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Abstract: 

Purpose 

 We aimed to develop an efficient, flexible, scalable and evidence-based approach to sequence-

based diagnostic analysis/re-analysis of conditions with very large numbers of different causative 

genes. We then wished to define the expected rate of plausibly causative variants coming through strict 

filtering in control in comparison to disease populations to quantify background diagnostic “noise”. 

Methods 

We developed G2P (www.ebi.ac.uk/gene2phenotype) as an online system to facilitate the 

development, validation, curation and distribution of large-scale, evidence-based datasets for use in 

diagnostic variant filtering.  Each locus-genotype-mechanism-disease-evidence thread (LGMDET) 

associates an allelic requirement and a mutational consequence at a defined locus with a disease entity 

and a confidence level and evidence links.  We then developed an extension to Ensembl Variant Effect 

Predictor (VEP), VEP-G2P, which can filter based on G2P other widely used gene panel curation 

systems.  We compared the output of disease-associated and control whole exome sequence (WES) 

using Developmental Disorders G2P (G2PDD; 2044 LGMDETs) and constitutional cancer 

predisposition G2P (G2PCancer; 128 LGMDETs).   

Results 

We have shown a sensitivity/precision of 97.3%/33%  and 81.6%/22.7% for causative de novo 

and inherited variants respectively using VEP-G2PDD in DDD study probands WES.  Many of the 

apparently diagnostic genotypes “missed” are likely false-positive reports with lower minor allele 

frequencies and more severe predicted consequences being diagnostically-discriminative features.   

Conclusion  

Case:control comparisons using VEP-G2PDD established an observed:expected ratio of 

1:30,000 plausibly causative variants in proband WES to ~1:40,000 reportable but presumed-benign 

variants in controls. At least half the filtered variants in probands represent background “noise”. 

Supporting phenotypic evidence is, therefore, necessary in genetically-heterogeneous disorders.  G2P 

and VEP-G2P provides a practical approach to optimize disease-specific filtering parameters in 

diagnostic genetic research. 
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Introduction  

 The analysis of genomic sequence and copy number is now in widespread use as a first-line 

investigation in the diagnosis of Mendelian disease. In addition to an obvious role in genetic 

counselling, diagnostic genetic testing can also help avoid invasive procedures (e.g. muscle biopsy in 

Duchenne and Becker muscular dystrophy1) and reduce the length of time required to come to a 

definitive diagnosis (e.g. leukodystrophies2).  Such testing has historically been restricted to individuals 

with distinctive clinical presentations and/or suggestive family histories, which significantly increase 

the prior probability of specific genetic pathology. However, it is now possible to perform 

comprehensive analysis of the protein coding region (whole exome sequencing (WES)3-5) or the 

entirety of the human genome (whole genome sequencing (WGS)6,7) for clinical diagnostic purposes at 

reasonable cost.   Although this represents an exciting opportunity, the number of variants passing any 

diagnostic filter is strongly correlated with total genomic space sampled. The more genetically 

heterogenous a disease, the more causal genes are individually implicated and hence the more variants 

are likely to become diagnostic candidates. It is thus important to develop strategies that can define the 

impact of increasing the number of variants on false positive and false negative errors in diagnostic 

assignments; both may result in significant harm through misdiagnosis and missed diagnoses and 

certainly increase the workload for clinical scientists and clinicians.    

The diagnostic filtering of previously unclassified variants is most commonly based on minor 

allele frequency (MAF) and mutational consequence.  The effectiveness of the former has been 

revolutionized by the availability of data from the Exome Aggregation Consortium (ExAC) 8 and the 

Genome Aggregation Database (gnomAD; http://gnomad.broadinstitute.org). These resources provide 

access to technically robust variant calls from diverse populations of known providence.   There are 

many different publicly available tools for defining the consequence of an individual variant call9.  One 

of the most widely used is the Ensembl Variant Effect Predictor (VEP)10.  VEP predicts the effect of 

each alternative allele on each overlapping transcript for a variant and assigns Sequence Ontology11 

terms to describe the consequences. It can be run either online or using a locally installed version of the 

program.  VEP exploits the extensive and regularly updated Ensembl datasets to provide the most 

comprehensive variant annotation possible in coding and non-coding regions. It also allows 

extensibility through the ‘plugin’ system which allows custom methods to be easily added. 

Automated variant annotation and filtering of WES data using the Ensembl VEP has been 
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successfully applied in a genetically heterogeneous disease cohort by the Deciphering Developmental 

Disorders Study (DDD)12,13. The DDD Study has recruited >13,400 individuals, with previously 

undiagnosed severe and/or extreme developmental disorders (DD), from the UK and the Republic of 

Ireland.  The principal aim of the project is to define the genetic architecture of DD using trio-based 

WES analyses as the main analytical tool14.  Important secondary aims were to identify novel DD loci 

and develop diagnostic approaches that could be translated into clinical practice.  To facilitate this, we 

developed a database of all known causative DD loci (DDG2P) that was structured to allow facile, very 

high throughput filtering of variant calls.  This dataset has been used in each of the DDD flagship 

papers12,13.  The continual updating of DDG2P has been one of the main drivers of the improvement in 

diagnostic rates through iterative reporting of the same data15. The basic architecture and processes 

used to populate DDG2P16 have been adapted to be applicable to any clinical presentation that has a 

reasonable prior probability of being caused by highly-penetrant genotypes at a defined group of loci.  

 To expand from DD to other clinical presentations and to create a system that could be 

maintained and updated by multiple curators, we created the genotype-to-phenotype (G2P) online 

system with an associated web application to hosts the DDG2P database and any similar datasets.  

Here we describe G2P, tailored to address the problem of robust, efficient and flexible 

prioritization of genotypes identified from NGS data to aid the diagnosis of genetic disease. As part of 

our G2P system, we have developed a suite of tools and resources: 1. The G2P portal/web-application 

which is freely available at https://www.ebi.ac.uk/gene2phenotype/ for creation, curation and 

dissemination of G2P datasets; 2. G2P datasets which formalize collections of locus-genotype-

mechanism-disease-evidence threads (LGMDET), curated from the literature, and found to be 

implicated in the cause of a specific disease or clinical presentation; 3. The G2P extension to Ensembl 

VEP which is freely available at https://www.ebi.ac.uk/gene2phenotype/g2p_vep_plugin (VEP-G2P).  

VEP-G2P utilizes the allelic requirement information from G2P datasets/panels and leverages allele 

frequency data from public datasets such as Genome Aggregation Database (gnomAD) together with 

the mutational consequence annotations from VEP to produce list of potentially causative genotype(s) 

given an individual’s VCF file as an input. We also present an estimation of false positive and false 

negative rates associated with its application to WES datasets. 
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RESULTS 

G2P data structure, web development and curation interface 

 The structure of G2P datasets is based on that of the DDG2P diagnostic tool which has been 

previously described17 (Figure 1A; Online-only supplemental material).  In G2P, each dataset is 

focused on a disease grouping or defined category of clinical presentation that is of relevance to the 

clinical diagnosis of Mendelian disease.  For a dataset to be publicly released it must be 

comprehensive, up-to-date and have a plan for future active curation. Each entry in each dataset links a 

gene or locus, via a disease mechanism, to a disease. A disease mechanism is defined as both an allelic 

requirement (mode of inheritance, for example biallelic or monoallelic) and a mutation consequence 

(mode of pathogenicity, for example activating or loss of function). A confidence attribute – confirmed, 

probable or possible – is assigned to indicate how likely it is that the gene is implicated in the cause of 

disease; only confirmed and probable categories are reportable for clinical diagnosis. A fourth category 

(“both RD and IF”) has been included to highlight for clinical review genotypes that are plausibly 

associated with both the relevant disease (RD) and another disease that represents an incidental finding 

(IF). For example, biallelic mutations in BRCA2 cause a developmental disorder (Fanconi Anaemia) 

but will also define a cancer predisposition for both parents of the affected individual.   

 To ensure consistency in development and curation, the rules used to assign confidence, allelic 

requirement and mutation consequence to entries, are defined and available via the web application in 

the form of tables (Tables S1-3).  We store the links to the publications (via PMID) that provide 

evidence for that specific gene-disease thread. The locus-genotype-mechanism-disease-evidence link is 

further characterized by coding the organ specificity and linking to a set of phenotype terms from the 

Human Phenotype Ontology (HPO)17.   These data are all accessible via the G2P web application, 

which is searchable by gene symbol, disease name or disease ontology term. The released datasets are 

downloadable as CSV files (https://www.ebi.ac.uk/gene2phenotype/downloads). 

 

Locus-genotype-mechanism-disease-evidence threads (LGMDET) 

Here we present details of the two currently available G2P datasets: G2PDD and G2PCancer (Table S4 

& S5). G2PDD includes LGMDETs associated with clinically significant developmental disorders, i.e. 
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severe and/or extreme disorders that plausibly have their genesis during embryogenesis or early fetal 

brain developments.  This dataset was populated by a combination of clinical knowledge, systematic 

literature review and genes from existing in-house gene panels by two consultant clinical geneticists 

(DRF and HVF).  We chose to exclude two major groups of developmental disease –  isolated hearing 

loss and isolated dental anomalies –  which are planned to have their own G2P panels and (excepting 

composite phenotypes) are unlikely to present as undiagnosed developmental disorders. G2PCancer aims 

to identify Mendelian cancer susceptibility in individuals affected with cancer or with a strong family 

history.  

The characteristics of the 2044 G2PDD and 123 G2PCancer reportable (i.e. confirmed, probable, 

RD&IF) LGMDET entries are summarized in Table 1. 

VEP-G2P plugin 

The VEP-G2P plugin is designed to work with any G2P panel to identify plausibly disease-

causing variants from WES or WGS data (VCF files); it enables the facile and flexible integration of 

allele frequency data in addition to mutation consequence. The default predictions and annotations are 

invaluable for filtering variants to find those relevant for further analysis based on consequence type 

and allele frequencies. The VEP-G2P plugin uses the default annotations, the individual’s genotype 

information and knowledge from the G2P datasets to find genes which have a sufficient number of 

potentially deleterious variants according to their allelic requirements and are therefore likely disease 

causing (Figure 1; Online-only supplemental material). 

Comparing VEP-G2P outputs from different cohorts 

To evaluate the performance of VEP-G2P plugin we analyzed three independent sets of WES 

data, each of which had undergone extensive prior analysis. The plugin was run using a local VEP 

installation, and details of the technical aspects of each exome collection are given in Table 2.  It should 

be noted that due to differences in the upstream variant calling pipelines (Table 2; data also processed 

at different times at different centres), there is a slight excess in the number of filtered and unfiltered 

indel and SNVs per sample in the DDD cohort compared to the colorectal cancer (CRC) and 

Generation Scotland (GS) 18 cohorts (Table S6).  Although it would be possible to realign and recall 

these datasets to ensure consistency, we chose to proceed without trying to resolve these differences as 

this is representative of “real life” data available to most research groups involved in clinical diagnostic 
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research.    

Discriminative diagnostic indicators 

  To look for characteristics that may discriminate diagnostic from background genomic 

variants, we compared the VEP-G2P filtered output of each panel applied to different WES cohorts: 

The G2P panel with its target disease cohort (i.e. VEP-G2PDD with DDD cohort; VEP-G2PCancer with 

CRC cohort), a G2P panel with a discrepant disease cohort (VEP-G2PDD with CRC cohort) and G2P 

panels with the controls (VEP-G2PDD with GS; VEP-G2PCancer with GS).  The ethical approval and 

consent procedures governing the recruitment to the DDD Study allow diagnostic analyses only for the 

identification of pertinent genetic results. It specifically prohibits the intentional identification of 

“incidental findings”, such as genotypes related to adult-onset cancer susceptibility; for this reason, we 

did not apply filtering using VEP-G2PCancer with the DDD cohort. 

  For VEP-G2PDD the proportion of SNV that survived filtering was 1 in 31.4K in the DDD 

cohort and 1:44.3K in GS (Table S6; p = 6.56E-13). The rate in the CRC cohort using VEP-G2PDD was 

similar to the control group at 1 in 40.8K (Table S6; p = 0.16 cf GS).  Comparing the results from the 

DDD cohort with GS controls there is a significant excess of loss-of-function and missense variants for 

monoallelic and biallelic genes.  A higher proportion of the surviving variants in monoallelic genes 

were missense variants in GS compared to DDD (83.7% cf 64.9%) (Figure 2A,B; Tables S7,S8).  The 

missense variants that survived filtering in DDD had a higher proportion with a CADD 19 score >30 

compared to GS (11.4% cf 7.6%; ) (Figure 2D). The mean MAF of all missense variants in GS was 

1.68x higher than in DDD for monoallelic genes and 1.24x for biallelic genes.  For loss-of-function 

variants the MAF was 2.0-3.5x higher in GS.  115/454 (25.3%) monoallelic DDG2P genes reported had 

a higher proportion of individuals with variants in GS compared to the DDD WES (Table S13) while 

224/454 (49.3%) had no reported variants in GS. The respective proportions for biallelic DDG2P genes 

are 63/676 (9.3%) and 4/676 (0.6%) (Tables S13).  

  Using G2PCancer in the CRC cohort compared to GS revealed no significant enrichment in any 

class of variant (Figure 2A,B).  However, monoallelic G2PCancer LGMDET stop-gained variants in GS 

had a MAF 2.67x higher than those in CRC (Table S11).  For biallelic G2PCancer LGMDET, no variants 

survived filtering in GS with 9 reported in the CRC WES (Table S12). 25/61 of all genes reported by 

the VEP- G2P plugin were found in a higher proportion of individuals in GS than CRC with 22/61 

being exclusively reported in CRC (Table S14). 
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Using all variant surviving VEP-G2PDD filtering there was a mean of 3.8 variants per DDD 

proband (3.59 SNV and 0.19 INDEL; Table S6) compared to 2.14 variants per individual in the GS 

controls (2.05 SNV and 0.09 INDEL; Table S6). The distribution of the numbers of variants reported 

per individual is shifted to the right in DDD probands compared to individuals in GS (Figure 2C). 

With a significantly smaller proportion of DDD probands have no variants reported compared to both 

GS individuals (p = 7.9e-09) and CRC probands (p = 2.3e-12).   However, these differences could, at 

least in part, be systematic and reflect the alignment/variant calling, read depth or targeted pull-down 

used in each analysis (Table 2) rather than any underlying differences in biology of the populations.  

Analysis of larger control cohorts that have been processed using the same pipelines as the case cohort 

and the variants jointly called will be required to determine if these differences are real. 

 

 

Sensitivity and precision of identifying previously assigned causative variants 

in DDD cohort 

Using data from the first 4293 trio WES in the DDD study the over-representation of plausibly 

deleterious de novo variants in 94 different genes achieved genome-wide significance12.  There was a 

total of 804 likely causative de novo variants in these 94 genes that were reported to referring 

clinicians.   Proband-only analysis using VEP-G2P with DDG2P LGMDETs (VEP-G2PDD) 

successfully identified 782 (97.3%) of the reported variants.  These 782 variants were amongst the 

2342 variants that survived filtering, giving a precision of 33.4% and a false positive rate of 66.6%.  Of 

the 22 de novo mutations that were missed, the most common reason was that they had a MAF that was 

higher than the 1:10000 cut-off used in our monoallelic filtering (Figure 3A).  

To assess the performance of VEP-G2PDD in identifying inherited causative variants, we used 

the recent comprehensive re-analysis of known diagnoses in the first 1133 trios in DDD16 excluding 

reported de novo mutations. This method successfully identified 124 of the 152 known diagnostic 

inherited variants, giving a sensitivity of 81.6% with a precision of 22.7%.  The reasons for “missed” 

diagnoses were similar to those for de novo mutations (Figure 3B). 

Receiver operating characteristics (ROC) analysis has proven to be a highly effective method 

of comparing the performance of diagnostic tests.  The most common form of ROC space analysis uses 
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a continuous variable to create a ROC curve – the larger the area under this curve (AUC) the “better” 

the test.  We wished to explore how VEP-G2PDD performed in ROC space. We therefore chose to use 

the set of 1700 de novo mutations which occurred in DDD probands within genes that were 

monoallelic and reportable in G2PDD.    The only continuous variable that is available to us was the 

MAF and given that our filter cutoff is 1:10,000 and many variants are unique (having no 

computationally useful MAF) the area of ROC space that can be interrogated using this approach is 

very small.  However we can calculate the lower bound for AUC of 0.964 using the simple approach 

developed for binary tests20 ([sensitivity + specificity]/2) using VEP-G2P default parameters.  

It has been noted recently that ROC curve analysis can be misleading when using binary 

classifiers21  and that precision-recall curves may be used in conjunction with ROC curves to provide a 

more realistic picture of the tests under investigation.  The precision-recall plot using the same data as 

that used in the ROC analysis does indeed show the cost of increasing sensitivity with respect to 

precision (Figure 3B).   
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METHODS 

Whole exome sequence (WES) data filtering 

 The three WES cohorts (Table 2) were screened for poor quality/potentially contaminated 

samples. For each sample, we computed the number of extreme HET variants (AD/DP < 0.15 or 

AD/DP > 0.8) and the number of rare HOM variants (ExAC AF < 0.01). Samples with extreme HETs > 

cohort mean + 3sd or rare HOMs < cohort mean - 3sd were excluded from further analyses; there were 

159 such samples in DDD and seven in each CRC and GS. 

 The variants identified for each sample were screened for quality and those with GQ < 13 (95% 

confidence), DP < 5 (DDD has the lowest average coverage of the three cohorts) or AD/DP < 0.2 were 

reset to “no-calls”. Furthermore, variants with Mapping quality (MQ) < 13 (95% confidence) in DDD 

were also reset to “no-calls”; MQ filtering was not possible for the GS cohort (combined VCF, no MQ 

value available for individual calls). The variants in the cohorts’ VCFs have been decomposed and 

normalized with VT (v0.5) prior to submission to G2P.   

G2P and VEP-G2P development  

Detailed descriptions of G2P and VEP-G2P development and implementation are provided as Online-

only supplemental material 
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Discussion 

  DDG2P was developed to identify reportable, plausibly causative genotypes in known 

developmental disorders in DDD Study probands13.  Our primary aim was to evaluate LGMDETs – the 

key architectural feature of DDG2P data– as a scalable and generalizable approach for diagnostic 

analysis of clinical presentations in which affected individuals may have one of many different 

Mendelian disorders.  First, we developed gene2phenotype (https://www.ebi.ac.uk/gene2phenotype/) to 

facilitate the creation and review of LGMDETs in different datasets.  To maintain consistency and 

clarity of purpose in G2P datasets, to date, we have used only two highly-motivated expert clinician 

curators to develop and maintain each G2P dataset.  This approach requires a significant investment of 

time and effort and is difficult to scale.  However, data mining tools (Pubtator, ClinVar etc) are now 

being incorporated into the online system to minimize the human resource requirements.  Additional 

curation tools will become increasingly important as the diversity of journals reporting novel gene-

disease associations continues to widen.  Here we present G2PDD and G2PCancer as first two publicly 

accessible LGMDET sets. 

 Our primary aim is also dependent on the ability to implement these LGMDET sets in clinical 

research diagnostic filtering.  For this we chose to develop the VEP-G2P plugin as both G2P and VEP 

are hosted at EMBL-EBI and VEP is widely used in research and clinical practice.  The VEP-G2P 

plugin identifies and reports genotypes that fulfil LGMDET requirements and MAF filters. G2P 

filtering aims to report only likely causative genotypes.  Reporting genotypes – as opposed to lists of 

plausibly pathogenic variants – produces only a small numbers of loci (mean <4), minimizing the time 

required for review of each case by clinicians and clinical scientists.  For specific loci reporting 

genotypes also masks incidental findings e.g. only homozygous or two different heterozygous (possible 

compound heterozygous) likely pathogenic variants in BRCA2 will be reported in DDG2P as a cause of 

Fanconi anaemia.      

 The speed and ease of VEP-G2P plugin use has allowed us to assess the expected background 

output from each G2P dataset against a population ascertained dataset.  This required access to WES 

data from individuals that have not been selected for any specific disease or clinical problem and we 

have used these individuals as our control group.  Here we used Generation Scotland but in the near 

future, much larger, unselected WES and WGS control datasets will be available from UK Biobank22.  

Our analysis suggests that at least half of the variants surviving the filtering process are likely to be the 
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result of background population genome variation rather than specifically relevant to this disease being 

analyzed. We consider this to be a very important “sanity check” in genetic diagnostic analysis. For 

this reason, we have made it very simple for any panel of any size to be converted to be compatible 

with VEP-G2P plugin. We have been able to implement PanelApp 

(https://panelapp.genomicsengland.co.uk) gene panel compatibility in VEP-G2P (using a simple flag in 

the command line) as the data structures are broadly similar to those of G2P.  PanelApp currently hosts 

231 gene panels focused on specific clinical diseases (e.g. Charcot Marie Tooth syndrome) or on 

groups of phenotypically-related diseases (e.g. Hereditary Ataxias).  These gene panels were mostly 

initiated using panels in current clinical use with subsequent crowd-sourced curation.  No matter what 

their origin, panels that do not show a clear difference between the output from controls and disease 

cohort data (using the appropriate MAF and variant consequence filters) require reassessment and/or 

revision prior to implementation for clinical or research use.  Such analysis will be particularly useful 

to identify genes with a very restricted repertoire of disease-associated variants and a high background 

of rare high-impact variants.  Such loci may be better analyzed using a variant “whitelist” approach.   

 Determining the “diagnostically-useful completeness” of any panel in any curation system is a 

major challenge; requiring balancing all possible associations of a set of comparable genotypes with 

the clinical presentation against the confidence that the association is causative rather than coincidental.  

We have found both the statistical genomics analysis (identifying loci achieving genome-wide 

significance under different genetic models) and clinician case updates within DDD very helpful for 

DDG2P curation.   However, it will be important to establish robust methods to quantitate this feature 

in any clinical presentation.   

Family-trio WES data are hugely valuable for determining the de novo status of variants in 

monoallelic genes, as well as the phase of potential compound heterozygous variants in biallelic genes. 

In the absence of trio data, there is a particular problem associated with accurate calling of genotypes in 

ultra-rare biallelic disorders as evidenced by the expected high rate of false positives which is the result 

of an inability to differentiate variants in cis and in trans using VEP-G2PDD for proband-only analyses, 

where it is not possible to determine the phase of most variants detected within a single gene.  This will 

be helped by longer read technology and deeper, more comprehensive data on background genetic 

variation in human populations. It is interesting that a significant proportion of the “missed” diagnoses 

in our de novo analysis were due to variants previously being assigned as causative which, on current 
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analyses, show implausibly high MAF values.   

 Finally, we would like to emphasize that the VEP-G2P plugin should be considered a system 

for experts and it is not designed for use by laboratories or clinical services who do not have 

competence and experience in a multi-disciplinary approach to the diagnosis of rare genetic disease 

involving both scientists and clinicians.  Casual use of this system could result in misdiagnosis and 

subsequent significant mismanagement of ‘affected’ individuals.  
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Online resources:  
Gene2Phenotype https://www.ebi.ac.uk/gene2phenotype/ 

VEP-G2P https://www.ebi.ac.uk/gene2phenotype/g2p_vep_plugin  

PanelApp https://panelapp.genomicsengland.co.uk  
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Figure Legends: 

 

Figure 1: Summary of LGMDET structure and VEP-G2P features.  A. summarizes the basic logic 

of the LGMDET approach to genotype classification using an entry for heterozygous, loss-of function 

variants in NIPBL as a cause of Cornelia de Lange Syndrome.   The publicly available G2PDD and 

G2PCancer data can be searched or downloaded on the website (https://www.ebi.ac.uk/gene2phenotype). 

Any other compatible dataset, including those developed within PanelApp 

(https://panelapp.genomicsengland.co.uk), can be used with the VEP-G2P plugin. B.  The VCF files 

derived from the next generation sequence data are passed to VEP which uses Ensembl annotation data 

to compute and annotate the consequence of each variant. The VEP-G2P plugin runs as an additional 

step of the VEP analysis. It uses the results of VEP’s computations and annotations together with the 

knowledge from the panel list to filter the variants from the patients input VCF file. The plugin results 

are returned together with the VEP output file. C. The plugin also generates a separate output file 

which lists the small number of variants and genotypes that pass the variant filtering pipeline 

implemented in the VEP-G2P plugin– one in HTML format for human use and another in machine-

readable text format. These genotypes must then be subjected to expert clinical review before any 

decision regarding causative association with the presenting condition in the affected individual.   

These variants are at this stage computationally defined and would also normally require validation 

using a separate technology prior to research or clinical interpretation.  
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Figure 2:  Diagnostically discriminative VEP-G2P disease-specific output.   This figure summarizes 

the VEP-G2P analysis of  three independent WES cohorts; DDD (n=7357), CRC (n=517) and GS 

(n=315) A. Odds ratios for samples carrying at least one valid G2P variant (passing the G2P criteria 

and on a canonical transcript) of specific type in the 454 unique G2PDD monoallelic genes: DDD vs GS 

(red) and CRC vs GS (black); two-tail Fisher’s Exact Test: * p-value ≤ 5x10-2, ** p-value ≤ 5x10-3,  

*** p-value ≤ 5x10-6; considering only missense variants for which both SIFT and PolyPhen agree 

deleterious/damaging. B. Odds ratios for samples carrying at least one valid G2P variant (passing the 

G2P criteria and on a canonical transcript) of specific type in the 950 unique G2PDD biallelic genes. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 13, 2018. ; https://doi.org/10.1101/416552doi: bioRxiv preprint 

https://doi.org/10.1101/416552


 17

N/A for stop_lost and inframe_insertion variants - no such variants found in the GS cohort, only few 

found in DDD and CRC (p-value > 5x10-2).  C. Proportion of individuals in the three cohorts (y-axis) 

carrying a particular number of LOF and missense (regardless of their SIFT/PolyPhen status and 

CADD score) variants reported by VEP-G2PDD (x-axis). The  proportion of DDD individuals for 

which no VEP-G2PDD hit is found is significantly lower compared to CRC and GS cohorts, both for 

monoallelic (p-values for two-tail Fisher’s Exact Test comparing number of individuals for which no 

variants is found to those for which at least one variant is found: DDD vs GS = 7.9e-09, DDD vs CRC 

= 2.3e-12, CRC vs GS = 0.93) and biallelic genes (DDD vs GS = 1.5e-10, DDD vs CRC = 1.5e-11, 

CRC vs GS = 0.39). DDD (n=7357 individuals), CRC (n = 517), GS (n = 315). D. Proportion of unique 

missense variants with CADD score > 30 in each of the three cohorts. DDD cohort is significantly 

enriched for unique missense variants with CADD > 30 in G2PDD genes (top) compared to GS (p-value 

two-tail Fisher’s Exact Test = 0.005); there is no significant difference between DDD and CRC (p-

value = 0.17) and CRC and GS (p-value = 0.16).  There is no significant difference for the proportion 

of unique missense variants with CADD > 30 in the CRC and GS cohorts in G2PCancer genes (bottom, 

p-value = 1.0). A relaxation of the uniqueness constraint by accounting for all missense variants found 

in individuals (regardless of their presence in other individuals in the same cohort) leads to similar 

results – DDD is enriched for missense variants with CADD > 30 in G2PDD genes compared to GS (p-

value = 0.01); additionally, CRC cohort also appear enriched for such variants compared to GS (p-

value = 0.041); data not plotted. 
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Figure 3 Sensitivity and precision of VEP-G2P Analysis  A. Evaluation of G2P accuracy against the set of variants previously identified independently by DDD in 94 

genes which reach genome-wide significance (GWS) for de novo mutations in the DDD study. Sensitivity = TP / (TP + FN) = 782 / (782 + 22) = 782 / 804 = 97.3%. 

Precision = TP / (TP + FP) = 782 / (782 + 1522 + 38) = 782 / 2342 = 33.4%.  B. Evaluation of G2P accuracy against the set of variants previously identified independently by 

DDD in the first 1133 samples, excluding de novo mutations.  Sensitivity = TP / (TP + FN) = 124 / (124 + 28) = 124 / 152 = 81.6%.  Precision = TP / (TP + FP) = 124 / (124 

+ 423) = 124 / 547 = 22.7% C.  The ROC curves for the performance of VEP-G2PDD on the 1700 DDD probands with denovo mutations identified in the 484 DDG2P 

monoallelic genes by the DDD consortium. We consider as True Negatives (TN) all variants identified in the 484 monoallelic genes which are not reported by VEP-

G2PDD (i.e., TP and FP) or missed by VEP-G2PDD but reported in the DDD curated set (i.e., FN). The points on the curves represent varying MAF cut-offs: not seen in any 

control databases (bottom left), MAF < 1:100000, MAF < 1:50000, MAF < 1:25000, MAF < 1:10000 (top right). To aid visualisation of the data, the region in the top left 

corner of the ROC space graph has been expanded to scale using the regions bounded by the dashed line rectangles D. Evaluation of the consequence type and MAF effects 

on precision and recall (PR curves) of VEP-G2PDD using the same data analysed for the ROC space in C.  The highest precision [0.812, 0.863] is achieved by restricting the 

analysis only to LOF variants (excluding all missense and inframe insertion/deletion variants); however, this approach leads to the lowest recall [0.425, 0.437]. Conversely, 

the highest recall is achieved when considering variants of all consequence types [0.897, 0.942] at the cost of decreased precision [0.334, 0.476]. As can be expected, 

restricting the analysis to consider only missense variants with CADD >= 30 or CADD >= 20 leads to improvements in precision at the cost of decreasing recall. Imposing 

various MAF thresholds (not seen in any control databases, MAF <= 1:100000, 1:50000, 1:25000, 1:10000; represented as points on each curve, top-to-bottom) 

affects precision and recall (to a smaller degree).    
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Tables 

Table 1: January 2018 freeze of G2P datasets 

 

  G2PDD G2PCancer 

  number percent number percent 
Reportable* LGMDET 2044 100.0 123 100.0 

Different Reportable Genes 1517 NA 92 NA 

LGMDET Confidence     
Confirmed 1551 75.9 114 92.7 

Probable 403 19.7 9 7.3 

Possible** [257] NA [5] NA 

RD and IF 90 4.4 0 0.0 

      
LGMDET Allelic Requirement***     

Monoallelic 701 34.3 80 65.0 

Biallelic 1123 54.9 38 30.9 

Digenic 2 0.1 0 
 

Imprinted 7 0.3 0 
 

Mitochondrial 1 0.0 0 
 

Mosaic 12 0.6 0 
 

Hemizygous 166 8.1 2 1.6 

X-linked dominant and X-linked over-dominance 32 1.6 0 
 

uncertain 0 
 

3 2.4 

      
LGMDET Mutation Consequence     

Loss-of-Funtion 1446 70.7 107 87.0 

Activating 114 5.6 0 
 

Dominant negative 53 2.6 0 
 

5' or 3'UTR mutation 5 0.2 0 
 

Cis-regulatory or promotor mutation 5 0.2 0 
 

Increased gene dosage 3 0.1 0 
 

All missense/in-frame 287 14.0 6 4.9 

uncertain 131 6.4 10 8.1 
*Reportable genes are those with a LGMDET confidence level categorized as 
probable, confirmed or relevant and incidental.  **Possible LGMDETs (see Table S1 
for definitions) are not reported in the pipelines used here.  ***An individual gene 
may have more than one reportable LGMDET e.g. monoallelic/activating and 
biallelic/loss-of-function 
  
 
 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 13, 2018. ; https://doi.org/10.1101/416552doi: bioRxiv preprint 

https://doi.org/10.1101/416552


 21

Table 2: Cohort Information and Technical Features WES 

     DDD (n=7357)* CRC (n=517) GS (n=315) 

Capture kit 
Agilent Human All-Exon V3 or V5 Plus 

Illumina TruSeq Exome Enrichment kit 
with custom ELID C0338371 

Sequencing Platform Illlumina HiSeq Illumina HiSeq 2000 and 2500 

Alignment bwa (0.5.9) bwa (0.5.9) 

Variant Calling 

GATK (3.1.1) GATK (3.4) 

Indel realignment, BQSR Indel realignment, BQSR 

HaplotypeCaller (run in multisample 
calling mode using the complete 

dataset) 
HaplotypeCaller (per sample) 

  

GenotypeGVCFs (joint genotyping across all samples on TruSeq 
regions + 50bp padding) 

Relatedness 
After excluding poor quality samples, 

selected randomly one affected 
proband per family (using the PED file) 

Unrelated 
First-degree relatives excluded 
(based on computed relationship 
coefficients) 

Male:Female ratio 1.36 1.11 0.73 

Median Age 7.9 yrs 63 yrs 52 yrs 
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* DDD details are based on info in the Methods section of “Prevalence and architecture of de novo mutations in developmental disorders” Nature volume 542, 
pages 433–438 (23 February 2017) 
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