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Abstract 

Analysis of CRISPR-induced mutations at targeted loci can be achieved by PCR 

amplification followed by massively parallel sequencing. We developed a novel 

algorithm, called CRISPRpic, to analyze sequencing reads from CRISPR experiments 

via counting exact-matches and pattern-searching. Compared to other methods that are 

based on sequence alignment, CRISPRpic provides precise mutation calling and 

ultrafast analysis of sequencing results. The Python script for CRISPRpic is available at 

https://github.com/compbio/CRISPRpic. 
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Background 

CRISPR is the most widely used technique for genome editing in research and industry 

[1]. For successful genome editing in cells and organisms, highly efficient CRISPR-

sgRNAs, which differ by cell type or target sequence, are required. Next generation 

sequencing (NGS) technology allows for convenient and massively parallel 

measurement of the results of genome editing experiments. Currently, tools exist for 

analyzing the CRISPR-induced mutation spectrum from sequencing data by aligning 

sequencing reads to the unmodified reference sequence [2-4]. However, sequence 

alignment requires multiple calculations for identifying indels with the highest alignment 

score, and frequently provides false calls depending on the sequence context [5]. We 

provide a solution to these limitations that offers greater accuracy and speed and is 

simple to implement. 

 

Herein, we describe an algorithm for fast and precise analysis of CRISPR-

induced mutations via prefixed index counting (CRISPRpic). Our application has 

multiple improvements that greatly facilitate detection of variants at CRISPR target 

sites. We also provide user-friendly customizable input for other mutation analysis 

applications, i.e. editing using Cpf1. The simplicity of the CRISPRpic algorithm allows 

for sequencing analysis on a low performance computing environment. Taken together, 

our method facilitates CRISPR-based experiments, provides greater accessibility to 

novice researchers who are unfamiliar with the complex nuances of CRISPR-based 

genome editing, and will increase the analytical throughput of screening for CRISPR-

engineered variants across a broad assortment of applications. 
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Results 

Overview of CRISPRpic algorithm 

We developed a computational tool, CRISPRpic, that counts every possible mutation in 

a set of sequencing reads without alignment. CRISPRpic is based on three unique 

properties of gene editing experiments: i) Sequencing reads have fixed ends originating 

from PCR primer pairs, ii) CRISPR/Cas9 induces a double strand break (DSB) at a 

predictable position within a target sequence, and iii) Mutations should encompass the 

DSB site (Fig. 1a). These features enable the prediction of the majority of possible 

mutations and therefore their efficient identification. The default input to the program is 

the list of amplicon sequences, the guide RNA sequences located within each amplicon, 

and the type of the endonuclease used, which has a defined breakpoint (CRISPR/Cas9 

from different bacterial species: SpCas9 or AsCpf1, etc.). Using these parameters, 

CRISPRpic has the flexibility to analyze genomic alterations produced by several 

different enzymes covering a variety of DSB positions. Our pipeline implements the 

following steps (Fig. 1a); i) building a hash table and set of k-mer indices, ii) identifying 

and selecting amplicons with their frequencies, and iii) classifying amplicons by using 

hash tables or pattern searching of k-mers. Most cas9 induced mutations are 

predictable and stored in hash table for perfect matching. However, some sequencing 

reads, from some insertions at DSB and unknown variants incorporated by PCR or 

sequencing error, are not identical to the predictions. In order to classify these reads 

with unpredictable variants, we designed a pattern searching algorithm using the 

distance of the k-mer indices in the references (m) and sequencing reads (n) (Fig. 1b). 

Basically, the relative difference between m and n indicates insertion, deletion, and so 
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on. Altogether, CRISPRpic is designed to follow a logical decision tree using either 

exact-matching or pattern-searching, which allows for non-ambiguous mutation calling 

(Fig. 2). 

 

Precise mutation calling by CRISPRpic 

We tested CRISPRpic on 20 million reads from the human PVT1 locus amplified from 

cells treated CRISPR/SpCas9 [6] (Fig. 3a). CRISPRpic successfully classified almost 

100% of reads; 94.8% by exact-matching and 5.2% by pattern-matching. Only 0.003% 

of reads could not be classified appropriately. From this data, we randomly sampled 

sequencing reads ranging from the 103 to 107 reads. In this analysis, overall mutation 

frequencies were not significantly different from the total sample size (Fig. 3b). As 

CRISPRpic made all theoretically possible deletions in the hash table, we analyzed the 

frequencies of each deletion allele. Of the 1,499 deletions that could theoretically occur 

in this amplicon, we detected 679. (Fig. 3c). The frequency of each deletion allele 

varies with sample size and saturated at 107 reads sample size (Fig. 3d).  

 

We further analyzed sequencing reads from 10 different loci in the human 

genome targeted by two different types of CRISPR [7] using three different programs: 

CRISPRpic, CRISPResso, and Cas-analyzer (Fig. 4a and Additional files 1). 

CRISPRpic successfully assigned the vast majority of the sequencing reads (>99.99 % 

of the total reads at 20 targeted loci) to a single prefixed classification (Additional files 

2). In this analysis, the three different programs showed significant differences in the 

indel frequencies for the following loci: DNMT1-3, EMX1-2, or HPRT1-4 of SpCas9, and 
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CCR5-1 or DNMT1-4 of AsCpf1 (Fig. 4a). We found that alignment-based programs 

showed false mutation calling dependent on the parameters at a particular locus (Fig. 

4b). We further inspected the reads that were classified differently by the three 

programs. For the 50 types of sequencing reads classified manually as deletions, 

CRISPRpic classified them correctly while some of them were not properly classified by 

the either one of two other programs (Additional files 3). Our calls always agreed with 

majority classification. In addition to deletions, CRISPRpic correctly classified insertions 

and substitutions. For all reads we examined manually which were classified deletions, 

insertions or substitutions manually, CRISPRpic classified them correctly, confirming 

that CRISPRpic is precise and robust to sequencing reads harboring unpredictable 

artifacts. 

When DSBs are repaired in living cells, micro-homology mediated deletions are 

more frequent than random ones [8]. The CRISPRpic algorithm can correctively classify 

mutations harboring micro-homology sequences. By manual examination, we found that 

alignment-based methods often incorrectly classified the sequences with micro-

homology. When micro-homology sequences are present at the border of a mutagenic 

window, deletions at multiple locations often generate a single sequence. Mutation 

calling can be ambiguous as their possible multiple alignment and aligning programs 

generally select one of these possibilities (Fig. 4c). Biased alignment of sequence with 

micro-homology also showed inaccurate distribution of the overall deletion pattern by 

position (Fig. 4d). However, CRISPRpic integrates these possibilities into one deletion 

entity while preserving multiple deletion position information, successfully explaining the 

higher frequency of a deletion that can be derived from multiple positions. Therefore, 
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CRISPRpic is robust with micro-homology and precisely presents all possibilities for 

each deletion in contrast to alignment-based methods which show positional bias in 

deletion calling. 

 

Ultrafast analysis of mutations by CRISPRpic 

In addition to the precision of mutation calling, CRISPRpic showed drastically 

decreased analysis time, compared to alignment-based methods (>1,000-fold, Figure 

5a). Indeed, CRISPRpic is designed to perform simple counting and k-mer searching 

rather than multiple calculations, thus not requiring a high-performance computing 

environment. Therefore, CRISPRpic can analyze 20 million reads in only one minute on 

a personal lap-top computer, whereas CRISPResso could not complete the analysis 

within 2 days (Fig 5b). 

 

Discussion and Conclusions 

Induction of mutations at target loci is one of the most common applications of CRISPR, 

but analysis of the mutation spectrum by sequence alignment has multiple limitations, 

including incomplete or erroneous calling of variants requirement for a high- 

performance computing resource. Although large numbers of researchers need to 

analyze CRISPR-induced mutations, a precise and fast method for analysis has not 

been developed so far. CRISPRpic is based on exact-matching and logical decisions, 

which provides precise and ultrafast analysis of mutations in CRISPR experiments.  
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We note that there are two cases where CRISPRpic is not able to classify (which 

is classified as NA) and one case where it classifies incorrectly. From our analysis of 

amplicon sequencing data across 10 loci, we observed only one case as a source of 

NA; all k-mers either upstream or downstream were not found within the amplicons. 

This can happen a when large deletion left less than k nucleotides at either end or less 

than (k  2) long nucleotides with some other mutation events. In the analysis of 20 

targets, 16 loci did not have any NA and only one locus showed a maximum of 0.04% 

NA. Sequences labeled as NA were eliminated from initial calculation of indel 

frequency. CRISPRpic is, in fact, designed to classify an additional case into NA, in 

which of i or j index is larger than w but [i index > w and i index – i shift-count < w] or [j 

index > w and j index – j shift-count] is less than w. This is the case where it is very 

challenging to decide clearly whether mutations are within DBS or not. We did not 

observe this case in the 21 targeted sites we analyzed to develop CRISPRpic.  

 

We found only one type of sequence from the HPRT1-4 locus which was 

incorrectly classified.  CRISPRpic called a given set of reads as a complex deletion, but 

manual examination showed a deletion rather than complex deletion. This incorrect 

classification occurred because the locus contains an AT-repeat sequence that is longer 

than the k-mers in the upstream sequence. In this case, CRISPRpic skipped several 

non-unique k-mers due to AT repeats resulting in i is not zero followed by classification 

into a complex deletion. For cases like this, in which the target locus contains repetitive 

sequences, we recommend that users provide a longer k-mer length as an input 

parameter. 
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CRISPRpic is useful for high-throughput screening of efficient sgRNAs for 

CRISPR, as well as for other applications such as mutagenesis-based functional 

studies of proteins [9] and regulatory elements in a DNA-centric manner [10]. The 

advent of single cell analysis of CRISPR-mediated perturbations [11-13] further 

necessitates the need for highly efficient and scalable means of analyzing gene edits. 

From the analysis conducted in this study, we recommend sequencing 103 to 104 

sequencing reads per target locus to accurately evaluate the efficiency of CRISPR. For 

allele-based quantitative analysis, we recommend sequencing 106 to 107 total reads 

depending on the mutation frequency (Fig. 3). 

Recently, it was reported that CRISR can induce large deletions over several 

kilobases [14]. When surveying long range mutations, longer PCR combined with 

sequencing errors can cause false alignment-based calls followed by incorrect mutation 

calling. CRISPRpic is exceptional at distinguishing variants not induced by CRISPR, 

which will make CRISPRpic a standard method for analysis of CRISPR-induced 

mutations for any type of amplicons.  

CRISPRpic is precise and robust with sequence context, thus will provide a clear 

picture of Cas9 induced mutations in CRISPR-based experiments. CRISPRpic is also 

ultrafast, so enables researchers to analyze the large size of sequences data from 

CRISPR-based genome editing, which is not feasible by any other tools. 

 

Methods 

Detailed algorithm of CRISPRpic 
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Step1: Building hash tables for exact matching 

CRISPRpic builds a hash table representing all of the sequences with all possible 

mutations encompassing the target site of DBS in the reference sequence, which is the 

expected amplicon. This target site, or the CRISPR mutagenic site, is determined by the 

window size (w, default = 3) defined by users. Therefore, the mutagenic site 

encompasses the breakpoint with 3 nucleotides on both sides, leading to a total 6 

nucleotides with the breakpoint in the middle (Fig. 1a). We consider only mutations 

within this mutagenic site as CRISPR-induced mutations. All other mutations (which 

tend to be PCR artifacts or sequencing errors) are not considered as mutations induced 

by Cas9. 

 

First, all possible deletions encompassing the mutagenic window and with 

different sizes are generated (Fig. 1a).  Some deletions at different positions can be 

identical when short, common sequence motifs (i.e. micro-homology regions) are 

present in the reference sequence. In this case, we treat them as single deletion event 

with multiple alignment positions (Fig. 4d). Second, the hash table includes single 

nucleotide substitutions, deletions, and insertions at all positions of the reference 

sequence (Fig. 1a). Only substitutions, deletions, and insertions within the defined 

CRISPR mutagenic window are classified as mutations while all other outside changes 

are classified as “unmodified”. 

 

Step 2: Building two sets of k-mer indices for pattern searching 
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Some portion of amplicons cannot be matched to one of sequences in the hash table by 

exact matching when they have unknown variants not induced by endonuclease. To 

classify them, we employ pattern searching using a k-mer “index” (default length of k is 

8). The program generates a set of k-mer indices from the middle breakpoint and tiles 

upstream in 1 nucleotide increments (Fig. 1a). Therefore, the order of indices 

represents the distance from the breakpoint. For example, the first index among the 

upstream set is located at the right at the breakpoint while second index locates the one 

nucleotide upstream of breakpoint. Next, we examine the unique representation of each 

k-mer index among all k-mer indices. If a k-mer appears more than once, we skip this k-

mer index for pattern searching given there is a possibility of a false positive. 

 

If the outside index is originated from inside the window by skipping, then 

classification is challenging. We keep all indices within the mutagenic window to 

facilitate the analysis. Thus, we increase the length of the k-mer by one nucleotide until 

all indices within the mutagenic window are unique. For instance, all three k-mer indices 

must be unique among all indices in upstream set when the size of mutagenic window is 

3.  We build the downstream set of k-mer indices in the same way. 

 

Step 3: Identifying and selecting amplicons 

The input data for CRISPRpic are single reads in FASTQ formats that originate from 

PCR amplicons. The paired-end reads can be converted to single-end reads by a 

program called FLASH. We process only those reads per the following criteria:  they 

contain either one of two adaptor sequences; both the first and last eight nucleotides of 
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the reference sequence are present after removing adaptor sequences.  Based on this 

processing, we determine the individual amplicon reads with their fractions among the 

total data set. 

 

Step 4: Classifying amplicon read sequences 

First, we examine if all distinctive amplicons are identical to one of the virtual mutant 

sequences and the reference sequence in the hash table. If they are matched, they will 

be characterized by the classification in the hash table. Second, all reads not identical to 

one of sequences in hash table will be classified by pattern searching (Fig. 1a). The 

classification is determined by the following 5 variables with the given mutagenic 

window size: 

 

1. i index, ordinal number of upstream k-mer index, which was first found in the 

amplicon 

2. i shift-count, number of upstream k-mer skipped 

3. j index, ordinal number of downstream k-mer index, which was first found in the 

amplicon 

4. j shift-count, number of downstream k-mer skipped 

5. n, the length of remaining sequence between two k-mer in the amplicon 

 

The ordinal number of each index indicates the distance from breakpoint. For 

example, the ordinal number of first index is zero, which represents the right breakpoint 

on the reference. CRISPRpic initiates a search from the upstream k-mer in order until a 
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k-mer is found in the amplicon. As mentioned above, we skip the non-unique k-mers in 

the amplicon. The number of skipped k-mer are counted as i-shift count. CRISPRpic 

repeats the same procedure for downstream k-mer. When no proper k-mer is found 

either upstream or downstream index set on amplicon, we designate this read as “NA”. 

After finding upstream and downstream k-mer in amplicon, CRISPRpic examines the 

sequences between two identified k-mer in amplicons. 

 

After identifying the five parameters above, we eliminate those amplicon 

sequences when they have [i index > w and i index – i shift-count < w] or [j index > w 

and j index – j shift-count].  This step is take because for this specific case, mutation 

identification is a challenge. Otherwise, we classify reads by rules depicted in logical 

flow chart (see below) using the following three numbers: i (= i index – i shift-count), j (= 

j index – j shift-count) and n. 

 

Step 5: Variant classification 

We describe how these parameters are used for identifying a variant using the 

parameters as described (Fig. 1b and Fig. 2).  Each case is considered as follows: 

 

i)  Reads are classified as reference “wildtype” and not CRISPR-modified  

When i, j and n equal zero. Described simply, the first k-mer in both upstream and 

downstream were found and there is nothing between these two k-mer in amplicon. This 

also means 16 nucleotides centered at the breakpoint (i.e. the targeted mutagenic site) 

are identical to the reference sequence. These sequences are not matched to one of all 
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possible mutated sequences because of unknown variants somewhere outside of 

mutagenic window of amplicon. 

 

ii)  Reads are classified as an insertion  

When i and j equal zero, but n is larger than zero. This happens when some sequences 

are inserted at the breakpoint. In this case, first upstream and downstream k-mers will 

be found, but there will be remaining sequence between two indices (n > 0) in amplicon 

due to insertion. 

 

iii)  Read are classified as a deletion  

When n equals zero, but i or j is not equal to zero. This indicates some sequences are 

deleted at the breakpoint. For example, 2nd upstream k-mer and 4th downstream k-mer 

will be found when 1 and 3 nucleotides are deleted from upstream and downstream of 

breakpoint respectively. However, there will be no remaining sequence between two k-

mer on amplicon. Finally, there are complicated cases that m > 0 and n >0, where m = i 

+ j. The classification is determined by the rules in the logic flow chart. 

 

iv) For complex variants that do not fall in the aforementioned categories on the first 

analysis pass 

We compare the expected distance (m) of two found k-mer in the reference sequence 

with the length of remaining sequence (n). There are three possibility between m and n; 

i) n > m, ii) n = m, and iii) n < m. 
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First, amplicons are classified as insertion when n is larger than m. This happens 

when insertion happens with some other events. Second, amplicons are classified as 

either substitution or unmodified when n equals m. In this case, we examine if the 

remaining sequence is identical to the sequence with the mutagenic site. If they are 

identical, amplicons are classified as unmodified. Otherwise, they are classified as 

substitution. Third, amplicons are classified as either complex deletion or unmodified 

when n is smaller than m. In this case, we examine the location of deletion relative to 

breakpoint. If deletion occurs outside of the mutagenic site, they are classified as 

complex deletion. Otherwise, they are classified as unmodified. 

 

Calculating the frequency of deletions at all position in the amplicon 

Multiple deletion events at different position of the reference sequence results in same 

sequence when there are “micro-homology” sequences at the junction of deletion (Fig. 

4c). The micro-homology refers to a short sequence motif that appears repeatedly, thus 

providing multiple alignments to the reference sequence. We use the count of this 

deletion sequence for each position by dividing by total number of multiple alignments 

that contain the position. For instance, we observed a deletion sequence 100 times that 

derived from five different alignments of deletions. All positions deleted in all five 

alignments are counted 100 times as well. However, the deletion at the most upstream 

can occur in only one alignment, so it was counted only 20 times (= 100/5). 

 

These deletions as counted though micro-homology motifs tend to be more 

prevalent than a random deletion that occurs because of sequencing artifact.  We use 
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the presence or absence of the micro-homology motif to determine the frequency of out-

of-frame deletions. As has been previously reported, this analysis is based on the 

sequence interval that lies between two micro-homology motifs[8]. 

 

Information of computing environment 

All analysis was performed under following specification except Fig. 5b:  

2.5 GHz AMD Opteron 6380, 512 GB 1600Mhz DDR3, Linux 4.4.0-122 generic #146-

Ubuntu SMP  

 

Low performance computing environment for Fig. 5b:  

2.3GHz Intel Core i5, 8 GB 2133 MHz LPDDR3, macOS High Sierra 10.13.4.  

 

Software version used in this study 

Python 2.7 

Flash 1.2.11 

 

CRISPResso, 1.0.8  

(with -w 3 -a [amplicon sequence] -g [target sequence-without PAM-]) 

 

Cas-Analyzer, web version (http://www.rgenome.net/cas-analyzer/) 

(with [checked in the ‘or use both ends’], [1 for minimum frequency], [3 for WT marker] 

for all analysis except Fig. 4b) 
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Manual inspection for comparison between programs 

When manually inspected, the inspector could not determine clearly a specific variant 

call in many cases. To eliminate this ambiguity we developed the following rules for 

assignment: i) Mutations are only classified as unmodified, insertion, substitution, or 

deletion; and ii) If the sequencing read is assigned in multiple categories, we prioritize 

insertions or deletions above wildtype or substitution.  For the CRISPResso that does 

not provide the classification, we assigned the classification to reads using logical 

values and numbers from the following columns: NHEJ, UNMODIFIED, n_deleted, 

n_inserted, and n_mutated. As a test, this manual inspection was done in a blinded 

fashion. 

 

List of abbreviations 

NGS: Next Generation Sequencing 

CRISPR: Clustered Regularly Interspaced Short Palindromic Repeats 

DSB: double strand break 

sgRNA: single guide RNA 

SpCas9: Streptococcus pyogenes Cas9 

AsCpf1: Acidaminococcus sp. Cpf1 
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Figure Legends 

Fig 1 Sequencing analysis of CRISPR-induced mutations using CRISPRpic. 

a Schematics representing the NGS analysis for the CRISPR experiments and 

CRISPRpic algorithm to analyze them. b Examples of mutations calling by pattern-

searching algorithm. Reference, sequencing read, or virtual DNA sequence is shown in 

yellow, blue or green, respectively. Orange and navy indicate the k-mer indices. 

 

Fig 2 Logical decision tree of CRISPRpic. 

 

Fig 3 Analysis with different sample size of sequencing reads using CRISPRpic.  

a Mutation analysis of sequencing reads from the PVT1 locus targeted by SpCas9. b 

Comparison of indel frequencies by sample size of sequencing reads. The p-value was 

calculated by two-sided t-test (n=10, technical replicates). c Distribution of all 

theoretically possible deletions at the PVT1 locus by sample size of sequencing reads. 

All results from repeated sampling are shown together by the sample size. d 

Comparison of i) coverage of all detected deletions, ii) read number at 10th, 50th and 

90th percentile of covered deletions, and iii) the read number needed to cover 90% of 

all detected deletions. 

 

Fig 4 Precise analysis of CRISPR-induced mutations. 

a Mutation frequencies analyzed by CRISPRpic in addition to other programs for 10 

different target loci treated by SpCas9 (left) or AsCpf1 (right). †Sequencing reads were 

classified manually and more shown in Additional file 3. ††Cas-analyzer does not 
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distinguish the substitutions from unmodified allele.  b Comparison of mutation 

frequencies by different parameters of CRISPRpic or Cas-analyzer. Colors indicate as 

shown as a. c example of classification of deletions harboring micro-homology 

sequences. Blue or grey box indicates mutagenic window (± 3bp from breakpoint, red 

triangle) or micro-homology sequences, respectively. d Unbiased analysis of deletion 

pattern by CRISPRpic. Two sequencing reads from the AAVS1 locus were extracted 

from actual output files of CRISPRpic (pink) or CRISPResso (blue) as an example (left). 

Micro-homology sequences are marked in the grey box. Dashed line indicates the 

breakpoint. Deletion distribution of entire sequencing reads from CCR5-9 or HPRT1-4 

locus (right).  

 

Fig 5 Ultrafast performance of CRISPRpic. 

a Processing time for CRISPRpic and CRISPResso up to 107 sequencing reads from a 

sample of human PVT1 locus (n=10, technical replicates). Lines represent linear 

regression and 95% confidence intervals. b Processing time for mutation analysis on 

personal lap-top computer using CRISPRpic or CRISPResso.  
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