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 2 

Abstract 27 
 28 

New techniques for single-cell analysis have led to insights into hematopoiesis 29 

and the immune system, but the ability of these techniques to cross-validate and 30 

reproducibly identify the biological variation in diverse human samples is currently 31 

unproven. We therefore performed a comprehensive assessment of human bone 32 

marrow cells using both single-cell RNA sequencing and multiparameter flow cytometry 33 

from twenty healthy adult human donors across a broad age range. These data 34 

characterize variation between healthy donors as well as age-associated changes in cell 35 

population frequencies. Direct comparison of techniques revealed discrepancy in the 36 

quantification of T lymphocyte and natural killer cell populations. Orthogonal validation of 37 

immunophenotyping using mass cytometry demonstrated good correlation with flow 38 

cytometry.  Technical replicates using single-cell RNA sequencing matched robustly, 39 

while biological replicates showed variation. Given the increasing use of single-cell 40 

technologies in translational research, this resource serves as an important reference 41 

dataset and highlights opportunities for further refinement.  42 
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 3 

Introduction  47 

New technologies for characterizing cell populations are being implemented to 48 

more deeply describe the cell surface receptor phenotype and gene transcriptional 49 

signature at the single cell level (1, 2). Benefits of single cell approaches include 50 

examination of heterogeneity within the sample, and the most recent advances permit 51 

use of samples with very limited cell numbers for high dimensional characterization of 52 

cell surface phenotype or transcriptome. Single cell RNA sequencing (scRNAseq) has 53 

been used to elucidate hematopoietic differentiation (3-5) and immune cell subsets (6) 54 

including dendritic cells and monocytes (7), and innate lymphoid cells (8). Mass 55 

cytometry has been applied to the study of tissue-infiltrating immune cells (e.g. 56 

melanoma (9), renal cell (10), lung (11), and breast (12) cancers).  57 

Expanding these new single cell approaches to patient samples requires a clear 58 

understanding of their correlation with established techniques, including flow cytometry. 59 

In order to facilitate and validate analysis of large databases of scRNAseq we set out to 60 

provide a data set of human bone marrow analyzed by both scRNAseq and deep 61 

immunophenotyping. Our reference cohort includes a broad range of donor ages in 62 

recognition of age-related variation in the healthy population.     63 

 64 

Materials and Methods 65 

Bone Marrow Aspirate Collection 66 

Healthy volunteers were recruited for bone marrow aspirate collection at the National 67 

Institutes of Health. This research was approved by the National Heart, Lung and Blood 68 

Institute Institutional Review Board, and all participants provided oral and written 69 

informed consent. Using standard operating procedures, mononuclear cells from bone 70 

marrow aspirates were isolated using Ficoll density gradient separation and 71 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 13, 2018. ; https://doi.org/10.1101/416750doi: bioRxiv preprint 

https://doi.org/10.1101/416750


 4 

cryopreserved in 90% FBS/ 10% DMSO for storage in liquid nitrogen. Assays were 72 

performed as listed in Table 1 using matched cryopreserved vials from each donor. 73 

Single cell RNA Sequencing  74 

scRNAseq was performed using 10X Genomics Single Cell 3’ Solution, version 2 75 

according to manufacturer’s instructions (protocol rev A). Libraries were sequenced on 76 

HiSeq3000 and analyzed using Cell Ranger V2.0.0 (10X Genomics). Quality control 77 

metrics were used to select cells with mitochondrial gene percentage less than 8% and 78 

at least 500 genes detected. Samples were analyzed using Seurat 79 

(www.satijalab.org/seurat) using canonical correlation analysis with Louvain clustering, 80 

and visualized by t-distributed stochastic neighbor embedding (tSNE) (31). 81 

Developmental trajectories were created using Monocle versions 2 and 3 (32-34), the 82 

latter using Uniform Manifold Approximation and Projection for Dimension Reduction 83 

(UMAP) (35). 84 

Flow cytometry 85 

BMMCs were thawed in RPMI-1640 (Gibco) with 10% FBS and resuspended in cell 86 

staining buffer. Benzonase nuclease (Sigma Aldrich, catalog #E1014-25KU) was added 87 

for some samples during thawing to minimize cell clumping. Cells were blocked with 88 

Human TruStain FcX Fc receptor blocking solution (Biolegend, catalog #422302) and 89 

stained with antibodies listed in Table S1 followed by  LIVE/DEAD Fixable Yellow stain 90 

(Life Technologies Corporation, Grand Island, NY) and fixation with 1% formaldehyde. 91 

Data were acquired with a Becton–Dickinson LSRFortessa (BD, San Jose, CA, USA) 92 

equipped with five lasers (355, 407, 488, 532 and 633 nm wavelengths) and 22 PMT 93 

detectors using DIVA 8 software using the high throughput sampler (BD) system at a 94 

flow rate of 2.5ul/sec in a 96 well U bottom tissue culture plate. Compensation controls 95 

were performed using single color staining of compensation beads (BD), and daily 96 

quality assurance was performed using Cytometer setup and Tracking beads (BD) as 97 
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per manufacturer’s recommendation along with 1 peak rainbow Beads (BD) and 8 peak 98 

beads (Spherotec)(36, 37).  Post-acquisition analysis was performed using Flowjo 9.9.6 99 

(Treestar Inc., San Carlos, CA, USA). Analysis excluded debris and doublets using light 100 

scatter measurements, and dead cells by live/dead stain. Gating strategies used to 101 

identify immune cell subsets are provided in Figure S2.  102 

Mass cytometry 103 

Thawed BMMCs were stained for 37 markers using the MaxPar Complete Human T Cell 104 

Immuno-Oncology Panel Set (Fluidigm), according to manufacturer instructions. Briefly, 105 

cells were thawed, washed, incubated with cisplatin cocktail for viability, fixed in 1.6% 106 

formaldehyde and permeabilized. Cells were then stained with the antibody cocktail, 107 

incubated with intercalation solution, mixed with EQ4 element beads and acquired with a 108 

Helios mass cytometer (Fluidigm). Gating and viSNE analysis (38) were performed using 109 

Cytobank (cytobank.org). Initial analysis excluded doublets using DNA content and non-110 

viable cells using cisplatin. CD45-positive cells were gated for viSNE analysis of 100,000 111 

total events from all analyzed samples.  112 

Bulk RNA sequencing  113 

RNA was harvested from thawed cell vials of BMMCs using AllPrep kits (QIAGEN). 114 

Libraries were prepared using TruSeq Stranded Total RNA Sample Preparation Kit 115 

(Illumina) with 1ug of RNA input. Sequencing was performed by paired-end 75 nt on 116 

Illumina HiSeq 3000. Fastq files were mapped to using kallisto, and gene counts were 117 

tabulated using tximport. Deconvolution was performed using Xcell v1.1 118 

(xcell.ucsf.edu)(16) or Cibersort using LM22 gene signature and 100 permutations 119 

(cibersort.stanford.edu)(17). 120 

Data analysis and statistics 121 
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Data were analysis, visualization and statistical comparisons were performed R (cran.r-122 

project.org). Bland-Altman analysis (39) was implemented in the BlandAltmanLeh 123 

package v0.3.1. 124 

Data availability 125 

FCS files for flow cytometry and mass cytometry data sets have been deposited in 126 

FlowRepository (accession#). Single cell RNA sequencing and bulk RNA sequencing 127 

datasets have been deposited in Gene Expression Omnibus (GEO) (accession#).  128 

 129 

Results 130 

Healthy donor characteristics 131 

Twenty healthy volunteers were recruited for bone marrow aspiration procedures. 132 

The cohort consisted of 10 males and 10 females with ages ranging 24-84 years old and 133 

median age of 57 years. A second bone marrow aspiration was performed for two 134 

donors (Ck, Sk) (“biological replicate”) either 2 or 5 months after their first aspiration 135 

respectively. Cryopreserved cells from all twenty donors were analyzed by droplet-based 136 

scRNAseq and flow cytometry, and additional cryopreserved vials for eight donors were 137 

analyzed by mass cytometry for T cell phenotyping, as well as bulk RNA sequencing, as 138 

summarized in Table 1. 139 

Single cell RNA sequencing 140 

Droplet-based scRNAseq of bone marrow mononuclear cells (BMMCs) for all donor 141 

samples was performed with goal minimum sequencing depth of 50,000 reads/cell and 142 

detected a mean of 880 genes/cells (range 575-1,390 gene/cell, Table 1). Greater than 143 

90,000 cells were captured; using quality filters of at least 500 genes per cell and less 144 

than 8% mitochondrial RNA content, 76,645 cells were analyzed in the final analysis.  145 

To account for sample variations between donors, alignment of all samples was 146 

performed in Seurat using canonical correlation analysis (CCA) then visualized using t-147 
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distributed stochastic neighbor embedding (t-SNE). Cell clusters were distinguished 148 

using the Louvain clustering algorithm implemented in Seurat. Compiled analysis of all 149 

donor cells is annotated in Figure 1A with the contribution of each individual donor 150 

displayed in Figure S1. All major previously identified populations of bone marrow 151 

mononuclear cells were present in the clustered scRNAseq analysis.   152 

Single cell trajectory analysis was performed using Monocle 3.  As there were 153 

potentially multiple disjoint trajectories in this complex dataset containing a large number 154 

of cells, UMAP was used for dimension reduction.  The resulting development 155 

trajectories clearly display the major lymphoid, myeloid and erythroid lineages of 156 

hematopoiesis with correct ordering of developmental stages (Figure 1B).  Trajectories 157 

of erythroid and myeloid lineages could also be created using an earlier, well validated, 158 

version of this software (Monocle2, see Figure S1) and were consistent with those 159 

observed for the full dataset. 160 

Annotation of cell cluster identities was determined using a panel of canonical gene 161 

expression, with the expression patterns for a subset of these genes displayed in Figure 162 

1C. Analysis of each donor sample individually using principal component analysis 163 

(PCA) in Seurat revealed suboptimal quantification of frequencies of some 164 

transcriptionally similar cell subsets, including those annotated as effector T cells and 165 

NK cells.  Such clusters were typically well delineated for each individual sample when 166 

using CCA in the context of the entire dataset (Figure S1). 167 

A potential use of scRNAseq is to compare across two or more samples.  To confirm 168 

the validity of scRNAseq for this approach, assay reproducibility was determined by 169 

preparing duplicate, side-by-side libraries from cells thawed from the same 170 

cryopreserved vial, for a total of three cryopreserved samples.  Cell subtype 171 

quantification for each of these technical replicate pairs matched robustly (Figure 1D). 172 

The optimum number of cells required to identify, using scRNAseq, sub-populations 173 
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within a heterogenous samples remains an area of interest (13).  Technical replicates 174 

ranged from 1,138 to 6,692 cells from the same sample (Table 1). 175 

Flow cytometry 176 

13-color flow cytometry using five customized panels (“T, B, NK, Mono and DC”, see 177 

Table S1) designed to allow deep immunophenotyping of the predominant cell 178 

populations found in human bone marrow was performed on all samples.  Approximately 179 

1 million cells were stained for each panel, and a median of 196,000 CD45 positive 180 

events collected (25th-75th percentile: 100,000-278,000 events).   Gating strategy is 181 

shown in Table S2.   Most frequent cell subtype populations observed were, in order, T 182 

cells, monocytes, B cells, natural killer cells (NK), dendritic cells (DC) and hematopoietic 183 

stem/progenitor cells (HSPC) (see Figure S2).  184 

  Paired analysis of the same sample by both transcriptome and cell surface 185 

phenotype offers a powerful opportunity to compare cell population frequencies 186 

determined by these methods. The proportion of major cell populations is summarized 187 

for scRNAseq and flow cytometry in Figure 2A. Sample-by-sample correlations for all of 188 

these populations are shown in Figure 2B. It is well established that the T memory cell 189 

population increases with increasing age in humans, likely due to response to viral 190 

infection (in particular CMV), and this trend was reproduced in our cohort using both 191 

scRNAseq and flow cytometry (Figure S2)(14).  Two subjects had a second bone 192 

marrow aspiration performed at either 2 or 5 months after their first aspiration.  These 193 

biological replicates showed good concordance by flow cytometry but showed variation 194 

by scRNAseq particularly in lower frequency cell subsets, likely from sampling error 195 

(Figure S2) 196 

While concordance between these two modalities was generally good, it appeared 197 

that T cell frequency was elevated, and NK cell frequency decreased in scRNAseq as 198 

compared with flow cytometry.  This led to a more detailed examination of T cells 199 
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subsets and orthogonal validation of cell surface immunophenotyping using a third single 200 

cell modality. 201 

Mass cytometry 202 

In order to more deeply characterize immune populations within healthy bone 203 

marrow, and to validate our flow cytometry results, T cell phenotyping was performed by 204 

mass cytometry using a 37-marker panel for a subset of eight donors. Using Cytobank 205 

software, CD45-positive cells were visualized using viSNE across the panel of markers 206 

(Figures 3A and S3).  Correlation between mass cytometry and flow cytometry for CD4- 207 

and CD8-positive T lymphocyte subsets was good as shown in Figure 3B.   208 

To further compare mass cytometry and flow cytometry with scRNAseq of T cell 209 

populations, the frequencies of T cell subsets for this cohort of eight donors were 210 

determined using all three of these methods, shown in Figure 3C with sample 211 

correlations reported in Figure 3D.  Comparing frequencies of T cell populations 212 

between mass cytometry and scRNAseq confirmed a small but persistent skewing in the 213 

identification of NK and T cells. Using Bland-Altman calculations, the mean difference 214 

between scRNAseq and mass cytometry for T cells was -6.5% (95% CI: -29% to 16%) 215 

and for NK cells was 3.2% (95% CI: -1.1% to 7.6%).  216 

CD8 cytotoxic T cells and NK cells are known to have substantial overlap at the 217 

transcriptome level (15).  To better understand systemic bias in the frequency of NK or T 218 

cells identified, we confirmed that overlapping gene signatures are found in clusters 219 

annotated as NK or T cells in this scRNAseq data set (Figure S4). The reasons for this 220 

bias are likely however multifactorial. 221 

Bulk RNA-sequencing  222 

Analysis of bulk sample RNA expression has been used to attempt to 223 

deconvolute the proportion of each cell subtype in human tissues (16, 17). Finally, as an 224 

additional resource, stranded whole transcriptome sequencing of RNA isolated from 225 
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thawed BMMCs was performed on samples from all eight subjects for which mass and 226 

flow cytometry and single cell RNA sequencing was available. Initial analysis using 227 

deconvolution algorithms that attempt to predict the proportion of cell subpopulations is 228 

shown in Table S4. 229 

 230 

Discussion 231 

Changes in the immune system (14) and hematopoiesis (18) occur during human 232 

aging. Using an unbiased approached based on unsorted human BMMCs, we describe 233 

the major cell populations of healthy human bone marrow from a cohort of donors over a 234 

wide range of adult age by multiple high-dimensional single cell techniques.  This 235 

resource serves as a complement to existing data sets that have consisted primarily of 236 

younger donors without associated paired immunophenotyping. Our data set provides a 237 

resource of scRNAseq, flow cytometry and mass cytometry data for healthy control 238 

cohorts across the full range of adulthood providing not only cell population frequencies 239 

and characteristics, but also highlighting individual variation in human cohorts. 240 

Using scRNAseq of a total of over 76,000 cells from 20 healthy donors, all the 241 

major bone marrow mononuclear populations are identified, and overall population 242 

frequencies are comparable to flow cytometry of the matched samples. A primary 243 

limitation is distinguishing cell populations such as NK cells and CD8+ effector T cells, 244 

which have overlapping transcriptional programs with a small number of distinguishing 245 

genes captured by droplet-based scRNAseq. To overcome this limitation and provide 246 

additional reference data beyond previous reports of major healthy bone marrow 247 

populations by flow cytometry (19) and mass cytometry (20, 21), we used the strength of 248 

mass cytometry for high resolution of T cell subpopulations (22), both to validate our flow 249 

cytometry results and provide quantification of rare T cell subpopulations within healthy 250 

human bone marrow. 251 
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As a data resource, these high-dimensional approaches to bone marrow 252 

characterization add valuable information on transcriptional and cell surface marker co-253 

expression. The growing number of bioinformatics tools for mass cytometry (23) and 254 

scRNAseq (24, 25) will benefit from reference data sets for validation and integrated 255 

comparison across techniques. Future opportunities for integrating these data sets 256 

include droplet-based sequencing with oligonucleotide-tagged antibodies, including 257 

CITE-Seq (26), REAP-Seq (27), and AbSeq (28), which can be compared to this 258 

reference set of cell surface protein and transcriptome expression. As techniques (29) 259 

and repositories (30) of high-dimensional single cell human data sets are expanded, 260 

validating the observed cell identities will be a critical aspect of interpreting large data set 261 

analysis. 262 

Additional aliquots of bone marrow aspirate from this cohort together with paired 263 

blood samples, that were not yet analyzed, have been stored.  Should transformative 264 

technologies emerge over the next few years we would be willing, subject to relevant 265 

technology transfer and clinical regulatory approvals, to share remaining samples with 266 

academic investigators for additional benchmarking and validation.  In summary, this 267 

resource provides a reference dataset for cell populations in healthy human bone 268 

marrow across a wide age range as assessed by multiple single-cell approaches. We 269 

show that scRNAseq quantification of marrow-resident cell populations has good 270 

concordance with immunophenotyping by flow and mass cytometry with some 271 

discrepancies in T and NK subsets. We hope this unique combined dataset will prove 272 

useful both to those seeking to refine or innovate bioinformatic algorithms for scRNAseq 273 

data and also to those investigators hoping to apply these powerful single-cell 274 

technologies in their own research.   275 

 276 
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Figures and Tables 409 

 410 

Figure 1. Single cell RNA sequencing of healthy bone marrow cells. (A) Cluster 411 

identification visualized using t-distributed stochastic neighbor embedding (t-SNE). (B) 412 

Single cell trajectory analysis using UMAP/Monocle 3. Color as in Figure 1A. (C) 413 

Examples of canonical gene expression used for annotation. (D) Reproducibility of 414 

technical replicates for single cell RNA sequencing. Linear regression line displayed in 415 

grey.  416 

 417 

Figure 2. Comparison of single cell RNA sequencing and flow cytometry assessment of 418 

bone marrow cell type population frequencies. (A) Frequencies for major cell populations 419 

in human bone marrow shown for single cell RNA sequencing and flow cytometry. (B) 420 

Individual sample comparisons by scatter plot for each cell population. All population 421 

comparisons are shown in background in grey.  Population frequencies are reported 422 

using denominator of all CD45 positive cells.  423 
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 424 

Figure 3. Comparison of single cell RNA sequencing, mass cytometry and flow 425 

cytometry assessment of T lymphocyte frequencies in human bone marrow. (A) Mass 426 

cytometry for phenotyping of T cell populations visualized using viSNE analysis with 427 

expression of key markers shown (B) Comparison of cell frequencies for each donor 428 

determined by mass cytometry and flow cytometry. (C) T cell frequencies for cell 429 

populations identified by mass cytometry, flow cytometry and single cell RNA 430 

sequencing. (D) Individual sample comparisons by scatter plot for each cell population. 431 

All population comparisons are shown in background in grey.   432 

 433 

Table 1. Heathy volunteer sex and age at time of bone marrow aspiration. Biological 434 

replicate time points for a second longitudinal bone marrow aspirate from the same 435 

volunteers are shown within grey boxes. Assays from matched cryopreserved bone 436 

marrow mononuclear cell vials are indicated.  Single cell RNA sequencing cell counts 437 

and sequencing depth (reads per cell and genes per cell) are listed for each donor and 438 

replicate.  439 

 440 

Figures S1-S4 and Tables S1-S4 can be found in the supplementary information. 441 
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Table 1 

Sample Gender Age 

Flow 

Cytometry 

Mass 

Cytometry Bulk RNA scRNAseq 

Technical 

Replicate Cells Reads/Cell Genes/Cell 

 
T F 24 x x x x  4,293 88,461 1,000 

W F 28 x 

  
x  3,643 47,132 649 

E M 30 x 

  
x  3,939 69,061 575 

R M 31 x 

  
x  3,593 131,257 669 

F F 41 x 

  
x  3,746 75,712 846 

J F 43 x x x x  3,446 108,679 970 

U F 46 x x x x  4,118 85,295 1,143 

B M 47 x x x x  3,293 99,593 794 

H F 50 x x x x  5,013 63,164 883 

O M 50 x x x x  4,516 47,778 851 

Sk 

F 

55 x   
x Sk1 1,138 323,589 823 

  
x Sk2 4,726 163,732 820 

S 56 x   
x S1 2,437 113,302 1,089 

  
x S2 2,367 83,847 1,163 

L M 57 x 

  
x  4,548 67,199 950 

P F 58 x 

  
x  3,383 223,652 1,390 

G M 58 x 

  
x  4,283 89,208 667 

A F 59 x x x x  2,994 159,501 1,303 

Ck 

F 

 

59 x 

  
x  1,052 349,511 761 

C 60 x x x 

x C1 3,556 62,645 692 

x C2 3,136 58,675 692 

M M 60 x 

  
x  3,964 92,780 875 

Q M 66 x 

  
x  1,700 126,143 702 

N M 67 x 

  
x  4,522 110,195 881 

K M 84 x 

  
x  7,247 43,872 879 

 

Sk and S are two samples taken from the same donor at different times (ie: biological replicates).   

Ck and C two samples taken from the same donor at different times (ie: biological replicates).   

Samples Sk, S and C were split and used for technical replicates of single cell RNA sequencing. 
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