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Abstract 

 

Background 

Psychiatric disorders are highly heterogeneous, defined based on symptoms with little connection to 

potential underlying biological mechanisms. A possible approach to dissect biological heterogeneity 

is to look for biologically meaningful subtypes. A recent study Drysdale et al. (2017) showed 

promising results along this line by simultaneously using resting state fMRI and clinical data and 

identified four distinct subtypes of depression with different clinical profiles and abnormal resting 

state fMRI connectivity. These subtypes were predictive of treatment response to transcranial 

magnetic stimulation therapy. 

 

Objective 

Here, we attempted to replicate the procedure followed in the Drysdale et al. study and their 

findings in an independent dataset of a clinically more heterogeneous sample of 187 participants 

with depression and anxiety. We aimed to answer the following questions: 1) Using the same 

procedure, can we find a statistically significant and reliable relationship between brain connectivity 

and clinical symptoms? 2) Is the observed relationship similar to the one found in the original 

study? 3) Can we identify distinct and reliable subtypes? 4) Do they have similar clinical profiles as 

the subtypes identified in the original study? 

 

Methods  

We followed the original procedure as closely as possible, including a canonical correlation analysis 

to find a low dimensional representation of clinically relevant resting state fMRI features, followed 

by hierarchical clustering to identify subtypes. We extended the original procedure using additional 

statistical tests, to test the statistical significance of the relationship between resting state fMRI and 

clinical data, and the existence of distinct subtypes. Furthermore, we examined the stability of the 

whole procedure using resampling. 

 

Results and Conclusion 

We were not able to replicate the findings of the original study. Relationships between brain 

connectivity and clinical symptoms were not statistically significant and we also did not find clearly 

distinct subtypes of depression. We argue, that based on our rigorous approach and in-depth review 

of the original results, that the evidence for the existence of the distinct resting state connectivity 

based subtypes of depression is weak and should be interpreted with caution.  
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1. INTRODUCTION 

 

Psychiatric disorders are highly heterogeneous in terms of symptom presentation and underlying 

biological mechanisms and are diagnosed exclusively in terms of symptoms, which may not 

correspond to biological causes [2]. This, together with frequent comorbidities between disorders, 

complicates clinical diagnosis and hinders efforts to understand biological mechanisms of disorders 

and to develop better treatments. This problem has been known for a long time, but little progress 

has been made and clinical decision-making is still mostly done on the basis of symptoms. Recent 

initiatives such as the Research Domain Criteria (RDoC) [3] aim to address this issue of 

heterogeneity by going beyond current diagnostic categories and focusing analysis on different 

domains of functioning and pathology across multiple levels of analysis, including clinical 

symptoms, behavior, and biology.  

 

Many studies have used data-driven clustering methods in order to find new subgroups of clinical 

populations, based on either clinical or biological data, with some degree of success [4]. However, 

these putative subgroups generally show moderate to poor reproducibility across studies, have not 

been extensively validated against clinical outcomes and as a consequence still have not translated 

into clinical practice. For example, the dominant approach of clustering based on clinical symptoms 

alone can provide new insights into psychopathology, however, it may not yield subtypes that 

reflect underlying biological differences. On the other hand, the variability of biological data is 

more often than not unrelated to any specific psychiatric disorder or symptom class. Thus clustering 

based on biological data alone may detect subtypes that are unrelated to psychiatric pathologies, and 

instead reflect dominant nuisance variance in the data such as groups of people with similar brain 

size or body type or common ancestry in the case of genetics. One way to overcome these 

limitations is to constrain the search for subtypes in biological data to lie along axes of variance that 

are related to psychiatric symptomatology. However few studies have used such an approach [4]. 

 

A prominent example following this approach is a recent study by Drysdale and colleagues [1] that 

aimed to stratify major depressive disorder (MDD) on the basis of biology and behavior and 

suggested the existence of four distinct ‘biotypes’.  The authors used canonical correlation analysis 

(CCA) [5] to identify a two-dimensional mapping between functional connectivity measures 

derived from resting state fMRI (RS-fMRI) data and MDD symptoms. CCA is a well-established 

method for finding multivariate associations between different data sources and has been used 

extensively in clinical neuroimaging, for example for finding associations between neuroimaging 
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data and behavior [6,7] and neuroimaging and genetics [8]. Next, Drysdale et al. applied a 

hierarchical clustering on two components derived from CCA and identified four different clusters 

of MDD patients, i.e. the aforementioned ‘biotypes’. Impressively, these biotypes were predictive 

of transcranial magnetic stimulation (TMS) treatment response, and they were also evaluated in an 

independent sample. However, the study has some methodological limitations. For example, the 

existence of distinct clusters was not conclusively established in that the authors did not test the 

possibility that subjects were sampled from a single continuous distribution without underlying 

clusters.  Nevertheless, the results are promising, and if replicated it would be an important step 

towards understanding biological mechanisms of MDD.  

 

The aim of this study is to replicate the biotypes identified by Drysdale et al. in a completely 

independent sample, namely data from the Netherlands Study of Depression and Anxiety (NESDA) 

[9] and Mood Treatment with Antidepressants or Running (MOTAR) study (Lever-van Milligen et 

al., in preparation). These studies together create a relatively large cohort containing a 

heterogeneous naturalistic sample of subjects with depression, anxiety and depression-anxiety 

comorbidity, thus capturing a wider range of possible clinical and biological profiles relative to the 

study by Drysdale and colleagues, which included mainly hospitalized treatment-resistant patients. 

The original study used 220 patients as a cluster discovery dataset and an additional 92 patients 

from the same cohort as a replication dataset. Our combined dataset of NESDA and MOTAR 

includes a cohort of 187 participants with comparable clinical measures to the original study. 

Specifically, we aimed to answer the following questions: 1) Using the same procedure as in [1], 

can we find a statistically significant and reliable relationship between brain connectivity and 

clinical symptoms? 2) Is the identified relationship similar to the one found in the original study? 3) 

Can we identify distinct and reliable subtypes? 4) If so, do they have similar clinical profiles as the 

subtypes identified in the original study? Subsequently, we will also perform a critical evaluation of 

methods used by Drysdale et al. and provide a recommendation for future studies. 

 

2. METHODS 

 

We conducted our analysis as close to possible and to our best understanding of the published 

analysis pipeline in the Drysdale et al. study. Several details related to the analysis were not 

specified in the original paper and were clarified via personal communication with the 

corresponding author. We included several additional validation steps for CCA and cluster analysis. 

Our aim was to replicate the analysis steps related to the creation and evaluation of subtypes, we did 

not try to replicate additional analyses performed in the original study such as classification of 
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healthy and depressed subjects or the prediction of TMS treatment response. We describe our 

pipeline and the Drysdale et al. pipeline below and provide a side by side schematic comparison in 

Figure 1. 

 

 

 

2.1 Sample characteristics 

All our analyses were performed on 187 subjects from NESDA and MOTAR samples diagnosed 

according to DSM-IV criteria with MDD, anxiety (panic, social phobia or generalized anxiety 

disorder) or both MDD and anxiety, established using the structured Composite International 

Diagnostic Interview (CIDI, version 2.1) [10].  

 

 
Figure1: a scheme of pipeline used in the original study and our pipeline. Data: in the original study, 220 depressed 
subjects have been analyzed as a part of a "cluster discovery" set an additional 92 subjects as evaluation set. The 
clinical data (Clin) consisted of 17 HAM-D items. We have used 187 subjects with depression, anxiety or depression-
anxiety comorbidity. The clinical data consisted of 17 IDS items, that best-matched HAM-D item used in the original 
study. After preprocessing of fMRI data (RS), a correlation matrix between selected regions had been created, resulting 
in ~35000 features. A small subset of features (178 in the original study and 150 in our study) was selected based on 
their correlation with clinical symptoms (Sel.RS). Then, CCA was performed using these selected features and clinical 
symptoms. In the original study, a parametric test was used to the established statistical significance of CCA without 
taking a previous feature selection into an account.  Hierarchical clustering was performed on first two resting state 
connectivity canonical variates (CV1, CV2). We have included additional test, to test if the data cluster more than what 
is expected from data sampled from a Gaussian distribution. Stability of cluster assignment was evaluated in the 
original study by resampling of CV1 and CV2, we have evaluated the stability under resampling but by repeating also 
feature selection and CCA procedures. Out of sample evaluation: in the original study, additional 92 subjects have 
been assigned to clusters according to SVM model and clinical profiles of these clusters have been compared to clinical 
profiles of clusters obtained in the cluster discovery set. We have evaluated the reproducibility of canonical correlations 
directly, using 10-fold cross-validation.  
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The original Drysdale et al. study included 220 subjects in a cluster discovery set and an additional 

92 subjects in a validation set with an active episode of MDD and a history of treatment resistance. 

In our sample, 151 subjects came from the baseline assessment of NESDA [9], which is large 

naturalistic cohort study of depression and anxiety. Additional descriptions of the NESDA cohort 

can be found in [11]. An additional 36 subjects were from the baseline assessment of the MOTAR 

study (Lever-van Milligen et al., in preparation), which is a randomized controlled treatment study 

(antidepressants or running therapy).  

 

All participants gave written informed consent. Studies were approved by the Central Ethics 

Committees of the  participating medical centers: Leiden University Medical Center (LUMC), 

Amsterdam Medical Center (AMC), and University Medical Center Groningen (UMCG) for 

NESDA and Ethics committee of Amsterdam Medical Center (AMC) for MOTAR. 

 

2.2 Resting-state fMRI 

Participants from NESDA were scanned at one of the three participating scan centers and at one 

scan center for the MOTAR study. All imaging data were acquired on a Philips 3.0-T Achieva MRI 

scanner. RS-fMRI data were acquired using T2*-weighted gradient-echo echo-planar imaging with 

the following scan parameters for the NESDA sample: Amsterdam and Leiden centers: 200 whole-

brain volumes; repetition time (TR) = 2300 ms; echo time (TE) = 30 ms; flip angle = 80º; 35 axial 

slices; no slice gap; FOV = 220 × 220 mm; in plane voxel resolution = 2.3 mm × 2.3 mm; slice 

thickness = 3 mm; same in Groningen, except: TE = 28 ms; 39 axial slices; in plane voxel 

resolution = 3.45 mm × 3.45 mm. And for the MOTAR sample:  210 whole-brain volumes; 

repetition time (TR) = 2300 ms; echo time (TE) = 28 ms, flip angle= 76.1º, 37 axial slices, no slice 

gap; FOV = 240×240, in plane voxel resolution = 3.3 mm × 3.3 mm. T1-weighted image was 

acquired with the repetition time (TR) = 9 ms; echo time (TE) = 3.5 ms; flip angle = 8º; 170 sagittal 

slices; no slice gap; FOV = 256 × 256 mm; in plane voxel resolution = 1 mm × 1 mm; slice 

thickness = 1 mm. 

 

Preprocessing of RS-fMRI data was performed using FSL 5.0.8 and included motion correction, 

grand mean scaling of the fMRI time series, spatial smoothing with 6mm Gaussian kernel, motion 

artefacts removal using ICA-AROMA [12], nuisance signal regression of white matter and CSF, 

and high pass filtering with a cut-off frequency of 100 seconds. The resulting RS-fMRI images 

were registered to Montreal Neurological Institute (MNI) space using registration matrices obtained 

from the first co-registration of functional images to T1 image using the boundary based registration 

tool and registering the T1 images to MNI template brain.  
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Next, correlation matrices were created using 264 cortical parcellations proposed by Power et al. 

[13] plus an additional 13 regions, including the left and right caudate, amygdala, hippocampus, 

nucleus accumbens and subgenual anterior cingulate cortex, as in the original Drysdale et al. study. 

We averaged all voxels within each region to create a single time series per region and then we 

created a correlation matrix by computing pairwise Pearson's correlation coefficients between all 

regions. This resulted in 38,000 connectivity features (lower diagonal of 277*277 correlation 

matrix), which were later reduced to 37,675 by discarding regions with insufficient coverage in 

more than 10% of subjects. These correlations were transformed using Fisher’s z-transform and 

linear effects of age and scan location were regressed out. 

 

2.3 Clinical characteristics 

The original study used depressive symptom scores of the Hamilton rating scale for depression 

(HAMD) [14] in their analyses. Here we used depressive symptom scores derived from the 

Inventory of Depressive Symptomatology (IDS) [15]. This inventory was developed as an 

improvement over HAMD, aiming to improve the coverage of common MDD symptoms [16]. 

However, to make our study comparable to the original study, we used only a subset of 17 IDS 

items that best matched the items of the HAMD (Table 1). 

 

Table 1: HAM-D items used in the original study and best-matched IDS items used in this study.  

HAMD item IDS item 

Mood Feeling sad 

Guilt Self criticism and blame 

Suicide Thoughts of death or suicide 

Early insomnia Early insomnia 

Mid insomnia Mid insomnia 

Late insomnia Late insomnia 

Anhedonia Capacity for pleasure or enjoyment (excluding 

sex) 

Retardation Psychomotor retardation 

Agitation Psychomotor agitation 

Anxiety psychological Panic or phobic symptoms 
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Anxiety physiological Other bodily symptoms/sympathetic arousal 

Somatic gastro-internal Gastrointestinal complaints 

Fatigue/aches/low energy Energy level/fatiguability 

Genital Interest in sex 

Hypochondria Somatic complains 

Weight loss Weight loss 

Insight Sensitivity  

 

2.4 Feature selection 

From the 37,675 connectivity features (the lower diagonal of the functional correlation matrix), we 

selected the subset of features with the highest Spearman’s correlation with any of the 17 IDS 

symptoms. In the original study, according to communication with the corresponding author, during 

feature selection, the number of RS-fMRI features corresponding to approximately 80% of the total 

number of participants were retained, which corresponds to 176 RS-fMRI connectivity features in a 

sample of 220 participants in the original study. Here we selected the top 150 RS-fMRI features 

with the highest Spearman’s correlation with any of the 17 IDS symptoms to preserve the same 

feature to subjects ratio (80% of 187 subjects). 

 

2.5 Canonical correlation analysis 

Next, following the original study, we performed a canonical correlation analysis (CCA) on the 

selected RS-fMRI connectivity features and depressive symptoms. Canonical correlation analysis 

[5] is a multivariate statistical method that seeks an association between two sets of variables. CCA 

is the most general multivariate technique with multiple regression, MANOVA, and discriminant 

analysis all as special cases of CCA (multiple regression is a CCA with only one variable in Y, 

MANOVA, and discriminant analysis are CCA with binary variables in X or Y). Given the two 

multidimensional datasets X (e.g. clinical features) and Y (e.g. RS-fMRI connectivity features), 

canonical correlation analysis finds a linear combination of X that maximally correlates with a 

linear combination of Y. This linear combinations of X and Y are new variables, called canonical 

variates. Both canonical variates for X and Y are called a canonical pair and the correlation between 

canonical variates is called a canonical correlation. Multiple canonical pairs can be found with a 

constraint that each subsequent canonical pair has to be uncorrelated with all the previous ones.  
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CCA is also closely related to PCA with a difference that CCA performs eigen decomposition of the 

cross-correlation matrix instead of the correlation matrix. In PCA the first principal component 

explains the largest amount of variance in the data, and each subsequent principal component 

explains a (smaller) maximal amount of variance that is orthogonal to all the previous ones. In CCA 

the first canonical variate of X explains the largest amount of variance in Y and each subsequent 

canonical variate is explaining less of variance in Y and is orthogonal to all the previous canonical 

variates. In more detail, the squared canonical correlations are eigenvalues of the matrix: 

R = Ryy
-1RyxRxx

-1Rxy 

where Rxx and Ryy are correlation matrices of X and Y, respectively, and Rxy and Ryx are cross-

correlation matrices of variables from X with variables from Y. Coefficients that create the 

canonical variates are the respective eigenvectors of R. CCA can be also thought of as a 

dimensionality reduction step, where the original data of X and Y are mapped into a lower 

dimensional space of canonical variates whose dimensions are highly correlated between datasets X 

and Y, in our case between RS-fMRI connectivity measures and clinical symptoms.  

 

2.5.1 Permutation test 

Traditionally, the significance of canonical correlations is established using a Wilk’s lambda 

statistic and this was also used in the Drysdale study (Conor Liston, personal communication). This 

statistic has an approximately chi-square null distribution with pq degrees of freedom, p and q 

being the number of variables in X and Y. This significance test, however, does not take into 

account the feature pre-selection step that selected RS-fMRI connectivity features most correlated 

with clinical symptoms. As this pre-selection step was done in the same dataset as the CCA was 

performed on and tested, this likely results in too optimistic p-values. To avoid this issue, we 

performed a permutation test of the whole procedure, including feature selection followed by CCA. 

The whole feature selection and CCA cycle was repeated for each permutation with the rows of 

clinical symptoms shuffled so that they no longer corresponded to rows of RS-fMRI connectivity 

features. We performed 499 permutations, which created a null distribution of canonical 

correlations and estimated the Wilk’s lambda statistic. The interpretation of Wilk’s lambda statistic 

is also important, because it does not describe the significance of a single component in isolation. 

Instead, the first canonical correlation is defined as det(E)/det(E +H), where E is the error sum of 

squares and cross products matrix and H is model sum of squares and cross products matrix. Its 

significance should be interpreted as the significance of the whole decomposition, not the first 

component. The significance of the Wilk's lambda statistic for the second canonical correlation is 

interpreted as the significance of the whole decomposition after removing the variance accounted 

for by the first canonical correlation and so forth. In addition, if the canonical correlation from a 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 14, 2018. ; https://doi.org/10.1101/416321doi: bioRxiv preprint 

https://doi.org/10.1101/416321
http://creativecommons.org/licenses/by-nc/4.0/


given model order (e.g. first canonical correlation) is not significant, all correlations of a lower 

order (e.g. second onwards) should not be taken to be significant either, even if one or more of the 

derived p-values show nominal significance [17].  

 

2.5.2 Cross-validation 

CCA is prone to overfitting and although canonical correlations may seem high and even be 

statistically significant, they are often much lower in an independent dataset (see e.g. [8]). This 

might give an impression that the found association between modalities (RS-fMRI connectivity 

measures and clinical symptoms) is much stronger than it would be in an independent hold-out 

dataset. In the original study, the canonical correlation in the independent data set was not evaluated 

directly in an independent dataset, but rather the authors relied on the derived biotypes to have 

similar symptom profiles in the independent evaluation dataset.  

 

Here we chose to estimate the magnitude of the canonical correlation in independent datasets 

directly, using a stratified 10-fold cross-validation. The dataset was divided into ten subsets with an 

approximately constant number of subjects from each scan location across all subsets. Nine subsets 

were used as a training set and the remaining subset as a test set. A feature selection procedure, as 

described above, was performed using subjects from the training set only. In the test set, canonical 

variates and their respective canonical correlations were created using coefficients from the CCA 

performed in the training set.  

 

2.5.3 Stability of canonical loadings 

Since CCA frequently yields unstable solutions, we also examined the stability of canonical 

loadings (i.e. structure coefficients, a univariate correlation between a variable and canonical 

variate) [17] under resampling of the data. We repeated the whole feature selection and CCA 

procedure multiple times always with leaving one subject out of the analysis. This produces a 

distribution of canonical loadings and thus allows us to estimate their stability, and therefore 

uncertainty, under small perturbations of the data (here by exchanging one subject) taking into an 

account both the feature selection step and the CCA step. 

 

2.6 Clustering analysis 

In the original study, the first two canonical variates of the RS-fMRI connectivity features were 

used as input for the clustering analysis. The underlying idea was to constrain the clustering 

analysis to a low dimensional representation of brain connectivity features that are clinically 

relevant. To make our analysis comparable to the original study, we decided to perform a clustering 
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analysis on two different sets of canonical variates. First, as in the original study, we performed 

clustering analysis on the first two RS-fMRI connectivity canonical variates, which were the two 

RS-fMRI components with the highest canonical correlations. Second, because the first two 

components in our analysis may not correspond to the first two components identified in the 

original study, we visually selected two canonical variates that showed the most similar clinical 

profiles to those identified in the original study.  

 

Then, we performed the same hierarchical clustering procedure as in the Drysdale et al. study, i.e., 

using the Euclidean distance measure and Ward’s D linkage method, which minimize the total 

within-cluster variance. As a measure of quality of our clustering solution, we computed the CH 

index as in the original study (variance ratio criterion or Calinski-Harabasz index), which is the 

ratio of between-cluster variance and within-cluster variance. As an additional metric, we also 

compared model order using the silhouette index, which compares average within cluster distances 

to average distances between points from different clusters.  

 

In the original study, the decision to identify four clusters as the best clustering solution was made 

partly because the CH index was maximized for the four cluster solution. This, by itself, is not a 

statistical test or evidence of the existence of 4 clusters. Specifically, we don’t know if the derived 

CH index was significantly higher than what would have been expected under the null hypothesis of 

data with no underlying clusters.  Here we devise a procedure, similar to the one proposed in [18], 

to test the statistical significance of the observed CH index. In this procedure, the null hypothesis is 

that the data came from a single 2-dimensional Gaussian distribution (i.e. distribution with no 

underlying clusters). Specifically, first, we estimated a covariance matrix between the two canonical 

variates used for the clustering analysis. Second, we repeatedly took random samples of the size of 

our dataset (187) from a bivariate Gaussian distribution defined by this covariance matrix. Third, 

we ran the same hierarchical clustering procedure as we performed on the real data on each random 

sample and calculated the best obtained CH and silhouette index, thus obtaining an empirical null 

distribution of these indices. The p-value was then defined as a proportion of the calculated indices 

in the null distribution smaller than what we observed in the real data.  

 

2.6.1 Stability of clustering 

To reliably interpret the derived clusters, it is important to evaluate if the clustering assignment is 

stable under small perturbations to the data. In other words, if the same procedure was repeated 

using a similar dataset, would we identify similar clusters and would we assign the same subjects to 

the same clusters? This is a different question than if the clusters are statistically significant, 
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because cluster assignment might be stable even if there are no real clusters in the data. On the other 

hand, it is possible to obtain clearly distinct clusters that are unreliable and cannot be reproduced in 

a different dataset. For this, we employed the same leave-one-out procedure as for the estimation of 

the stability of the canonical loadings. The whole feature selection, CCA, and hierarchical 

clustering procedure were repeated for each subject, always with one subject left out of the training 

process. This allowed us to estimate the stability of the canonical variates under slight perturbation 

of the data and subsequently the stability of the whole clustering procedure that is based on these 

canonical variates.  

 

2.7 Code availability 

The code used to perform data analysis can be found in supplementary materials. 

 

3. RESULTS 

 

3.1 Sample characteristics 

Sample characteristics are provided in Table 2. 

 

Table 2: Sample characteristics for the NESDA and MOTAR samples 

Study N Age Age SD N Female % Female MDD Anxiety Comorbid 

NESDA 151 36.42 10.92 101 67 53 45 53 

MOTAR 36 36.69 12.37 23 66 10 2 24 

Total 187 36.48 10.93 124 66 63 47 77 

 

3.2 CCA significance 

Canonical correlations were 0.99 and 0.98 for the first two pairs of canonical variates. As can be 

seen in the null distribution provided in Figure 2, canonical correlations this high are not unusual 

even if there is no actual correspondence between X and Y (as determined by a permutation test). 

Indeed, the respective p-values of the permutation tests were not significant (p=0.06 and p=0.90), 

neither were they significant according to the Wilk’s lambda statistics (p=0.6, and p=0.8), which 

measured the significance of the whole decomposition. Our permutation testing procedure took into 

account that connectivity features had been selected based on their correlation with clinical features. 

Because the Drysdale et al. study did not test the significance of their CCA solution in the same 

way, it remains to be confirmed whether the canonical variates identified in their original study 
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were significant, although authors did provide indirect evidence of this using an independent 

validation sample. 

 

 

 
 
Figure 2: A, B) CCA finds a linear combination (canonical variate) of brain connectivity features that maximizes 
correlation with a linear combination of clinical symptoms. Canonical correlations are high and comparable to the 
original study (0.95 and 0.91). C) The null distribution of the first canonical correlation obtained using permutation 
test. Although canonical correlations in A and B are seemingly high, they are also high under the null hypothesis and 
thus not statistically significant. D) Out of sample canonical correlation for first two canonical pairs estimated by 10 
fold cross-validation. Each point represents out of sample canonical correlation for each cross-validation fold. 
Although the canonical correlation was high in the training set as showed in A and B, id dropped to a chance level 
correlation in the test sets. E) Canonical loadings for the first canonical variate and their stability under resampling of 
the data using leave-one-out (jack-knife) procedure. F) Clinical canonical loadings for all canonical variates (1-17) and 
first two reported in the original study (D1-D2) 
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3.2.1 Out of sample canonical correlation 

Using 10-fold cross-validation, the average out of sample canonical correlation was -0.03 and -0.3 

for the first and second canonical pair respectively. This shows that even a high within-sample 

canonical correlation might not necessarily be reproducible in an independent test set. The original 

study used an independent evaluation set of 92 subjects. However, the authors did not perform a 

CCA analysis in the independent sample directly and thus did not provide canonical correlations for 

the independent validation dataset. Instead, they demonstrated that subjects assigned to clusters in 

the validation set according to their RS-fMRI connectivity features showed similar clinical profiles 

as the clusters identified in the training set.  

 

3.2.2 CCA similarity of loadings 

A side-by-side comparison of canonical loadings (univariate correlation between each variable and 

the canonical variate) of all our resulting canonical variates and the first two canonical variates 

reported in Drysdale et al. are provided in Figure 2f. We also conducted an analysis of stability of 

these loadings under small resampling of the data by repeating the feature selection and CCA 

procedure 187 times, each time without one subject left out of the analysis. The results for this 

analysis can be seen in Figure 2e. It can be seen that even by changing one subject in the pipeline, 

individual loadings changed dramatically. Because of this instability and the fact that our canonical 

variates were not statistically significant, it is not meaningful to compare our loadings with loadings 

found in the original study. 

 

3.3 Clustering significance 

In our dataset, a 4-cluster solution showed the highest CH (110) and 2 cluster solution the highest 

silhouette index (0.33). However, using a simulation approach described in the methods section, 

these indices were not statistically significant (p=0.36 and p=0.71 for CH and silhouette index, 

respectively). That means that it is not unusual to observe such high CH and silhouette indices, even 

when the hierarchical clustering is performed on a normally distributed data set (data with no 

clusters). Formally, this means that we cannot reject the null hypothesis of the data coming from a 

single Gaussian distribution (Figure 3). In the original study, this was not tested. Therefore, we 

cannot say if the data in the original study really formed clusters, instead of just random fluctuation 

of the data.  
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3.3.1 Cluster stability 

 
 
Figure 3: A) obtained 4-cluster solution using hierarchical clustering. B) Stability of a cluster assignment. Each 
subject is shown with the same color as it had in A, but the connectivity scores are recomputed under a small 
perturbation of the data - leaving one subject out of the feature selection and CCA procedure. C) Variance ratio 
criterion is maximized at 4 clusters as in the original study. D) Silhouette index is maximized at 2 clusters. E, F) 
Null distribution of Variance ratio and silhouette indices. Showing that although these indices are maximized at 4 
and 2 clusters respectively, these results are not unusual even for the data simulated from a distribution with no 
clusters. Therefore these criteria do not imply evidence for the existence of clusters in our data or in the data 
presented in the original study.  
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We evaluated cluster assignment stability under slight resampling of the data by performing the 

feature selection and CCA procedure again, with one subject left out of the pipeline. The results are 

shown in the Figure 3a and 3b. The figures show the position of each subject with respect to the 

first two canonical variates and therefore how clusters changed just by changing one subject in the 

pipeline. Stability of cluster assignment was performed in the original study by bootstrap procedure 

after feature selection and CCA, thus not taking instability of these two steps into account.  

 

3.3.2 Clustering similarity 

Since we did not find evidence for clusters in our data, and the cluster assignment was not stable, 

we did not consider it meaningful to describe clusters in terms of their symptom profiles or compare 

the clusters in our study to clusters identified in the original study.  

 

4. DISCUSSION 

 

Here, we performed a partial replication of the study of the study by Drysdale and colleagues [1] 

using a completely independent dataset approximately matching the original study in terms of 

sample size and derived measures. We followed the analysis steps of the original study as closely as 

possible and found similar results in terms of the magnitude of canonical correlations and number 

of clusters. However, after performing additional tests that were not performed in the original study, 

which took into account that the RS-fMRI connectivity features were selected based on their 

correlation with clinical features before performing CCA on these connectivity and clinical features, 

even the high canonical correlations that we observed were not statistically significant and they did 

not replicate outside of the training set. By using the same criteria for selecting the number of 

clusters as in the original study, we found an optimal four cluster solution. However, we showed 

that this cluster solution would happen even if the data came only from a single Gaussian 

distribution with no underlying clusters.   

 

4.1 Statistical significance of canonical correlations 

The first two canonical correlations between brain connectivity and clinical symptom measures that 

we observed in our data were high (0.99 and 0.98). However, they were not statistically significant 

as determined by permutation testing. In addition, using cross-validation, the canonical correlations 

dropped to approximately 0 in the test set. This is not unexpected because of the high number of 

variables included compared to the number of subjects in this sample, which leads to severe 

overfitting. CCA is known to be unstable; for example, introductory texts recommend between 10 

to 42 subjects per variable in order to obtain a reliable CCA model [19,20], but the pipeline used in 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 14, 2018. ; https://doi.org/10.1101/416321doi: bioRxiv preprint 

https://doi.org/10.1101/416321
http://creativecommons.org/licenses/by-nc/4.0/


the original study that we followed had around 1.3 subjects per variable. Another important 

contribution for the overly optimistic canonical correlations is the initial feature selection step that 

selected 150 connectivity features in our study (178 in the original study) out of ~30,000 brain 

connectivity measures that were most correlated with the clinical symptoms in the same dataset in 

which the CCA was performed.  

 

In the original study by Drysdale and colleagues, this feature selection step was not taken into 

account when estimating the statistical significance of the canonical correlations, thus the reported 

p-values were likely inflated. Moreover, the replication of canonical correlations out of sample was 

not shown directly in the study by Drysdale and colleagues. Despite this, the authors did provide 

indirect evidence for a reliable relationship between brain connectivity measures and clinical 

symptoms in a subset of subjects left out completely from the primary analysis (training set). These 

subjects were assigned to clusters based on a support vector machine classifier using only their 

connectivity features as predictors, and these clusters had similar clinical symptom profiles in their 

cluster discovery and replication sets, which would not be possible if the canonical correlations 

were spurious.  

 

4.2 Similarity of canonical loadings 

Due to the overfitting of CCA discussed above, the canonical loadings we obtained were unstable, 

which makes their comparison with loadings reported in the original study difficult and unreliable. 

Despite that, loadings of our fourth canonical variate were most similar to the loadings of the 

second canonical variate reported in the original study by Drysdale and colleagues. However, our 

canonical variates were not statistically significant, therefore this similarity cannot be interpreted as 

a replication of the same biological to clinical connection as found in the original study. 

 

4.3 Clustering analysis 

A problem with many clustering algorithms that is not commonly recognized is that they always 

yield clusters, regardless of the structure of the data, even if there are no clusters at all [18]. Many 

procedures employed to determine the optimal number of clusters, including the one used in the 

original study, are therefore more heuristic and do not provide a statistical test of the underlying 

structure of the data. In the original study, a four-cluster solution was decided to be optimal mainly 

because the CH criterion, a specific numerical value describing how well the data form clusters, 

was maximized by four clusters. According to this criterion, we would have chosen an optimal 

number of clusters to be four (or two according to the silhouette criterion) in our data. However, 

after a closer examination, we observed that a CH index as high or higher as we observed, can be 
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easily obtained just by running the same hierarchical clustering procedure on data randomly 

sampled from a distribution that does not contain any clusters (in this case Gaussian distribution). 

Or in other words, according to the CH index, we could not reject the null hypothesis that our data 

came from a single Gaussian distribution. No test for the existence of clusters was performed in the 

original study and the presented data in Figure 1f of the original study looked more like a 

continuous distribution instead of 4 clusters. Therefore, we think that the original study provided 

insufficient evidence to conclude the existence of any number of distinct “biotypes” of depression.  

 

Although the absence of clusters would change the conclusion of the original study, it is not 

necessarily detrimental to the significance of the results. The found biological axes related to 

different depressive symptoms are important in their own merit, without subsequent arbitrary 

dichotomization into four biotypes. Two canonical variates already provide a parsimonious 

representation of the data and dividing them further into four subtypes would not provide any more 

insights into mechanisms of depression (especially if these subtypes are spurious). 

 

 Assuming biotypes is also detrimental for the sake of clinical utility, such as predicting the 

probability of a TMS treatment response. Since the subtypes were predictive of TMS treatment 

response and were based on the underlying canonical variates, it is reasonable to assume that the 

probability of response varies smoothly with respect to the canonical variates. Using only discrete 

subtypes for prediction assumes that all the subjects in one “biotype” have the same chance for 

response. Also, very similar subjects might get significantly different predictions. If a subject would 

move slightly from biotype 1 to bordering biotype 2, his predicted TMS response chance would 

jump from 80% to 20%.  

 

On the other hand, using subject-specific connectivity scores alone, without additional arbitrary 

dichotomization into “biotypes,” would allow making an individualized prediction for each 

individual, in line with goals of personalized precision medicine. A clinical decision can then be 

made for each patient individually according to their treatment response probability instead of the 

average treatment response probability of the whole group (e.g. biotype). Critically, the availability 

of quantitative measures means that cut-off points for various levels of severity can be changed and 

fine-tuned as more data from future studies become available — as has been done for diseases such 

as hypertension. Severity cut-points explicitly acknowledge dimensions and move away from 

traditional single disorder models. Such a dimensional approach, which captures the full spectrum 

of brain connectivity alterations, provides an empirical and coherent framework to accommodate 

comorbidity and sub-threshold symptoms. 
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Due to the clinical heterogeneity of many psychiatric disorders and the quest for personalized 

medicine, there is a tendency towards subtyping and expanding psychiatric nosology. However, the 

presumption of distinct and homogeneous subtypes might not be clinically useful and might not 

represent the underlying biology. Many clustering approaches will always produce some clusters 

and would so even for uniformly distributed data. It is, therefore, crucial to distinguish real 

biologically or clinically meaningful subtypes from random fluctuation of the data. This is not an 

easy task, however, several methods exist. One possibility is to use simulations to create an 

empirical null distribution of clustering statistics, similar to what we used here as proposed by [18] 

or use model-based approaches, such as latent class analysis or Gaussian mixture models, where the 

model fit can be tested directly.  

 

4.4 Recommendations for future studies 

We have several recommendations for future studies. First, to avoid overfitting and unstable results 

of CCA, we advise to either reduce the number of features by using a dimensionality reduction 

method, such as PCA, ICA or factor analysis as used in [7], or to use a regularized version of CCA, 

or both as used in [8]. Second, if a feature selection step is involved, it is necessary to take this into 

account in the statistical testing procedure, either by doing a statistical test in an independent test set 

or by incorporating this selection step into a permutation testing procedure [21]. For clustering 

analysis, it is necessary first to answer the question if there are actually real clusters in the data or 

just random fluctuations. Clustering coefficients and cluster assignment stability evaluation do not 

test for this. To estimate cluster stability assignment it is important to take the whole procedure into 

account, including feature selection and CCA, which might show that even seemingly stable 

clusters are unstable. Finally, if the goal is a clinically useful prediction and high accuracy, 

continuous variables should be preferred before dichotomizing data into clusters because they 

contain more information and thus lead to better prediction. 

 

4.5 Limitations 

A limitation of this replication attempt is that our sample characteristics were different from the 

original study, which included only subjects with a currently active episode of a treatment-resistant 

major depressive disorder. In contrast, we included a wider range of subjects with mild to severe 

symptoms, recruited from the general populations, primary and secondary care, as well as a wider 

range of diagnoses including MDD, anxiety and comorbid MDD with anxiety. However, this could 

also be considered a strength, because a wider range of symptoms should also translate to more 

diverse biology and thus make the connection between clinical symptoms to biology more apparent. 
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Another limitation is that we used a different clinical measurement tool (IDS instead of HAM-D), 

however, we matched the items as closely as possible. Lastly, we did not replicate all parts of the 

original study, such as prediction of treatment response or classification of depressed and healthy 

subjects.  

 

4.6 Conclusion 

To the best of our knowledge, this is the first attempt to replicate the important findings relating 

clinical symptoms and biological subtypes reported in the Drysdale et al. study. Using additional 

statistical procedures, the method used in the original study did not provide stable or statistically 

significant biotypes of depression and anxiety in our independent dataset. Furthermore, we have 

argued that the evidence for the existence of 4 distinct biotypes presented in the original study is not 

convincingly demonstrated and the results should be interpreted with care. However, even without 

partitioning patients into biotypes, the existence of continuous biological axes related to symptoms 

of depression might be even more useful for our understanding of biological mechanisms of 

depression and clinical practice. However, unfortunately, we were not able to replicate such 

dimensional axes in our data.  
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