantial effects on its functioning [36]. 61 

However, studying the structure of a microbiome is not simple mainly due to complex 62 

interrelationships among the myriad of members. Microbial co-occurrence networks can 63 

unravel such relationships and offer insight into community structure [37, 38]. Network 64 

analysis has been found particularly useful in recent years to understand how microbe-65 

microbe associations change in response to environmental parameters [39–42]. Network 66 
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scores can also be used to statistically identify the keystone taxa, i.e. taxa that have a large 67 

influence in the community [43, 44]. Recent studies have demonstrated that such highly 68 

connected taxa can explain microbiome compositional turnover better than all taxa combined 69 

[45]. It has also been observed that the impact of abiotic factors and host genotypes on the 70 

plant microbiome is facilitated via keystone taxa [46], and the root microbial network 71 

complexity is linked to plant survival [47]. Agricultural intensification may alter the structure 72 

of root microbial network and the abundance of keystone taxa, which in turn may have 73 

implications for crop performance [48]. However, so far, it has not been investigated whether 74 

root microbial networks differ between organic, conservation and conventional agriculture. A 75 

pertinent question is whether mycorrhizal fungi that are widely regarded for their role in plant 76 

productivity can also act as keystone taxa in the microbial community. 77 

Here we explored the impact of farming systems on the fungal community structure 78 

using the latest PacBio SMRT sequencing and network analysis of wheat root samples 79 

collected from 60 farmlands in Switzerland. We aimed to address the following questions: a) 80 

does agricultural intensity affect the structure and composition of wheat-root fungal 81 

communities? b) do network complexity and the abundance of keystone taxa vary between 82 

conventional, no-till and organic farming? c) which taxa act as keystone and what are the 83 

drivers of such taxa in the root microbiota? 84 

 85 

Material and methods 86 

Site selection and sampling 87 

Soil samples were collected in early May 2016 from wheat fields in 60 agricultural farmlands 88 

in the northeast and southwest regions of Switzerland (Figure S1). Wheat fields were either 89 

managed conventionally with tillage, conventionally under no-tillage, or organically under a 90 

mouldboard plough tillage. Farming systems were distributed equally in both regions, and 91 
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each system was represented by 20 farmlands. At each farmland, 18 soil cores (4 cm 92 

diameter) were collected at 0-20 cm depth with a hand auger (Figure S2). These 18 samples 93 

were mixed and pooled to obtain a representative sample for a farm. The auger was cleaned 94 

between sites. Five undisturbed cylindrical soil cores of 100 ml volume and 5.1 cm diameter 95 

were collected for bulk density measurement and the median of the five measures was 96 

considered as the estimate of bulk density for each field. Root samples were collected in June 97 

2016. At each site, ten wheat plants, five per transect, were excavated using a fork spade. 98 

Shoots were cut off at the height of approx. 5 cm and all roots of a specific site were pooled 99 

in a plastic bag for subsequent processing. Samples were placed on ice in a cooler box for 100 

transfer to the laboratory. Soil samples were processed on the same day as the collection by 101 

removing plant materials, homogenizing and passing through a 2 mm sieve. Sub-samples 102 

were taken for various soil physicochemical and biological analyses and stored at appropriate 103 

temperature as required. 104 

 105 

Plant and soil analyses 106 

In the lab, roots were thoroughly cleaned under cold tap water. Subsequently, fine roots (< 1 107 

mm) were cut into small pieces of about 1 cm length and thoroughly mixed. A subsample of 108 

2 g of fine roots was stored in 1.5 Eppendorf tubes, lyophilized and stored at -20°C for DNA 109 

extraction. The rest of the samples was used to determine AMF colonization by estimating 110 

the abundance of arbuscules, hyphae or vesicles according to a modified line intersection 111 

method [49] using a minimum 100 intersections per slide of two technical replicates and 112 

applying a blind procedure throughout the quantification process to avoid subjectivity related 113 

to the origin of the sample. Total phosphorus (P), plant available P, pH, and bulk density 114 

were measured using the Swiss standard protocols (FAL, 1996). Plant available P was 115 

measured according to Olsen et al. (1954). The abundance of AMF in soil was assessed by 116 
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the phospholipid fatty acid (PLFA) analysis [52]. We quantified the abundance of AMF in 117 

soil by using the PLFA 16:1ω5, which is well-regarded as a biomarker for AMF because it 118 

constitutes a large proportion of total PLFAs in AMF, and strong correlations between AMF 119 

abundance in the soil and concentrations of the PLFA 16:1ω5 have been observed previously 120 

[53]. 121 

 122 

DNA extraction and SMRT sequencing 123 

For each sample, 200 mg of roots (dry weight) was used for DNA extraction using 600 mL of 124 

Nucleo spin lysis buffer PL1 for 15 min at 65 °C followed by the NucleoSpin Plant II kit 125 

(Macherey & Nagel, Düren, Germany). The DNA samples were amplified with the primer 126 

pair ITS1F-ITS4 [54, 55] targeting the entire ITS region (approx. 630 bp) [56]. The forward 127 

and reverse primers were synthesized with a 5-nucleotide-long padding sequence followed by 128 

barcode tags at the 5’ end to allow multiplexing of samples within a single sequencing run 129 

[57]. Library preparation and SMRT sequencing were conducted at the Functional Genomics 130 

Centre Zurich (http://www. fgcz.ch) on the PacBio® RS II Instrument (PacBio, San Diego, 131 

CA, USA). Details of PCR conditions and sequence data processing are described in the 132 

Supplementary Information. In brief, the SMRT Portal was used to extract the circular 133 

consensus sequences (CCS) from the raw data (available from the European Nucleotide 134 

Archive, study accession number: PRJEB27781). The CCS of at least five passes yield 135 

similar error rates as 454 or MiSeq sequencing platforms [56, 57]. The CCS reads were 136 

quality filtered in Mothur (v.1.35.0) [58]. Quality reads were demultiplexed based on the 137 

barcode-primer sequences using flexbar [59]. De novo chimera detection was performed on 138 

quality reads using UCHIME [60]. To avoid unwanted multi-primer artefacts, we deleted 139 

reads where full-length sequencing primer was detected within the read [61]. We clustered 140 

the quality sequences into operational taxonomic units (OTUs) at ≥ 98% sequence similarity 141 
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with the UPARSE series of scripts [62]. Reads were de-replicated, and single-count and 142 

chimeric sequences were excluded for OTU delineation. The OTUs of low abundance (less 143 

than 0.1% global abundance and less than 0.5% abundance within a specific sample) were 144 

removed from the dataset (Figure S3). On average 357 OTUs were found per site and a total 145 

of 823 OTUs for all 60 sites. The OTUs were classified taxonomically against the UNITE 146 

database [63]. The OTU and taxonomy tables were filtered to exclude OTUs classified as 147 

non-fungal. 148 

 149 

Statistical analyses 150 

Alpha diversity indices such as OTU richness, Sheldon evenness and Shannon-Weaver index 151 

were calculated from the rarefied fungal OTU table using the phyloseq package [64] in R 152 

v3.4 [65]. The effect of farming systems and wheat varieties on fungal community structure 153 

was assessed by performing PERMANOVA and canonical analysis of principal coordinates 154 

(CAP) with 999 permutations in PRIMER-E (PRIMER-E, Plymouth, UK). Fungal beta 155 

diversity patterns were only assessed on OTUs that were present in at least two samples. 156 

Homogeneity of multivariate dispersions was checked with the PERMDISP test using the 157 

Bray-Curtis similarity matrix in PRIMER. We also identified the indicator taxa for each 158 

farming system using the indicspecies package in R [66]. Co-occurrence patterns in fungal 159 

communities were assessed by performing network analysis using the maximal information 160 

coefficient (MIC) scores in MINE statistics [67]. MIC is an insightful score that reveals 161 

positive, negative and non-linear associations among OTUs. To minimize pairwise 162 

comparisons, network analysis was performed on OTUs that were present in at least two 163 

samples, resulting in 826 fungal OTUs. The overall meta-network was constructed with 60 164 

samples whereas the three farming specific networks were constructed with 20 samples each. 165 

The MIC associations were corrected for false discovery rate (FDR) [68] and the final 166 
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networks were constructed with relationships that were statistically significant (P<0.05) after 167 

FDR correction. The networks were then visualized in Cytoscape version 3.4.0 [69]. The 168 

NetworkAnalyzer tool was used to calculate network topology parameters. We also evaluated 169 

networks against their randomized versions using the Barabasi-Albert model available in 170 

Randomnetworks plugin in Cytoscape v2.6.1. The structural attributes of fungal networks 171 

such as degree distribution, mean shortest path, clustering coefficient were different from 172 

random networks with an equal number of nodes and edges. The OTUs with the highest 173 

degree and highest closeness centrality, and the lowest betweenness centrality scores were 174 

considered as the keystone taxa [43]. We calculated the influence of various taxa in network 175 

stability by dividing the number of nodes belonging to a particular taxon by the number of 176 

connections (edges) it shared. Finally, we performed Random Forest Analysis [70] to explore 177 

the determinants of the identified keystone taxa with 999 permutations using the 178 

randomforest and rfPermute packages in R [71]. The best predictors were identified based on 179 

their importance using the importance and varImpPlot functions. Increase in node purity and 180 

mean squared error values were used to calculate the significance of the predictors using the 181 

randomForestExplainer package [72]. The factors significant at P<0.01 were selected as the 182 

predictors of keystone taxa. Agricultural intensity index was calculated according to a 183 

previous study [73] based on the information collected from farmers (Büchi et al., submitted). 184 

Agricultural intensity index was estimated using the information on three anthropogenic input 185 

factors: fertilizer use, pesticide use and the consumption of fuel for agricultural machineries. 186 

These factors were also included for assessing agricultural intensity in a previous study [74].  187 

 188 

Results 189 

Overall structure and co-occurrence 190 
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Farming systems significantly influenced the root fungal community structure with three 191 

distinct clusters for organic, conventional and no-tillage fields (Figure 1A). A 192 

PERMANOVA test confirmed the significant effect of farming systems (pseudo F = 1.42; 193 

P<0.05). However, alpha diversity indices and the overall taxonomic composition did not 194 

vary between the conventional, no-till and organic systems (Figure S4, S5). A non-significant 195 

PERMDISP test (F = 2.072; P = 0.202) indicated homogenous dispersions of samples across 196 

systems. Further, a pairwise comparison in PERMDISP revealed that there was no significant 197 

difference in dispersions between organic and conventional (F = 1.068; P = 0.372), and 198 

organic and no-till (F = 0.870; P = 0.435). We found no impact of wheat varieties on 199 

community structure and this was reinforced by a non-significant PERMANOVA test 200 

(Pseudo F = 0.972; P = 0.595) (Figure S6). However, geographical locations i.e., northeast 201 

and southwest regions had an impact on root fungal community structure (Figure S7). 202 

Indicator species analysis was performed to test which taxa are characteristic for each of the 203 

three farming systems. Root inhabiting Trichoderma, a member of Hypocreales, was the only 204 

indicator taxon for conventional farming system whereas seven fungal taxa (e.g., 205 

Cyphellophora, Myrmecridium, Phaeosphaeria, Cadophora, Pyrenochaeta, Solicoccozyma, 206 

and Conocybe) were the indicator taxa for no-till farming (Table S1). Six taxa of Sordariales, 207 

Cantharellales, and Agaricales were indicator taxa for organic farming with Chaetomium and 208 

Psathyrella as the only known genera. 209 

The overall network of root fungal communities in 60 samples revealed distinct co-210 

occurrence patterns (Figure 1B). The meta-network consisted of 378 nodes and 1602 211 

significant (P<0.05) edges. This network with strong power-law distribution of degrees had a 212 

diameter of 8, average number of neighbours of 8.476, and a clustering coefficient of 0.258. 213 

For the overall network, the top ten taxa with the highest degree, highest closeness centrality, 214 

and lowest betweenness centrality were selected as the keystone taxa (Table S2). Seven of 215 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 13, 2018. ; https://doi.org/10.1101/416271doi: bioRxiv preprint 

https://doi.org/10.1101/416271
http://creativecommons.org/licenses/by-nd/4.0/


11 
 

these taxa belonged to arbuscular mycorrhizal orders Glomerales, Paraglomerales, and 216 

Diversisporales and the remaining three belonged to Tremellales. Indeed, the majority of the 217 

associations were from these four orders with Glomerales forming the largest guild with the 218 

maximum number of nodes and associations in the network. Overall, farming systems 219 

significantly affected fungal community structure with mycorrhizal orders playing a major 220 

role in the network complexity. 221 

 222 

Farming specific co-occurrence networks 223 

Owing to the significant difference in fungal community structure across three farming 224 

systems, we further evaluated root fungal networks for each farming system separately. The 225 

networks displayed remarkable differences in their structure and topology (Figure 2). The 226 

network of conventional farming consisted of 261 nodes (e.g., taxa) and 315 edges 227 

(associations between taxa) while the no-till network consisted of 267 nodes and 341 edges. 228 

In stark contrast, the organic farming network consisted of 301 nodes and 643 edges. The 229 

average number of neighbours and the clustering coefficient of the organic farming network 230 

were also considerably higher than for the other two networks (Figure 2). The higher 231 

complexity and connectivity in the organic farming network were supported by the 232 

abundance of keystone taxa, taxa that are central to community structure. The organic 233 

farming network harboured 27 of such keystone taxa compared to two in the no-till network 234 

and none in the conventional one (Figure 2; Table S3). The majority of these keystone taxa 235 

belonged to the orders Glomerales, Tremellales and Diversisporales with a noticeable 236 

presence of taxa from the orders Paraglomerales, Sebacinales and Hypocreales.  237 

Higher connectivity in the organic farming network was visible in the distribution of 238 

degrees, which indicates the number of associations shared by each node in a network (Figure 239 

3). The organic farming network had a much stronger power-law distribution than the 240 
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conventional and no-till ones, despite the similar node distribution across root fungal orders 241 

(Figure S8). We calculated the proportional influence of various orders in the microbiota by 242 

dividing the number of nodes belonging to a particular order by the number of connections 243 

(edges) it shared. It revealed the orders that exhibited maximum connections across three 244 

farming systems and thereby influence the network structure. Various orders exhibited 245 

considerable differences in their proportional influence in the stability of root microbiota. 246 

Orders such as Sordariales and Agaricales showed a major influence in the conventional 247 

network structure, and Sordariales, Cantharellales and Mortierellales in the no-till network. 248 

In addition to Tremellales and Hypocreales, three mycorrhizal orders Glomerales, 249 

Paraglomerales and Diversisporales showed a major influence on network stability under 250 

organic farming. Overall, the organic farming network formed a much more complex 251 

network and harboured more keystone taxa than the other two farming networks. 252 

 253 

Drivers of keystone taxa 254 

Random forest analysis revealed that soil phosphorus content, bulk density, pH, and 255 

mycorrhizal colonization best explained (P<0.01) the occurrence of keystone taxa (Figure 4). 256 

Most of these parameters were also significantly (P<0.05) correlated with the alpha-diversity 257 

indices, indicating their importance for the overall root fungal communities (Table S4). The 258 

majority of keystone taxa belonged to mycorrhizal orders, and mycorrhizal colonization of 259 

wheat roots was significantly (P<0.01) higher in the organic fields than in the conventional 260 

and no-till fields (Figure S9). Consistent with this, the abundance of mycorrhizal PLFA in 261 

soil were also significantly (P<0.01) higher in the organic fields. Agricultural intensity had a 262 

significantly negative impact on mycorrhizal colonization in roots and the abundance in soils 263 

(Figure 4). Agricultural intensity was significantly (P<0.05) different across three farming 264 

systems with conventional as the most intensive and organic as the least intensive system 265 
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(Figure S9). This trend was opposite for the abundance of keystone taxa i.e., the number of 266 

keystone taxa was 27 in the organic farming network, 2 in the no-till, and 0 in the 267 

conventional network. Taken together, the root fungal network complexity, abundance of 268 

keystone taxa and mycorrhizal abundance showed an opposite trend to that of agricultural 269 

intensification across farming systems. 270 

 271 

Discussion 272 

It is now well established that root-associated microbiota plays an important role in plant 273 

diversity, community composition and performance [24, 32, 75]. Consequently, it is 274 

important to understand how microbial communities harboured in crop roots are affected by 275 

farming systems and how key microbial players can be harnessed for ecological 276 

intensification of agroecosystems. However, with much of the previous work only focussing 277 

on the soil microbiota, our understanding of the effects of farming systems on root-associated 278 

microbiota is still rudimentary. Moreover, previous studies mostly focused on microbial 279 

alpha- and beta diversity patterns and the impact of different farming systems on microbial 280 

network structure is poorly understood. 281 

Our results showed that agricultural intensity was the highest under conventional 282 

farming and the lowest under organic farming. The overall structure of root microbiota was 283 

significantly influenced by farming systems. This is also consistent with studies on soil 284 

microbiome where a large number of reports showed a significant impact of farming systems 285 

[20–22, 76, 77]. For the root microbiota, Hartman et al. (2018) observed in a farming 286 

experiment that root fungal communities were only affected by tillage intensity and not by 287 

conventional or organic farming. It should be noted that most of these studies investigated 288 

microbial communities in field-trials [20–22, 30, 77]. While a major strength of field-trials is 289 

that farming treatments are imposed under a homogenous management and at one location 290 
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with a specific soil type, management effects on microbial patterns may be different in actual 291 

farmlands and thus, the results obtained at one location cannot be generalized. It is necessary 292 

to investigate whether microbial community characteristics observed in field-trials can be 293 

generalized in on-farm research and across many fields. To our knowledge, this is the first 294 

on-farm study on root fungal communities under different farming systems focussing on 295 

conventional, organic and conservation agriculture. Our results show that wheat roots under 296 

different farming systems harbour distinct fungal communities and with varying network 297 

complexity.  298 

Microorganisms do not thrive in isolation and rather form complex association 299 

networks. Such networks hold special importance for gaining insight into microbiome 300 

structure and its response to environmental factors [37, 38, 46]. Our study highlights how 301 

farming systems impact the network structure of root microbiota, and uncovers, for the first 302 

time, that organic farming harbours a significantly more complex network than the 303 

conventional and no-till farming. The organic network exhibited a much stronger power-law 304 

distribution of degrees with many highly connected nodes whereas no-till and conventional 305 

networks were dominated by less connected peripheral nodes. It has been shown that 306 

complex networks with greater connectivity are more robust to environmental perturbations 307 

than simple networks with lower connectivity [78]. In this sense, the higher complexity of 308 

organic networks may indicate that the root microbiota under organic management is more 309 

resilient to environmental stresses as different taxa can complement each other and network 310 

complexity may provide an insurance for network stability if specific taxa go extinct. 311 

However, further studies are necessary to corroborate this observation. 312 

Keystone taxa are the highly connected taxa that play important roles in the 313 

microbiome and their removal can cause significant changes in microbiome composition and 314 

functioning [43, 44]. Although previous studies have reported keystone taxa in various 315 
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environments [40, 79, 80], reports on keystone taxa in the root microbiome are very limited. 316 

The organic farming network exhibited by far the highest connectivity and comprised most of 317 

the keystone taxa. It should be noted that fungal richness did not vary significantly between 318 

the farming systems nor did the node distribution, and yet we observed a clear difference in 319 

the network structure. Nodes in the organic network shared more associations and there were 320 

also many highly associated keystone taxa. The abundance of these keystone taxa did not 321 

vary between the three farming systems but these taxa shared considerably more associations 322 

in the organic farming (Figure S10). A previous study reported a gradient of root fungal 323 

assemblages from conventional to organic to natural grasslands, i.e., root microbiota in the 324 

organic farming was more developed than the conventional farming [81]. These observations 325 

indicate a possibility that microbiome complexity is not necessarily determined by the 326 

number of taxa in the community, but rather the number of associations that those taxa share 327 

amongst them. 328 

Remarkably, the majority of these keystone taxa were arbuscular mycorrhizal fungi 329 

(AMF) belonging to the orders Diversisporales, Glomerales, and Paraglomerales. The 330 

symbiotic association of AMF that started more than 400 million years ago is formed by 331 

~80% of terrestrial plants [33, 82]. The observation that AMF can enhance plant productivity 332 

[83] make them a crucial player in agroecosystems. The importance of AMF for the root-333 

associated microbiota, particularly under organic farming, is congruent with the higher 334 

abundance of AMF in roots and soils observed in the organic farmlands in this study (Figure 335 

S9). Mycorrhizal root colonization was significantly higher under organic farming than non-336 

till and conventional farming systems. This pattern was also evident for mycorrhizal 337 

abundance in the soil as measured by AMF-specific PLFA concentration. While previous 338 

studies also found significantly higher AMF abundance and diversity in organic farmlands 339 
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than in the conventional ones [81, 84], the pivotal role of AMF for the entire root-associated 340 

microbiota in agroecosystems is reported here for the first time.   341 

One of the non-mycorrhizal keystone taxa in the organic farming belonged to the 342 

order Sebacinales. Members of this order are highly diverse root endophytes and are thought 343 

to form neutral and beneficial interactions with plants [85]. Our observation of Sebacinales as 344 

keystone taxa is consistent with a previous report that found a consistently higher abundance 345 

of Sebacinales in organic farmlands [29]. Since keystone taxa are linked to network 346 

complexity, beneficial endophytic keystone taxa such as AMF and Sebacinales may enhance 347 

the network complexity and thereby the stability of the root microbiome. Several other 348 

keystone taxa in the overall and organic networks belonged to the order Tremellales. This 349 

widespread group of Basidiomycetes contains many yeast species and have been reported in 350 

plant roots in temperate regions [86]. Members of this fungal order were also recently found 351 

as keystone taxa in the root microbiome across eight forest ecosystems in Japanese 352 

Archipelago [48]. Interestingly, we found that two of the keystone taxa (OTU_10, OTU_11) 353 

were members of the Dioszegia genus that was also found as keystone by Agler et al. (2016). 354 

It was shown that the effect of abiotic factors on microbiome was mediated via Dioszegia in 355 

Arabidopsis thaliana. The consistent identification of Dioszegia as a keystone taxon across 356 

studies suggests its importance and highlights a potential that it can be harnessed for 357 

manipulation of the plant microbiome. Future studies are now needed to specifically 358 

manipulate this taxon to test how it influences microbiome composition and functioning. 359 

There were no common fungal groups between indicator taxa and keystone taxa. It should be 360 

noted that indicator taxa are identified based on their higher/lower abundance under a 361 

particular farming system whereas keystone taxa are identified using a comprehensive 362 

algorithm that focuses on the number of associations a taxon shares and its position in the 363 
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microbiome. Thus, indicator taxa and keystone taxa highlight different aspects of microbial 364 

communities. 365 

Beyond statistical identification of keystone taxa, this study also revealed the factors 366 

driving their abundance in the wheat root microbiota. Bulk density plays a pivotal role in root 367 

elongation rates, rooting density and root architecture [87], which have significant 368 

implications for microbial recruitment into the roots. We found soil phosphorus levels and 369 

plant available phosphorus were the strongest determinants of keystone taxa. The majority of 370 

keystone taxa were mycorrhizal in nature, and phosphorus is well-acknowledged for its 371 

importance for mycorrhizal associations [88]. Similarly, soil pH is a known driver of fungal 372 

communities, especially, mycorrhizal fungi [89, 90]. Thus, the identification of soil 373 

phosphorus levels, pH and bulk density as the determinants of keystone taxa in root 374 

microbiota is plausible. The number of keystone taxa was the highest under organic farming 375 

where agricultural intensity was the lowest and conversely, intensification was the highest 376 

under conventional farming where root microbiota did not have any keystone taxa. Thus, 377 

agricultural intensification might have negatively affected the network complexity and 378 

keystone abundance in the root microbiota. It is important to mention that identification of 379 

keystone taxa are based on the analysis of correlations (associations) among taxa, and further 380 

research is necessary to show causality, in terms of the impact of keystone taxa on 381 

microbiome structure and functioning.  382 

 383 

Conclusions 384 

The structure and composition of root microbiota play an important role in agroecosystems 385 

and yet there is a significant dearth of knowledge about the effect of agricultural 386 

intensification on the root microbiota. Our study shows that the microbiome complexity and 387 

the abundance of keystone taxa were the highest under organic farming where agricultural 388 
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intensity was the lowest. The higher co-occurrence of members of microbial communities 389 

under the organic farming can be indicative of greater ecological balance and stability of the 390 

microbiome. A key strength of this study is that the samples were collected from 60 fields 391 

and the reported effects can be generalized because samples were taken from  an extensive 392 

range of fields at different locations with different management regimes. The recent concept 393 

of smart farming (sensu Wolfert et al., 2017) emphasizes thinking outside the box. The 394 

potential for harnessing plant microbiome for sustainable agriculture was also highlighted 395 

recently [92]. Mycorrhizal fungi are well-regarded for their effects on plant productivity and 396 

thus, mycorrhizal keystone taxa may be targeted as a tool for smart farming.  397 
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Figure 1. A) Canonical analysis of principal coordinates (CAP) revealing a significant impact of farming systems on fungal community 
structure. B) The overall network of root fungal communities across three farming systems. The overall network is arranged according to orders. 
White, red and wavy lines represent positive, negative and non-linear relationships, respectively. Large diamond nodes indicate the keystone 
taxa in the network. Top ten nodes with the highest degree, highest closeness centrality, and lowest betweenness centrality were selected as the 
keystone taxa [43]. Out of the ten keystone taxa in the overall network, seven belonged to mycorrhizal orders, Glomerales, Paraglomerales, and 
Diversisporales.  
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Figure 2. Farming system specific root fungal networks. Each network was generated with root samples from 20 farmlands belonging to that 
farming systems. Large diamond nodes indicate the keystone taxa whereas circular nodes indicate other taxa in the network. White, red and 
wavy lines represent positive, negative and non-linear relationships, respectively. Despite having similar number of nodes, the organic network 
displayed twice more edges and many highly connected nodes than no-till and conventional networks that were dominated by less connected 
peripheral nodes.  
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Figure 3.  Proportional influence of various fungal orders in affecting the stability of root microbiota (left panel). The influence was calculated 
by diving the number of nodes belonging to a particular fungal order by the number of connections (edges) it shared. It illustrates the orders that 
exhibit maximum connections across farming systems and thus influences network structure most. Distribution of degrees in three farming 
systems (right panel with three plots). Degree indicates the number of associations shared by each node in a network. In conventional, farming, 
the number of degrees was limited to a maximum of 12 compared to the no-till network that had a maximum of 22 degrees. On the other hand, 
organic farming had many nodes with over 20 degrees. 
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Figure 4.  A) Results of Random Forest Analysis showing the relative contribution of various factors in determining the abundance of keystone 
taxa. The mean squared error (MSE) indicates the prediction accuracy of each factor. The top (P<0.01) five drivers were total phosphorus, plant 
available phosphorus (Olsen P), AMF root colonization, pH and bulk density. B) Agricultural intensity index across three farming systems. 
Agricultural intensity index was estimated using the information on three anthropogenic input factors: fertilizer use, pesticide use and the 
consumption of fuel for agricultural machineries. C) Relationship between agricultural intensity and mycorrhizal root colonization. Agricultural 
intensification had a significantly (P<0.01) negative impact on the root colonization of AMF. Agricultural intensity was the highest under the 
conventional farming and the lowest under the organic farming, which was opposite for the AMF colonization. 
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