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ABSTRACT 

Telomeres, short guanine-rich repeats that cap linear chromosomes, are involved in cell senescence and 

organismal ageing. Our present understanding of telomere function oscillates between a marker of 

individual quality, which should be positively correlated with reproduction, to a marker of costs of 

reproduction (e.g. due to DNA damage). To test these ‘quality’ and ‘cost’ hypotheses, we tested the 

output of very simple predictions in a free-living population of European starlings Sturnus vulgaris where 

reproductive success of adult females was followed over 2 breeding seasons (with 2 broods per 

breeding). If telomere length indicate individual quality, low quality females (LQ, no fledgling) should 

have lower telomere lengths than high quality females (which produced fledglings in 1st and 2nd broods). 

Additionally, physiological determinants of adult individual quality (established in a previous study) and 

provisioning rate should be positively associated with adult telomere lengths. Finally, telomere length 

should predict future reproductive success. Adult telomere length was lower in LQ females but only 

during the chick-rearing period. Females producing larger clutches at fledging in the 1st brood of the 1st 

year also had longer telomeres. Provisioning rate was positively related to telomere length, as were 

plasma markers of oxidative damage, non-esterified fatty acids and triglycerides. Despite these 

associations, we found weak support for telomeres as indicators of individual quality. Telomere length 

failed in predicting future reproduction success and there was a lack of consistency in within-individual 

telomere length over the breeding season. In starlings, we suggest that telomere length may indicate 

current breeding capacities and energy status of female adults, rather than future fecundity/survival.       
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INTRODUCTION 

The fitness consequences of inter-individual variability in phenotype and genotype are a central concept 

in evolutionary biology (McNamara & Houston 1996; Wilson & Nussey 2010). This variability is important 

because evolutionary changes in a population depends on selection pressures that act on both 

phenotype and genotype. Therefore, inter-individual variability in fitness is a key parameter for selection 

and evolution to proceed, and its origin is one of the most fascinating questions in biology. In the 

literature, inter-individual variability has been described using many terms, such as “heterogeneity in 

fitness”, “frailty”, “health and vigor” or “organismal state”. More recently, it has commonly been 

described under the term of “individual quality” (Bergeron, Baeta, Pelletier et al. 2011). Individual quality 

is a much debated concept, which currently has no widely accepted formal definition (Wilson et al. 2010; 

Bergeron et al. 2011). However, there is some agreement on certain phenotypic or life-history traits that 

likely contribute to overall individual quality, e.g. timing of arrival at breeding grounds (Bauch, Becker & 

Verhulst 2013; Johnsen, Pauliny, Lifjeld et al. 2017), laying date or clutch size (Wilson et al. 2010), 

reproductive success (Bauch et al. 2013; Boonekamp, Dijkstra, Dijkstra et al. 2017), longevity and lifespan 

(Haussmann, Winkler & Vleck 2005; Pauliny, Wagner, Augustin et al. 2006; Bize, Criscuolo, Metcalfe et al. 

2009; Barrett, Burke, Hammers et al. 2012; Boonekamp et al. 2017; Tricola, Simons, Atema et al. 2018). 

  In contrast, we still have a very poor understanding of physiological traits or mechanisms that 

might underpin variation in individual quality or life-history traits (Williams 2008; Wilson et al. 2010; Le 

Vaillant, Viblanc, Saraux et al. 2015). Telomeres are short guanine-rich repeated sequences that cap 

linear chromosomes and ensure their stability (Blackburn 2000). Those sequences progressively shorten 

with each cell division until they reach a minimum critical length, which will cause chromosome 

instability, cell senescence and cell death (Blackburn 2000). Until recently, because telomere loss mainly 

occurs during early life, studies on telomere dynamics have mainly focused on early developmental 

conditions, not adulthood (Geiger, Le Vaillant, Lebard et al. 2012; Monaghan & Spencer 2014; Nettle, 
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Monaghan, Gillespie et al. 2015). However, several recent studies have suggested that telomeres might 

be more general biomarkers of adult individual quality (Hau, Haussmann, Greives et al. 2015; Le Vaillant 

et al. 2015; Bauch, Riechert, Verhulst et al. 2016) and might play a role in variation in life-history traits 

that contribute to fitness (Monaghan 2010; Monaghan et al. 2014; Ouyang, Lendvai, Moore et al. 2016; 

Johnsen et al. 2017). Measurement of telomere dynamics is therefore increasingly being used in 

ecological studies in order to investigate variation in life-history traits between individuals in wild 

populations (Monaghan & Haussmann 2006; Young 2018). Telomeres or telomere attrition rate have also 

been correlated to longevity among (Tricola et al. 2018; Wilbourn, Moatt, Froy et al. 2018) and within 

species, individuals with longer telomeres having a higher survival rate than those with shorter 

telomeres (Haussmann et al. 2005; Bize et al. 2009; Salomons, Mulder, van de Zande et al. 2009) but see 

(Caprioli, Romano, Romano et al. 2013). In relation to reproduction, telomere length has been correlated 

with the date of egg laying: adults of common terns (Sterna hirundo) with shorter telomeres arrived 

earlier in the breeding grounds and had higher reproductive performance (Bauch et al. 2013; Bauch, 

Becker & Verhulst 2014). Similarly, telomere length has been related to variation in foraging behaviour, 

individuals with shorter telomeres having higher foraging efficiency, which might mean that older 

individuals remain behaviourally flexible despite paying physiological costs (Young, Kitaysky, Barger et al. 

2015). In king penguins (Aptenodytes patagonicus) and in common terns, a quadratic relationship 

between breeding success and telomere length has been reported: individuals with longer or shorter 

telomeres had higher breeding success than those with intermediate-length telomeres (Bauch et al. 

2013; Le Vaillant et al. 2015). Both authors suggested that, (1) individuals with longer telomeres can 

increase their reproductive success paying less cost while individuals with short telomeres do poorly in 

reproduction and (2) reproduction remains costly in terms of telomere loss (Bauch et al. 2014), which in 

common terns could be related to  provisioning rate of chicks (Bauch et al. 2013). Indeed, larger brood 

sizes were associated with greater rates of telomere loss in adults (Bauch et al. 2014; Reichert, Stier, 
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Zahn et al. 2014). Finally, two independent studies reported assortative mating in relation to telomere 

length (Johnsen et al. 2017; Schull, Viblanc, Dobson et al. in press), suggesting that mate choice based on 

individual quality is somehow associated to telomere length. Therefore, our understanding of the role of 

telomere length in explaining individual fitness still oscillates from a marker of individual quality to a 

marker of DNA damage due to cost of life-history traits, such as reproduction. Most of these studies have 

simply correlated telomere length with life-history traits, and surprisingly, to date, very few studies have 

investigated this link in measuring both life-history and physiological traits (but see (Ouyang et al. 2016)) 

in order to better understand how telomere length and individual quality may be associated. 

 In this study, we investigated variation in telomere length in relation to individual quality in adult 

female European starlings (Sturnus vulgaris), integrating both life-history traits (i.e. current and future 

breeding success, survival) and physiological traits. We categorized females as low-, medium- and high-

quality based on breeding productivity for between 1-4 broods over 1-2 years (see Materials and 

Methods). We predicted that, if relative telomere length is an inherent biomarker of “quality”, then, (1) 

high quality birds will have longer telomeres and low quality birds shorter telomeres when measured 

during incubation, (2) telomere length will be repeatable when measured between incubation and chick 

rearing for each individual, and (3) telomere length will be correlated with physiological measures of 

“quality” in starlings (e.g. high triglyceride, glucose, haematocrit, and haemoglobin levels, low oxidative 

stress, (Fowler & Williams 2017)), (4) we expect high quality individual (i.e. with longer telomeres) to 

successfully raise larger broods, sustaining a higher parental workload without suffering from higher 

physiological costs. Alternatively, if relative telomere length reflects costs of reproductive effort, then we 

predicted that (1) relative telomere length will decrease from incubation to brood 1 to brood 2, i.e.  with 

increasing reproductive effort, (2) telomere length will be correlated with ultimate measures of parental 

workload, such as brood size at day 6-8, nest provisioning rate, as well as with (3) physiological markers 

of “workload” (e.g. oxidative stress). 
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MATERIAL AND METHODS 

Species and area of study  

We studied a nest-box breeding population of European starlings (Sturnus vulgaris) at Davistead Farm, 

Langley, British Columbia, Canada (49°10’N, 122°50’W) between April-June 2013 and females were 

followed in 2014 to measure survival and fecundity in the year after blood sampling. This site comprises 

around 150 nest boxes on farm buildings and mounted on posts around pastures. Nest boxes were 

checked daily from the first of April to determine laying date, clutch size, brood size at hatching, at day 6 

post-hatching, and at fledging (day 21), and mass and tarsus of all chicks was recorded when chicks were 

17 days old. We then collected the same data for second broods. All breeding females were captured at 

mid-incubation (between day 6 and 8) in their nest boxes by plugging the nest box hole before dawn, 

females were blood sampled (see below) and fitted with colour bands and individually numbered metal 

bands (Environment Canada permit # 10646; males were not captured or banded, and thus, identity of 

males is unknown).  

 During chick-rearing, females were caught using nest traps (Van Ert Enterprises, Leon, IA) as they 

entered nest boxes to feed chicks. All blood samples were collected by puncturing the brachial vein with 

a 26 ½-gauge needle and collecting blood (<700 μL) into heparinised capillary tubes. At the same time, 

fresh blood was collected for (1) hematocrit and hemoglobin measurements, (2) two blood smears were 

prepared for reticulocyte counts, and (3) glucose levels (mmol.L−1) were measured with a handheld 

glucose meter (Accu-chek Aviva®). Although females were captured using different methods, all birds 

were blood sampled within 3 minutes of being handled, and the only difference was that incubating 

birds were passively held in their nest box (mean 56 min., maximum 132 min. before being removed and 

blood sampled). However, there was no effect of time in box on plasma corticosterone levels in 

incubating females (r = 0.05, p > 0.73) suggesting that birds did not perceive this as a stressor. Blood 
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samples were stored at 4°C for up to 4 h before being centrifuged for 6 min at 10,000 g, then plasma and 

red blood cells were separated and stored at -80°C until assayed. All research was conducted under 

Simon Fraser University Animal Care permits (# 657B-96,829B-96, 1018B-96). 

Determination of individuals’ quality  

Individual quality of breeding females was assessed through a set of life history traits (including current 

and future breeding productivity, survival over 2 years) and was defined as following for mean brood size 

at fledging for each category and female sample size; see Results for statistical analysis):  

1. Low quality females: had total brood failure (brood size at fledging = 0) for first broods, didn’t initiate a 

second brood in the same year and didn’t return the following year (n = 9, n = 5 and n = 0 during the 

incubation, chick-rearing and second brood phases, respectively);  

2. Medium quality females: had average breeding productivity for first broods, attempted a second 

brood but failed (brood size at fledging for second brood = 0), and didn’t return the following year (n = 

11, n = 9 and n = 0);  

3. High quality females: had above-average breeding productivity for first broods, attempted a second 

brood (in which most chicks fledged), returned the following year and reared chicks from first and/or 

second brood (n = 6, n = 7 and n = 5).  

Measurement of physiological traits  

As described above, plasma was extracted from blood samples in order to measure multiple 

physiological traits using standard methods reported in a previous study (see Fowler and Williams 2017 

for details). Due to variation in the amount of plasma we obtained, for some individuals there were not 

enough plasma to run all assays, thus sample sizes differ for some physiological traits. These traits 

represented four “functional groups” of traits which were (1) aerobic/metabolic capacity, (2) oxidative 

stress and muscle damage, (3) intermediary metabolism and energy supply, and (4) immune function.  
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Telomere analysis 

DNA was extracted using the Blood Quick Pure kit (NucleoSpin, Macherey-Nagel) following the user’s 

manual, modified for bird blood. Briefly, the protocol consisted in (1)  cellular digestion of red blood 

cells, (2)  purification of DNA on a silica column and (3)  elution of DNA in 50 μL of elution buffer. The 

modification of the protocol was to use 3 μL of red blood cells in 197 μL of PBS instead of 200 μL of 

whole blood. We then checked quality and concentration of DNA (μg/μL) with a NanoDrop 1000 (Thermo 

Scientific) spectrophotometer (absorbance ratio A260/280. 1.7; A260/230. 1.8).  

 We used real-time quantitative PCR technique (hereafter referred to as qPCR), developed by 

(Cawthon 2002) and adapted to avian telomeres by (Criscuolo, Bize, Nasir et al. 2009). This method 

amplified telomeric DNA and expressed its quantity as a T/S ratio, where T was the quantity of telomeric 

DNA and S the quantity of a gene used as a reference and amplified in a separate reaction. The reference 

gene classically used for birds was GAPDH, but was not well suited to European starlings probably due to 

a mutation (Nettle, Andrews, Reichert et al. 2016). In order to identify the most appropriate reference 

gene we conducted preliminary analyses considering a variety of candidate reference gene primer pairs 

available in our laboratory. The most consistent amplification profile and cleanest melting curve was 

obtained using Eurofins Genomics primers targeting the recombination activating 1 (RAG1) gene 

(accession number: XM_014873522), which we selected as our reference gene. The selection of our 

reference gene was based on comparison of a panel of several candidate genes for European Starlings 

including the commonly used one GAPDH. RAG1 showed completely stable qPCR results indicative of 

non-variable copy number, and is conserved among vertebrates (Venkatesh, Erdmann & Brenner 2001).  

 qPCR reactions were performed on separate 96-wells plates (n=6 for telomere sequence 

amplification, n=6 for the non-variable in copy gene number (RAG1). Each well contained a total volume 

of 10 μL, including 5 μL of SYBR green tampon, 10 ng of DNA, and 500 nmol/L of primers for telomere 

assay and 200 nmol/L for PYG assay. Reverse and forward primers’ sequences for both telomeric and 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 14, 2018. ; https://doi.org/10.1101/416438doi: bioRxiv preprint 

https://doi.org/10.1101/416438
http://creativecommons.org/licenses/by-nc/4.0/


9 
 

PYG genes were, respectively: Tel1b: 5’ – CGGTTTGTTTGGGTTTGGGTTTGGGTTTGGGTTTGGGTT-3’; Tel2b: 

5’ –GGCTTGCCTTACCCTTACCCTTACCCTTACCCTTACCCT-3’; RAG1-F : 5’ – TGCAAAGAGATTTCGATATGATG -

3’; RAG1-R : 5’ – TCACTGACATCTCCCATTCC -3’. Telomeres thermal profile consisted of 2 min at 95°C 

(activation of the Taq polymerase), followed by 27 cycles of 15 seconds at 95°C (DNA denaturation), 30 

seconds at 58°C (primers hybridization) and 30 seconds at 72°C (DNA amplification). RAG1 thermal 

profile was 2 min at 95°C, followed by 35 cycles of 15 sec at 95°C, 30 sec at 56°C and 1 min at 72°C. Both 

assays were followed by a melting curve analysis consisting in an increase of 1°C every 5 seconds (from 

58°C to 95°C), to check for single peak amplification and the absence of primer-dimer artefact. Each 

sample was assayed in duplicate, and the mean of the two samples was used for analyses. Samples were 

randomly assigned over the 6 plates of telomere amplification in order to avoid a potential plate effect 

(an identical plate design was followed for the 6 PYG amplification plates). Each plate included a serial 

dilution (both telomeres and PYG) of 40 ng, 20 ng, 10 ng, 5 ng, 2.5 ng and 1.25 ng DNA. This dilution was 

made with a pool of DNA from the most concentrated samples. This dilution was needed to generate a 

reference curve on each plate to control for the amplifying efficiency of the qPCR, which ranged from 94 

to 109 % for PYG and from 99 to 104 % for telomeres (an efficiency of 100 % corresponded to a doubling 

of DNA at each cycle, the closer to 100 % is the better). Each plate also contained 4 different samples 

chosen randomly which were repeated over all runs to check for repeatability in amplification values. 

Intra-plate and inter-plate coefficients of variation (based on Cq values) were 0.34 ± 0.03 % and 0.64 ± 

0.07 % for the PYG gene assay and 1.92 ± 0.22 % and 2.10 ± 0.71 % for the telomere assay, respectively. 

Intra-plate and inter-plate coefficients of variation (based on T/S ratio) were 10.64 ± 0.84 % and 11.77 ± 

4.59 %, respectively.  

 We used equation 1 from (Pfaffl 2001), which was a mathematical model of relative expression 

ratio in real-time quantitative PCR allowing the utilisation of each plate efficiency (and not a mean value 

over all runs) to calculate the relative telomere length. The ratio of the telomere gene was expressed in a 
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focal sample versus a control sample in comparison to the reference gene RAG1. We used the following 

equation: ratio T/S = [(Etelomere)ΔCqtelomere(Control-sample)]/[(EPYG)ΔCqPYG(Control-Sample), where E 

corresponded to the efficiency of the reaction, Cqtelomere corresponded to the number of amplification 

cycles recorded to reach the crossing point with the fluorescence measurement threshold for the 

telomere sequence, CqPYG for the control gene. ∆Cq corresponded to the difference between the Cq of 

the control sample and the focal sample. 

 Relative telomere length is then calculated as a ratio between the number of cycles of 

amplifications needed to reach the detection threshold for the RAG1 gene (Cq RAG1) and those needed 

for the telomere sequence amplification (Cq Tel), all corrected for the actual efficiencies of the 

amplification reactions. As ratio utilisation in statistics may not always follow a normal distribution and 

often necessitates log-transformation, we tested the outcome of using instead the residuals of the linear 

regression between Cq RAG1 and Cq Tel obtained for each individuals. The rationale is that, for instance, 

high residuals will correspond to a higher number of amplification cycles of the telomere sequence 

needed to reach the detection threshold (and then a shorter telomere length), for a given quantity of 

DNA (Cq RAG1). All analyses has been duplicated to test whether the final outcome is illustrating the 

same significant relationship between physiological and fitness parameters and telomere length, as 

calculated using the log-transformed T/S ratio (see Electronic Supplementary Material, ESM1). 

Statistical analysis  

Data were analysed using R version 3.3.2 (R Core Team 2016) or SPSS 18.0. We tested for normality with 

both a Shapiro-Wilk’s test and QQ plots distribution, and when data were not normal, we used log10 

transformation (e.g. T/S ratio). Since we studied inter-individual variability, we didn’t remove any data as 

statistical outliers. All effects with P < 0.05 were considered as significant. Post-hoc comparisons were 

done using Bonferroni correction. Differences in brood size at fledging in the first year, and in total 

fledging number over the two years among females of different qualities were tested using a 
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Multivariate General Linear Model (MANOVA) with Individual Quality as fixed factors.  

 Our statistical analysis was based on the following steps: (i) we tested how telomere length is 

related to individual quality using a Mixed Model with log-transformed T/S ratio as the response 

variable, and female Individual Quality and Breeding Stages as fixed factors. To control for repeated 

measurements, female Identity was included as random factor; (ii) to test relationships between 

physiological variables  and individual telomere length we used  Principal Component analysis on seven 

physiological variables previously identified as measures of physiological state and costs of reproduction 

(Table 2A; see (Fowler et al. 2017) for more details). We used the individual PCA1, PCA 2 and PCA 3 

values as predictors of log-transformed T/S ratio using a General Linear Model (GLM). Only individual 

physiological and telomere values recorded during the chick rearing phase were used in this step; (iii) 

finally, sequential GLM were run to test how log-transformed T/S ratio predicts current reproductive 

effort (provisioning rate and number of chicks fledged from the 1st brood), future  reproduction 

(initiating a second brood in year 1, return rate to year 2, number of chicks fledged in subsequent 

breeding attempts) and total reproductive success (total  number of fledgings over 2 years). Depending 

on the response variable, appropriate covariates were included to control for among-individual 

variability in reproduction success (see Results).  

 To test whether relative telomere length could be calculated following residuals of the 

correlation between Cq RAG1 and Cq Tel, we duplicated the statistical analysis using the residuals of the 

linear regression between Cq RAG1 and Cq Tel. This is described in ESM1. 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 14, 2018. ; https://doi.org/10.1101/416438doi: bioRxiv preprint 

https://doi.org/10.1101/416438
http://creativecommons.org/licenses/by-nc/4.0/


12 
 

 
 

RESULTS 

Individual quality and breeding productivity  

Individual quality was based on breeding success, measured through brood size at hatching during the 

first year, and at fledging over two years and up to four broods. All three variables were significantly 

different among LQ, MQ and HQ females (MANOVA, Roy’s largest root, D3, 22 = 45,221, P < 0.001), e.g. 

mean cumulative number of chicks fledged over 2 years was zero, 4.8 ± 0.6, and 12.6 ± 1.1, respectively. 

Bonferroni post-hoc comparisons showed that LQ females have lower brood size at the three stages 

when compared to the two other groups (model estimates: 1st year brood size at incubation: -4,94 ± 

1.24, P = 0.001); 1st year fledging: -4,00 ± 0.87, P < 0.001; total fledging number over 2 years: -2,65 ± 

0.74, P = 0.001). HQ females had higher fledging brood sizes than MQ during the 1st year (2,80 ± 0.93, P = 

0.006) and in total over the 2 years of the study (7,66 ± 1.32, P < 0.001), but not at 1st year’ incubation 

stage (0,59 ± 0.78, P = 0.46). 

Telomere length and individual quality  

Figure 1A illustrates within-individual variation in telomere length over the entire study period, showing 

a large individual variability. Table 1 shows the results of the GLMM testing for difference in relative 

telomere length in relation to variation in individual quality. There was no significant main effect of 

breeding stage on relative telomere length, although LQ females were characterized by a close-to-

significant decrease in telomere length between incubation and chick-rearing (Figure 1B, Table 1). 

However, there was a significant individual quality x breeding stage interaction: relative telomere length 

varied with individual quality, but only when measured during chick-rearing. LQ females had shorter 

telomeres than MQ and HQ females at the chick rearing stage, while no differences were significant at 

the preceding incubation stage (Figure 2, Table 1).    
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Telomere length and physiological traits  

Principal Component Analysis conducted using the 7 physiological traits measured during chick-rearing 

enables us to discriminate three physiological axes (PCA1, PCA2 and PCA3) explaining 74% of the total 

variance (Table 2A). Only PCA2 was significantly correlated to relative telomere length (Table 2B), 

indicating that females with longer telomeres had higher plasma levels of triglycerides, NEFA and dROMs 

(Figure 3).  

Telomere length and breeding effort in the first year 

Relative telomere length was positively related to brood size at fledging: females with longer telomeres 

successfully raised a larger number of chicks (Figure 4, Table 3A). During chick-rearing, provisioning rate 

was marginally positively correlated to telomere length (Table 3A). Individuals with longer telomeres 

have a higher nest provisioning rate, and conversely, individuals with short telomeres have lower 

provisioning rates (Figure 5).  

Telomere length, breeding prospects and total breeding success  

Relative telomere length of females at chick-rearing during 1st broods did not predict the probability of 

females initiating a 2nd brood during the first year of breeding or brood size at fledging of this 2nd 

breeding attempt (Table 3B). Similarly, when looking at the following breeding season (2nd year), return 

rate, 1st brood size at fledging, initiation of a 2nd brood or 2nd brood size at fledging were all independent 

of relative telomere length in the preceding year (Table 3C). Finally, relative telomere length was not a 

proxy of total breeding success in terms of number of chicks fledged over the two years of the study 

(Table 3D). 
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DISCUSSION  

We investigated variability in relative telomere length in female adult European starlings during three 

different stages of reproduction: incubation, chick-rearing, and second brooding. We found some 

support for our first main hypothesis: telomere length was related to individual quality as determined by 

overall breeding productivity, HQ and MQ females had longer telomeres than LQ females during the 

chick-rearing stage. However, we had weak support for our second hypothesis, finding a low within-

individual repeatability over breeding stages (and only for MQ females), while individual variation in 

relative telomere length independently of individual quality and breeding stage was substantial. 

However, LQ females were close to have a significant shortening of their telomeres between incubation 

and chick-rearing stages. We found mixed support for our third prediction since, among the 7 

physiological traits we comprehensively measured to characterize individual physiological state 

(including aerobic capacity, immune function, oxidative stress, and energy metabolism), only three of the 

physiological traits measured were linked to telomere length during chick-rearing of the first brood: 

NEFAs, triglycerides and reactive oxygen metabolites concentrations (dROMs) were positively correlated 

with relative telomere length. Finally, relative telomere length predicted individual variation in brood 

size at fledging, but only in the current breeding attempt. Chick provisioning rate was positively related 

to female telomere length, supporting the idea that females with longer telomeres might be able to 

support higher rates of workload. However, we found little support for the hypothesis that telomere 

length was related to individual quality based on future fecundity or survival (i.e. ultimate measures of 

cost of reproduction).  

 We predicted that HQ individuals would have longer telomeres and, conversely, LQ individuals 

would have shorter telomeres. This view is based on the simple idea that telomere length reflects the 

lifestyle of an individual, characterizing the cumulative impact of stress , or more comprehensively the 
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higher sensitivity to  stress of LQ individuals (Monaghan et al. 2006). However, previous studies did not 

always corroborate this idea, rather finding a curvilinear relationship between reproduction success and 

telomere length (Bauch et al. 2013). In our study, telomere length was significantly lower only in LQ 

females, which had zero reproductive success. However, no marked difference in telomere length was 

found between HQ and MQ females, even though there was marked variation in cumulative breeding 

productivity in our sample of LQ, MQ and HQ adult females (zero, 4 and 12 fledged chicks respectively 

over 1–2 years). In our study, individuals with longer telomeres had higher reactive oxygen metabolites 

concentrations. That could mean that reactive oxygen metabolites are not linked to telomere attrition 

which would contradict a recent review of the literature (Reichert & Stier 2017). However, an interesting 

recent theoretical view about the trade-offs leading to telomere shortening is that telomere 

maintenance is costly per se (due to energy cost of cellular and DNA processing, (Young 2018)), opening 

the possibility that, for instance, the LQ females are unable to pay the cost of telomere maintenance 

independently of the oxidative balance issue whereas the MQ and HQ females do. Secondly, our results 

could suggest that there is no link between parental workload and oxidative stress levels or telomeres in 

our birds which seems to be unlikely (see below). Thirdly, individuals with long telomeres are either able 

to better cope with reactive oxygen metabolites because they pay less shortening cost, or because they 

are able to restore any telomere loss. Nevertheless, we acknowledge a methodological limitation of 

qPCR, which does not allow us to distinguish the proportion of long telomeres of individuals. 

Reproduction costs may affect in priority long telomeres, and that LQ females suffered from a reduction 

of their proportion of long telomeres which has been previously suggested to better explain individual 

variation in fitness (Bauch et al. 2014). It would be interesting in the future to test how oxidative stress 

levels correlates with long telomeres’ shortening rate. 

 We found a positive relationship between females’ telomere length and parental effort in terms 

of brood size and nest provisioning rate during chick-rearing. Increasing reproductive effort has been 
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suggested to lead to an increase in metabolic rate (Barnes & Partridge 2003) and oxidative stress (Stier, 

Reichert, Massemin et al. 2012; Colominas-Ciuró, Santos, Coria et al. 2017; Merkling, Blanchard, Chastel 

et al. 2017), particularly in other bird species, which should be associated with shorter telomeres. 

However, the positive relationship between telomere length and provisioning rate in our study is 

consistent with Young et al’s (2015) suggestion that telomere length has widespread predictive value for 

determining foraging behavior of individuals. They found that telomere length was related to foraging 

depth, maximum depth and foraging efficiency in thick-billed murres (Uria lomvia), although follow-up 

study in the same species by Young et al. (2016) found no relationship between telomere length, colony 

attendance and foraging trip rate. A positive relationship between telomere length and parental effort is 

more consistent with life-history theory; individuals should not work hard enough to kill themselves and 

will trade-off self-maintenance and reproductive investment. Higher-quality birds with longer telomeres 

might be able to increase their reproductive effort in order to increase their fitness without paying costs, 

either because they are more experienced (i.e. age-dependent relationship between reproductive 

investment and metabolic costs, (Speakman & Garratt 2014)) or because they buffer themselves and 

their chicks against deleterious effects of high metabolism (i.e. shielding hypothesis, (Blount et al. 2015)). 

On the contrary, LQ females were the only ones showing a reduction of their telomere lengths between 

incubation and chick-rearing stages (p=0.079). This reduction is likely to be the main factor defining our 

quality group difference, and might be related to cost of (attempted) reproduction. LQ females may have 

been unable to maintain the cost of parental workload while feeding chicks such as oxidative stress 

associated with sustained high metabolic rate (Barnes et al. 2003). Numerous studies have shown that 

high metabolic rate is correlated with higher oxidative stress levels and therefore potentially also to 

telomere shortening (von Zglinicki 2002; Monaghan, Metcalfe & Torres 2009). Experimental studies, 

where parental effort and costs of reproduction are manipulated, are required to further test these ideas 

(Metcalfe & Monaghan 2013). Nevertheless, our data suggest that having long telomeres is associated 
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with higher fledging success in the first breeding year, which remains a strong argument underlining that 

individual quality partly has a molecular and physiological bases (Le Vaillant et al. 2015). How might our 

result be reconciled with previous results showing that individuals with shorter telomeres actually 

performed better (Bauch et al. 2013; Bauch et al. 2014)? As suggested by Bauch et al., telomeres may 

reflect past reproductive costs (i.e. parental effort over several breeding seasons) in common terns, 

which may be stronger in driving telomere links with fitness in a bird living for decades, while in a short-

lived species as the European starling, telomere length measured when reproduction starts is less likely 

to compute cumulated past reproductive costs. 

 An alternative explanation for individuals providing higher parental effort and suffering from 

higher oxidative damage but also having long telomeres is that they have specific DNA restoration 

abilities. For instance, the major known telomere restoration mechanism involves the enzyme 

telomerase (Blackburn 2009). Increased telomerase activity, for instance in response to stress, may have 

beneficial impact both on telomeres but also on individual physiological traits (Bernardes de Jesus & 

Blasco 2012; Criscuolo, Smith, Zahn et al. 2018). We didn’t measure telomerase activity in the current 

study but this would be worthwhile in future studies, given that we found relative telomere length 

increasing in some adult females between breeding stages (Figure 1A). While there is no evidence that 

starlings belong to a family of birds characterised by particular rate of change in telomere length over 

age (i.e. having specific telomere restoration abilities (Tricola et al. 2018)), we still lack accurate data 

focusing on potential acute changes in telomerase activity in response to stress (Beery, Lin, Biddle et al. 

2012), as well as on individual variability in such a compensatory mechanism for the reproduction / self-

maintenance trade-off. 

  Compensation mechanisms associated with relative telomere length could occur through 

changes in physiological traits linked to individual quality. In starlings, the physiological basis of costs of 

reproduction was previously identified with a suite of seven traits changing in response to handicapping 
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(wing-clipping) as an experimental manipulation of parental effort. Females with lower future fecundity 

and lower return rates had lower oxygen-carrying capacity (lower hematocrit and hemoglobin levels), 

lower energy reserves (plasma non-esterified fatty acid and triglyceride levels), decreased immune 

function (lower haptoglobin levels), elevated levels of oxidative stress (higher levels of dROMs [reactive 

oxygen metabolites] and lower levels of the endogenous antioxidant uric acid (Fowler & Williams 2018). 

The fact that females with longer telomeres also have higher levels of two of these physiological markers 

of either feeding status or energy fuel mobilization (triglycerides, NEFA) suggests that those females 

were in better body condition than those with shorter telomeres. Since those measurements were done 

during the more demanding period of breeding (i.e. chick-rearing) and that females with longer 

telomeres engaged in higher parental effort and reared more fledglings, we conclude that telomere 

length reflects higher metabolic capacities rather than a reallocation of energy towards self-

maintenance. One previous study highlighted that males common terns, which provide the largest part 

of chick provisioning, suffer higher telomere shortening and had higher corticosterone plasma levels, 

while no link was found in females (Bauch et al. 2016). In accordance, we found no link between 

telomere length and corticosterone levels in our females (data not shown), but we do know that females 

do most of chick provisioning in starlings (Fowler and Williams 2015). Whether females are better 

protected from adverse effects of corticosterone on telomeres (e.g. due to estrogens (Tissier, Williams & 

Criscuolo 2014)) remains to be tested. 

 Several recent studies have suggested that telomeres might be general biomarkers of individual 

quality in adults (Hau et al. 2015; Le Vaillant et al. 2015; Bauch et al. 2016) and might play a role in 

variation in life-history traits that contribute to fitness (Monaghan 2010; Monaghan et al. 2014; Ouyang 

et al. 2016; Johnsen et al. 2017). For example, in king penguins Aptenodytes patagonicus, birds with 

longer telomeres arrived earlier for breeding at the colony, and had higher breeding performances than 

individuals with shorter telomeres (Le Vaillant et al. 2015). In contrast, in tree swallows Tachycineta 
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bicolor, males and females with longer telomeres had lighter nestlings (Ouyang et al. 2016). In our study, 

we had comprehensive fitness-related measures in terms of current breeding productivity, future 

fecundity and survival, with total cumulative breeding productivity varying from 0 – 24 chicks over two 

years and up to four breeding attempts. We found some evidence for relationships between telomere 

length and current parental effort, but no evidence that relative telomere length was related to future 

fecundity, survival (return rate) or cumulative (2 year) breeding productivity. Our data therefore suggest 

that telomere length in female starling might better reflect individual breeding and metabolic capacities 

than reproductive costs, even if we cannot rule out the idea that there may be adverse effects of 

reproduction on telomeres. However, we think that those costs actually reflect the physiological inability 

of LQ individuals to sustain self-maintenance and reproduction energy demands in parallel. Our data 

highlight the large within- and among-individual variance in telomere dynamics, as has been found in a 

free-ranging mammals (Fairlie, Holland, Pikington et al. 2016), which is difficult to reconcile with a strictly 

telomere-driven determination of individual quality from birth onwards. If telomeres are vulnerable to 

life and stress events, we need to better understand the implication of direct telomere maintenance 

mechanisms (i.e. telomerase activity, costs of maintenance) or of metabolic processes (i.e. lipid 

metabolism) in individual quality. 
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FIGURE LEGENDS  

Figure 2: Differences in relative telomere length over reproduction stages of starling adult females in 

relation to their individual quality (HQ: High quality, N = 10; MQ: Medium quality, N = 29; LQ: Low 

quality, N = 5). Relative telomere length is expressed as 1 + log10-transformed T/S ratios obtained from 

qPCR amplification (see Methods). Telomeres were significantly shorter in LQ females during chick 

rearing than in HQ and MQ females. Overall mean values of telomere length differed significantly 

between Medium and Low Quality females (see Table 2). * P < 0.05. See Table 2 for statistics. 

 
Figure 3: Pearson’s linear regression checking for linear relationship between individual telomere length 

of adult females (TS ratio log10 transformed) and their PCA 2 values, all measured during the chick 

rearing breeding stage (see Methods for details). Individuals with high PCA2 values have higher plasma 

levels of non-esterified fatty-acids, triglycerides and dROMs (Table 2A). Lines represent 95% confidence 

interval. Log10 (TS ratio) = 0.129 (PCA2) – 0.265, r² = 0.37, P = 0.013. See Table 2 for detailed statistics. 

 

Figure 4: Pearson’s linear regression checking for linear relationship between individual telomere length 

of adult females (TS ratio log10 transformed) and their 1st brood size in 2013. TS ratio was measured 

during the chick rearing breeding stage (see Methods for details). Lines represent 95% confidence 

interval. Brood size = 3.601 (Log10 (TS ratio)) + 4.126, r² = 0.29, P = 0.029. See Table 3 for detailed 

statistics. 

 

Figure 5: Pearson’s linear regression checking for linear relationship between individual telomere length 

of adult females (TS ratio log10 transformed) and the females’ provisioning rate of their 1st brood size in 

2013. TS ratio was measured during the chick rearing breeding stage (see Methods for details). Lines 
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represent 95% confidence interval. Provisioning = 4.682 (Log10 (TS ratio)) + 5.654, r² = 0.19, P = 0.054. 

See Table 3 for detailed statistics. 
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FIGURES  
 
Figure 1 
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Figure 2 
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Figure 3 
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Figure 5 
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TABLES 
 
Table 1. Results of a Mixed Model with Log10-transformed relative telomere length (TS ratio) as a 

response variable, with individual quality and breeding stages as fixed factors and female identity as 

random factor. HQ = High Quality, MQ = Medium Quality, LQ = Low Quality. Post-hoc comparisons were 

done using Bonferroni corrections, among groups during the incubation and chick rearing stages, and 

within groups between incubation and chick rearing stages. Significant P values are indicated in bold. 

Residuals of each models followed a normal distribution (checked using Kolmogorov-Smirnov test and 

QQ plot). 

Response variable: Log10 (TS ratio) Estimates D.F F P 
Intercept -0.153 ± 0.048 1, 25 58.336 <0.001 

Individual Quality  2, 25 10.158  0.006 

MQ females vs. HQ females   0.135 ± 0.091    0.411 

MQ females vs. LQ females   0.250 ± 0.083    0.008 

HQ females vs. LQ females   0.116 ± 0.114    0.933 

Breeding stage (Chick rearing vs. Incubation) -0;042 ± 0.071 1, 25 1.887  0.170 

Individual Quality x Breeding stage  1.524 ± 0.317 2, 25 7.170  0.028 
During Incubation     
MQ females vs. HQ females   0.227 ± 0.163    0.931 

MQ females vs. LQ females   0.064 ± 0.111    1.000 

HQ females vs. LQ females  -0.164 ± 0.185    0.999 
During Chick rearing     
MQ females vs. HQ females  0.042 ± 0.066    1.000 

MQ females vs. LQ females  0.437 ± 0.126    0.008 

HQ females vs. LQ females  0.395 ± 0.124    0.021 
Between Incubation & Chick rearing     
Among HQ females  0.143 ± 0.154    0.999 

Among MQ females -0.042 ± 0.071    1.000 

Among LQ females -0.416 ± 0.153    0.079 
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Table 2.  

A. Variables forming the axes (PCA1, PCA2 and PCA3) of a Principal Component Analysis conducted on 7 

physiological traits measured in adult females during the chick-rearing breeding stage, and previously 

shown to be related to cost of reproduction in starlings (Fowler and Williams 2017). Only eigenvalues 

over 0.4 were taken into account. Total variance explained by the model: 73.8%.  

B. General Linear Model testing for relationships between Log10-transformed relative telomere length 

(TS ratio) and the individual PCA values obtained from 7 physiological traits measured in adult females 

during the chick-rearing breeding stage. Residuals followed a normal distribution (checked using 

Kolmogorov-Smirnov test and QQ plot). Significant results are given in bold.  

A PCA1 PCA2 PCA 3 

Physiological variables    

Hematocrit 0.850   

Haemoglobin 0.834   

Uric acid 0.777   

Triglyceride  0.806  

dROMs  0.768  

NEFA  0.608  

Haptoglobin   0.943 

% variance explained 35.6 21.0 17.8 
 
B 
Response variable: Log10 (TS ratio) 

 
Estimates D.F F P 

Intercept -0.265 ± 0.047 1, 17 31.908 <0.001 

PCA 1 -0.035 ± 0.047 1, 17 0.538 0.475 

PCA 2  0.129 ± 0.048 1, 17 7.133 0.018 

PCA 3 -0.020 ± 0.048 1, 17 0.174 0.683 
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Table 3. Results of General Linear Models (with a logistic distribution for return rate and 2nd brood 

initiation) testing for relationships between Log10-transfromed telomere length (TS ratio) of adult 

starling females and: (A) current effort of reproduction, (B) future prospects of reproduction during the 

same breeding season (2013, 2nd brood), (C) future prospects of reproduction during the next breeding 

season (2014), (D) total reproduction success over 2013 and 2014. In B and C models, first brood size (in 

2013 and 2014) and first year total fledging number (in 2013) were included as a covariates to control for 

the initial brood or first year breeding costs. Adult telomere length was measured during the chick 

rearing period of the first brood. Significant results are indicated in bold. 

A. Current breeding effort (2013) 
Response variable: Brood size at day 17 

 
Estimates D.F F P 

Intercept 4.010 ± 0.520 1, 17 7.707 <0.001 

Log10 (TS ratio) 3.510  ± 1.613 1, 17 2.176 0.044 

Response variable: chick provisioning rate Estimates D.F F P 
Intercept 5.667 ± 0.765 1, 17 7.409 <0.001 

Log10 (TS ratio) 4.953 ± 2.371 1, 17 2.088 0.052 

1st brood size  0.170 ± 0.365 1, 17 0.465 0.648 
B. Same year breeding prospects (2013) 
Response variable: Initiation of a 2nd brood 

 
Estimates D.F F P 

Intercept 0.866 ± 1.553 1, 17 0.558 0.577 

Log10 (TS ratio) 2.007 ± 2.608 1, 17 0.769 0.442 

1st brood size -0.016 ± 0.336 1, 17 -0.048 0.962 

Response variable: 2nd brood size at fledging Estimates D.F F P 

Intercept -0.025 ± 1.123 1, 17 -0.022 0.983 

Log10 (TS ratio) -1.031 ± 1.858 1, 17 -0.555 0.587 

1st brood size  0.145 ± 0.247 1, 17 -0.588 0.565 
c. Next year breeding prospects (2014) 
Response variable: adult female return rate 

 
Estimates D.F F P 

Intercept -3.381 ± 1.667 1, 17 1.667 0.043 

Log10 (TS ratio) -1.076 ± 3.034 1, 17 -0.354 0.723 

1st year fledging number  0.494 ± 0.300 1, 17 1.650 0.099 
Response variable: 2nd year, 1st brood size at 
fledging 

 
Estimates D.F F P 

Intercept -0.755 ± 1.297 1, 17 -0.582 0.569 
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Log10 (TS ratio) -1.406 ± 2.430 1, 17 -0.555 0.570 

1st year fledging number  0.450 ± 0.232 1, 17  1.944 0.070 
Response variable: 2nd year, initiation of a 2nd 
brood 

 
Estimates D.F F P 

Intercept -0.025 ± 1.123 1, 17 -0.022 0.983 

Log10 (TS ratio) -1.031 ± 1.858 1, 17 -0.555 0.587 

1st year fledging number  0.145 ± 0.247 1, 17 -0.588 0.565 
Response variable: 2nd year, 2nd brood size at 
fledging 

 
Estimates D.F F P 

Intercept  0.649 ± 0.403 1, 17  1.610 0.128 

Log10 (TS ratio)  1.008 ± 0.754 1, 17  1.336 0.201 

1st year fledging number  -0.124 ± 0.079 1, 17  -1.557 0.140 

2nd year, 1st brood fledging number 0.253 ± 0.077 1,17  3.290 0.005 

Response variable: 2nd year total fledging number  Estimates D.F F P 

Intercept -0.298 ± 1.670 1, 17 -0.178 0.861 

Log10 (TS ratio) -0.754 ± 3.129 1, 17 -0.241 0.813 

1st year fledging number  0.441 ± 0.298 1, 17  1.479 0.159 
D. Total breeding success (2013 and 2014) 
Response variable: Total number of fledging over 
2 years 

 
 

Estimates D.F F P 

Intercept 6.283 ± 1.472 1, 17 4.269 <0.001 

Log10 (TS ratio) 3.553 ± 4.564 1, 17 0.778 0.447 
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