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Abstract 

The retrosplenial complex (RSC) plays a crucial role in spatial orientation by computing heading 

direction and translating between distinct spatial reference frames based on multi-sensory information. 

While invasive studies allow investigating heading computation in moving animals, established non-

invasive analyses of human brain dynamics are restricted to stationary setups. To investigate the role of 

the RSC in heading computation of actively moving humans, we used a Mobile Brain/Body Imaging 

approach synchronizing electroencephalography with motion capture and virtual reality. Data from 

physically rotating participants were contrasted with rotations based only on visual flow. During physical 

rotation, varying rotation velocities were accompanied by pronounced wide frequency band 

synchronization in RSC, the parietal and occipital cortices. In contrast, the visual flow rotation condition 

was associated with pronounced alpha band desynchronization, replicating previous findings in desktop 

navigation studies, and notably absent during physical rotation. These results suggest an involvement of 

the human RSC in heading computation based on visual, vestibular, and proprioceptive input and 

implicate revisiting traditional findings of alpha desynchronization in areas of the navigation network 

during spatial orientation in movement-restricted participants. 
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Introduction 

Heading computation is fundamental for spatial orientation in humans and other species. The registration 

of moment-to-moment changes in orientation with respect to an allocentric (view-point independent) 

reference direction provides information about an animal’s current heading relative to the environment. 

This is accomplished by the integration of vestibular, proprioceptive, and visual signals providing 

information about linear and angular velocity signals of the head, the relative position of the head with 

respect to the trunk, and information about stable aspects of the environment, respectively (Angelaki & 

Cullen, 2008). Single cell recordings in freely behaving animals identified several brain structures 

involved in heading computation, including the retrosplenial cortex (Chen et al., 1994; Cho & Sharp, 

2001). The RSC receives input from the visual system and from head direction cells in the thalamic nuclei 

(Vann et al., 2009). It also hosts subpopulations of heading-sensitive cells that are sentient to local 

features of the environment, while other cells exhibit mixed activity patterns related to both local and 

global heading computation (Jacob et al., 2017). These findings suggest that neural activity in the RSC 

subserves the integration of egocentrically (view-point dependent) coded landmark cues based on sensory 

fusion (vision and proprioception; Fischer et al., 2020; Mitchell et al., 2018)  with allocentric heading 

information originating from the Papez circuit (Taube, 1998). This allows the compensation of rotational 

offsets between egocentric and allocentric spatial representations, routed from the parietal and medial 

temporal cortices, providing the necessary information for translating between both frames of reference in 

the RSC (Byrne et al., 2007; Ekstrom et al., 2017).  

The central role of the RSC for spatial orientation in general and for heading computation specifically is 

supported by human imaging studies (Epstein, 2008; Maguire, 2001; Mitchell et al., 2018). Due to the 

restricted anatomical differentiation of the retrosplenial (BA 29 and 30) and the adjacent posterior 

cingulate cortex (BA 23 and 31), the abbreviation RSC is used here to refer to the retrosplenial complex 

(Chrastil, 2018; Epstein, 2008). Haemodynamic changes in the RSC were shown to be associated with 

landmark learning (Auger et al., 2012; Spiers & Maguire, 2006), with both global and local heading 
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estimation (Marchette et al., 2014), and with translating view-point independent location representations 

into behaviourally relevant egocentric representations (Berens et al., 2021). However, while functional 

magnetic resonance imaging (fMRI) studies provide valuable insights into the function of the RSC 

regarding spatial cognition, they do not allow movements of the participant in the scanner (Gramann et 

al., 2011). This is due to the fact that fMRI studies use sensors that are too heavy to follow movements of 

the signal-generating source (Gramann et al., 2014). Electroencephalography (EEG) studies, though 

utilizing lighter sensors, are considerably affected by movement-related artefacts and thus traditionally 

rely on stationary setups as well. Crucially, heading computation depends on input from the vestibular 

organ (Angelaki & Cullen, 2008) indicating movement of the head and body that can be related to, among 

other features, the location and orientation of external information like landmarks encoded through other 

senses (Jeffery et al., 2016). Therefore, established imaging studies do not allow a recording of the very 

signal that is essential for heading computation, fostering cognitive processes in established brain imaging 

studies that might not resemble the computation and use of directional heading in more natural 

environments (Gramann, 2013).  

In the present study, we overcame restrictions of traditional imaging studies by investigating neural 

dynamics in the human RSC during heading computation in actively rotating humans. To this end we 

used a Mobile Brain/Body Imaging approach (Gramann et al., 2011; Makeig et al., 2009) synchronizing 

high-density EEG to motion capture and head-mounted virtual reality (VR). Data-driven analyses, based 

on spatial filtering and subsequent source reconstruction, were used in order to investigate neural 

dynamics and their neuroanatomical origins accompanying heading computation during physical rotations 

in movement-unrestricted participants. The analyses focused on the RSC as the cortical structure which 

was suggested to be involved in heading computation, and additionally the occipital and parietal cortex 

reflecting visual processing of heading changes as well as multisensory fusion of vision and 

proprioception, respectively. The results demonstrate significant spectral modulations in a wide frequency 
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range in the RSC as well as the occipital and parietal areas during active physical rotations compared to a 

stationary setup that provided only visual flow.  

Results 

We analysed data from 19 participants performing a spatial orientation task in two rotation conditions 

(see Figure 1A–C; see supplement for videos of the setup), involving i) physical rotations of the whole 

body (“physR”), and ii) standing in front of a desktop monitor controlling the visual flow by manually 

operating a joystick (“joyR”). The latter condition replicated traditional stationary setups investigating 

neural dynamics underlying spatial orienting based only on visual flow. The participants rotated on the 

spot in a sparse virtual environment that provided an initial local landmark (pole) but no other stable 

features. With a button press, the landmark was replaced by a sphere, which moved either to the left or to 

the right around the participant at a constant distance. In this outward rotation phase, participants had to 

follow the movement of the sphere by rotating on the spot using the respective control (physR or joyR). 

The sphere followed one of two possible cosine velocity profiles along its path and stopped at varying 

eccentricities with respect to the participants’ initial facing direction. Upon stopping, the sphere changed 

its colour, and the participants were tasked with rotating back and indicating their initial heading. EEG 

data was decomposed into independent components (ICs) using adaptive mixture independent component 

analysis (AMICA; Palmer et al., 2008). The approximate locations of the resultant ICs were reconstructed 

using equivalent dipole models, and the ICs were clustered using a repetitive k-means algorithm 

optimized to the RSC as a region of interest (see Methods for details). 
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Figure 1: Experimental setup, heading error and representative IC-cluster. A) Setup of the 
stationary condition with joystick rotation (joyR; visual flow only), displaying a sparse virtual 
environment with a local landmark providing the initial heading direction (pole). The joystick was placed 
on a table in front of the standing participant. B) Top-down view of a participant in the physical rotation 
(physR) condition with MoBI setup, displaying the rotation eccentricities (categorial eccentricities 
varying +/- 15° around 45°, 90°, and 135°, respectively). C) MoBI setup with a participant wearing high-
density EEG synchronized to motion capture (red LEDs on VR goggle) and a head-mounted VR. The 
inset displays the binocular view of the virtual environment. D) Absolute heading error (orientation yaw; 
Euler angles) after completing the back rotation, displayed for both rotation conditions as a function of 
eccentricity, averaged across rotation directions. The boxplot comprises all participants (median; whiskers 
extending to 1.5 times the interquartile range). Bonferroni-significant p-values of post hoc testing are 
shown (Wilcoxon signed-rank test). ** indicates p < 0.01. E) Representative clusters of independent 
components (ICs) with single ICs displayed as small spheres and cluster centroid displayed as larger 
spheres. ICs are projected onto a standard brain (MNI) with sagittal, horizontal and coronal views from 
left to right. Cluster centroid in Talairach space for a cluster representing eye movement activity (blue; 
x=4, y=46, z=-28; no BA); a cluster representing right neck muscle activity (light blue; x=54; y=-85, z=-
10; no BA); a cluster representing activity originating in or near the restrosplenial complex (RSC) (dark 
red; x=8, y=-42, z=18; BA30); a cluster representing activity originating in or near the right inferior 
parietal cortex (yellow; x=44, y=-63, z=23; BA39); a cluster representing activity originating in or near 
the occipital cortex (orange; x=9, y=-81, z=20; BA18).  

 

Heading estimation is more accurate for physical rotation. Replicating previous results, the 

performance data showed that physR resulted in higher accuracy for heading reproduction than joyR 

(Jürgens et al., 1999; Klatzky et al., 1998).  A repeated measures analysis of variance (rANOVA) for the 
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mean absolute heading error, averaged over categories of pseudo-continuous eccentricities of 3° steps 

centred around 45° (30–60°), 90° (75–105°), and 135° (120–150°), revealed a significant main effect of 

“rotation condition” (F1,18 = 33.78; p < 0.001; partial η² = 0.65) and of “eccentricity” (F1.28,23.11 = 26.59; p 

< 0.001; partial η² = 0.6), as well as a significant interaction between both factors (F1.78,31.97 = 5.75; p = 

0.009; partial η² = 0.24). Post hoc analysis of the interaction effect using the Wilcoxon signed-rank test 

revealed that the absolute heading error was significantly smaller for the physR than for the joyR 

condition in all three eccentricity categories (45°: 6.76 ± 2.77 vs. 14.4 ± 8.9; 90°: 7.79 ± 2.21 vs. 19.73 ± 

10.16; 135°: 12.38 ± 4.68 vs. 23.83 ± 7.1; p < 0.001 for all comparisons). The post hoc tests also revealed 

an increase of absolute heading errors with increasing eccentricity in the joyR condition (p < 0.01 for all 

comparisons), but significant differences in the physR condition only for the most eccentric positions of 

135° as compared to both 45° and 90°. 

Head rotation velocity differentiates oscillatory neural activity. To test whether variable angular 

movement information from the vestibular and visual systems is associated with changes in the 

oscillatory amplitudes (Hilbert-transform; Clochon et al., 1996) of theta, alpha, and beta frequency bands, 

we applied single trial movement velocity binning (Bassett & Taube, 2001; Linkenkaer-Hansen et al., 

2004) and Mahalanobis distance-based Representational Similarity Analysis (RSA; Kriegeskorte & 

Kievit, 2013; Nili et al., 2014) to both the physR and joyR rotation conditions. Briefly, movement 

velocity (yaw orientation) during the outward rotation following the visual stimulus was extracted from 

movement onset to offset for all trials, and subsequently a velocity binning procedure was applied (cf. 

Supplements for details), as previously established for single cell recordings of heading-sensitive cells in 

rodents (Bassett & Taube, 2001) and in the context of analysing EEG oscillations (Linkenkaer-Hansen et 

al., 2004). The binning analysis resulted in 10-percentile velocity bins (ranging from slowest to largest 

movement velocity), and the baseline-corrected oscillatory amplitudes in each IC were averaged per 

velocity bin separately for each frequency band (9 bands; non-overlapping 2.5 Hz steps from 4–30.5 Hz) 

and across all trials, thus obtaining a single value per participant IC and velocity bin. Subsequently, 
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within the RSA framework (Nili et al., 2014) the Mahalanobis distance (Mahalanobis, 1936) was 

calculated for all combinations of frequency band x velocity bin x rotation condition, thus obtaining a 180 

x 180 Representational Dissimilarity Matrix (RDM) for each participant’s IC in a given cluster. 

Significance across participants in selected clusters was obtained by permutation-based statistics (p=0.05; 

cf. Supplements for details). Grand-averages and statistical results are presented in Figure 2.  
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Figure 2. Representational Similarity Analysis (RSA) of movement velocity-associated modulation 
of oscillatory activity in the right neck cluster. A) 3D-projection of IC-clusters onto a standard brain 
(described in detail in figure 1). B) Grand-average IC amplitudes across all ICs in the cluster sorted 
according to velocity bins from lowest velocity to highest velocity; color bar is scaled to min. and max. 
Displayed are the start categories of each frequency band (9 bands; non-overlapping 2.5 Hz steps), and 
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each frequency band contains, in ascending order, 10 movement velocity bins (percentiles; 10-100 % 
referring to slowest and largest velocities, respectively). C) Grand-average normalized Mahalanobis 
distance (Representational Dissimilarity Matrix, RDM); color bar is symmetrically scaled to 85% of the 
max. value; the normalized Mahalanobis distance scales from 0 (no distance) to 1 (max. distance), values 
of ~0.5 are obtained on randomly shuffled data. D) RDM statistical significance (tested vs. noise level, 
permutation testing with n=10000 permutations, p=0.05) for the outward rotation (movement onset to 
offset). FDR – false discovery rate; IC – independent component; RDM – representational dissimilarity 
matrix; RSA – representational similarity analysis. 
 
 

For the cluster representing activity of right-lateralized neck muscles, increasing grand average IC 

amplitudes were visible with increasing rotation velocities across a wide range of frequencies, most 

pronounced for the theta and beta bands, visible in the grading of grand average amplitudes within 

narrow-filtered frequency bands dependent on the velocity (Figure 2, first row). For the IC cluster 

representing eye movements, in contrast, decreased grand average amplitudes with increasing movement 

velocity, restricted to the theta frequency range, were observed (Figure 2, second row). Significant 

differences in movement velocity-associated modulation of oscillatory activity was only observed for the 

physR condition with increasing Mahalanobis distance with increasing movement velocity for the neck 

muscle cluster (beta range, 13–27.5 Hz). In contrast, for the eye cluster, both movement conditions 

revealed velocity-associated modulations (theta range, 4–6.5 Hz), as indicated by grading (striping) of the 

distance per frequency band from light to intense green coloring (Figure 2 statistical tests in Figures D).  

In the brain clusters (RSC, right parietal, occipital) both joyR and physR conditions showed velocity 

dependent variations in Hilbert-transformed amplitudes throughout the entire frequency range with 

decreasing amplitudes associated with increasing velocities and with pronounced differences between the 

movement conditions. These differences were also visible in the significant velocity-associated grading of 

the Mahalanobis distance (larger velocity ≈ larger distance). This effect, however, varied according to the 

topography and frequency bands: in joyR, increasing distance was observed in all three clusters in broad 

frequency ranges of approx. 4–21.5 Hz (theta, alpha bands: RSC, parietal, occipital; beta: RSC, occipital), 

whereas for physR the effect was pronounced only in the alpha (RSC, 7–9.5 Hz) and alpha/beta frequency 
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ranges (parietal: 10–15.5 Hz) without significant velocity-associated distance modulations in the occipital 

cortex. 

 

Event-related spectral dynamics differ between physical and visual flow only rotation. To further 

investigate modulations of oscillatory neural activity during heading computation based on active body 

rotations as compared to visual flow only we investigated spectral dynamics during outward rotations. For 

this purpose, in a first step single-trial spectrograms were computed for all trials. In order to account for 

different trial durations associated with variable eccentricities, the spectrograms were linearly time-

warped to the onset of the visual stimulus and to the movement onset as well as the movement offset at 

the trial end (participant’s head or joystick movement), resulting in time-warped event-related spectral 

perturbations (ERSP; see Figure 3). The spectral baseline was defined as the 200ms period before 

stimulus onset, excluding movement-contaminated trials. Here, brain activity originating from the RSC, 

as well as the parietal cortex and the occipital cortex, respectively are further discussed. In addition, the 

two non-brain clusters representing activity stemming from right neck muscle activity and eye 

movements are displayed to allow for comparison with brain dynamics.  

During the outward rotation, the statistical analyses revealed distinct modulations in spectral power 

between the rotation conditions in the time-frequency domain. For the clusters representing neck muscle 

activity (Figure 3B, 1st row), significant desynchronizations in the entire frequency range, most 

pronounced for the theta and alpha bands, were visible in the joyR condition while in the physR condition 

significant and long-lasting synchronizations up to 10 Hz with additional shorter bursts of 

synchronization in higher frequency bands were observed. For the cluster representing eye-movements 

(Figure 3B, 2nd row), the time-warped ERSPs revealed pronounced desynchronizations in the entire 

frequency range during joystick rotations while no clear modulation in the lower frequency bands but 

significant synchronization in the alpha and higher beta bands were observed for the physical outward 

rotation.  
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Figure 3: Event-related spectral perturbations (ERSPs) in representative IC-clusters. A) Clusters of 
ICs projected onto a standard brain space (MNI) with each small sphere representing individual ICs and 
the bigger sphere representing the cluster centroid (described in detail in figure 1). B) Time-warped event-
related spectral perturbations (ERSPs) in different clusters. Epochs were time-warped with respect to the 
sphere stimulus (time point zero) and to the mean rotation onset (head or joystick movement; second 
dotted vertical line) as well as the movement offset (end of trial). Upper and middle rows of each time-
warped ERSP: FDR-significant (0.01) differences to the baseline (-200ms to stimulus onset) are indicated 
by the traces around the respective time-frequency bins. Upper row) ERSP for the joystick rotation 
condition (joyR). Middle row) ERSP for the physical rotation condition (physR). Lower row) 
Difference-ERSP (joyR minus physR), traces indicating FDR-significant (0.01) time-frequency bins. 

 

Pronounced differences in time-warped ERSPs between joystick and physical rotation conditions were 

also visible for all brain clusters. For the RSC (Figure 3B, 3rd row), power differences between physR and 

joyR were present in a wide frequency range from 3–60 Hz. The largest differences in terms of power 

increases in the RSC were observed in the 4–7 Hz theta range, as well as in the alpha and beta frequency 

ranges (8–30 Hz). For the parietal and occipital clusters (Figure 3B, 4th and 5th row, respectively), we 

observed desynchronization in the entire frequency range during joystick rotations following a short burst 

of low frequency synchronization after onset of the sphere. No such initial synchronization or later wide-

band desynchronization was observed for physical rotations. In parietal cortex, both movement conditions 

led to an initial synchronization in the theta band with onset of the sphere. In the joyR condition, this was 

followed by an early desynchronization of frequencies up to 9 Hz that later extended to higher frequencies 

including the beta and gamma band. For physical outward rotations, an initial burst of synchronization 

shifted from the theta and alpha band to the alpha and beta bands. For the occipital cluster, a similar 

pattern of early synchronization in the theta range followed by desynchronization during outward rotation 

like in the parietal cluster was visible. For the physical outward rotation, in contrast only the theta range 

demonstrated significant desynchronizations approximately during the apex of the outward rotations 

accompanied by shorter initial bursts of alpha and longer lasting bursts of gamma synchronization. 
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Discussion 

Here, we demonstrate the modulation of neural dynamics in the human RSC and other regions of the 

human navigation network during heading computation in a spatial orienting task. Heading reproduction 

was more accurate when participants physically rotated compared to a stationary setup using a joystick, 

reflecting the synergistic use of idiothetic information during active movement (Klatzky et al., 1998). 

While an increase in heading error with increasing eccentricity of the outward rotation was observed in 

the joystick condition, physical rotations led to relatively low heading errors that increased only for 

eccentricities beyond 90 degrees pointing to general differences in the accuracy of spatial judgments 

based on the principal body axes (Kozhevnikov & Hegarty, 2001). The increased accuracy during 

physical rotations is in line with recent animal studies demonstrating improved representational accuracy 

for multisensory encoding of landmarks (Fischer et al., 2020; Keshavarzi et al., 2021).  

Analyzing the impact of rotations on brain activity, we found the velocity of the rotation to modulate 

amplitudes in a wide frequency range and with topography-specific patterns. Broad-band velocity-

dependent power modulations were observed for neck muscle activity only during active physical but not 

joystick rotations and eye movements revealed significant differences between the movement conditions 

in the theta and alpha frequency bands. Both the velocity-dependent modulation of neck muscle activity 

that was observed only during physical rotations and the differences in eye movements between the 

rotation conditions reflect different pursuit strategies during full body as compared to joystick-controlled 

rotations (Hollands et al., 2004; Robinson et al., 1986). The results thus provide a proof of principle for 

the analytical approach that further tested the functional relationship of rotation velocity and power 

modulation in different brain regions.  

The RSC demonstrated velocity-dependent modulations in a broad spectrum for both physical and 

joystick rotations with differences between the rotation conditions in the theta and alpha frequency band. 

Joystick rotations revealed velocity to mainly modulate alpha band activity while physical rotations were 

associated with velocity-dependent modulations mainly in the theta range. These results are in line with 
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the assumption of theta band activity underlying heading computation in the RSC integrating 

multisensory input. The parietal cortex, in contrast, revealed differences in power modulations between 

movement conditions to be restricted to the theta and alpha band mainly based on decreased grand 

average IC-amplitudes in the stationary setup. Further pronounced differences between the movement 

conditions in velocity dependent power modulations were visible in occipital cortex with modulations in 

the alpha frequency range in the stationary setup but no impact of velocity on amplitudes during physical 

rotations. These results support the assumption that occipital alpha suppression in stationary protocols 

reflects processing of sensory prediction errors in conditions that provide visual heading changes but no 

accompanying proprioceptive and vestibular information (Clark, 2013; Flossmann & Rochefort, 2021).  

Further support for alpha reflecting sensory prediction error processing was revealed through time-

frequency analyses during the outward rotation demonstrating significant differences in several frequency 

bands for brain as well as non-brain clusters. Results from neck muscle activity confirmed the prior RSA 

results revealing desynchronizations in a broad frequency range during joystick rotations reflecting a 

more rigid posture during the joystick rotation task compared to the pre-rotation baseline period. In 

contrast, physical rotations were accompanied by synchronized activity in the theta up to the lower beta 

band reflecting head rotations during the physical outward rotation. Also converging with the RSA results 

are pronounced differences in eye movement activity that reflected differences in pursuit eye movements 

for joystick-controlled (joyR) compared to pursuit eye and head movements during full body rotations 

(physR.) The exact nature of these differences cannot be determined without eye tracking but might be  

due to decreased control in the joyR condition to reduce retinal eccentricity of the moving sphere 

(Gouirand et al., 2019). 

Notably, ERSPs over the entire time course of the outward rotation in the joyR condition displayed 

pronounced desynchronization of alpha oscillations in the occipital and parietal areas and, to a lesser 

degree, also in the RSC. Significant differences in alpha oscillations during the outward rotation are in 

line with similar findings of traditional desktop-based EEG studies in a variety of tasks (Klimesch, 1999), 
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in which attention-related alpha band desynchronizations can be observed in topographically diverse areas 

while tasks requiring sensory-semantic information processing demonstrated alpha desynchronization 

with an occipito-parietal topography (Pfurtscheller & Lopes da Silva, 1999). Specifically, alpha 

desynchronization during heading computation was frequently documented in movement-restricted 

participants (Chiu et al., 2012; Gramann et al., 2010; Lin et al., 2015, 2018; Plank et al., 2010), a finding 

that we replicated here for the desktop-based rotation condition using a joystick and providing only visual 

flow information. These patterns also replicate previous results reported in Ehinger and colleagues 

(Ehinger et al., 2014) who used a MoBI protocol to investigate path integration. The authors investigated 

brain dynamics while participants were path integrating with different amounts of sensory feedback. The 

similarity of the results from Ehinger and colleagues’ MoBI study with previous desktop results stand in 

contrast to the present study potentially because the authors used a baseline in which participants actively 

ambulated. The present study used a baseline in which participants stood still before the rotation revealing 

no alpha desynchronization during active physical rotations.  In contrast, pronounced broad-band 

increases of spectral power were present primarily in theta and beta bands. This difference in (alpha) 

oscillatory activity between physical and joystick rotations converges with single cell recordings during 

active and passive rotations in non-human primates. Here, a suppression of neural responses in the 

vestibular nuclei can be observed when monkeys actively rotated their head, as compared to being 

passively rotated on a chair (Cullen & Roy, 2004). This suppression could be due to the fact that the 

vestibular nuclei receive vestibular afferents as well as efferent projections from diverse sensory systems. 

During active head movements vestibular afferent information is suppressed by the motor-proprioceptive 

information generated by the active movement (Green & Angelaki, 2010). These results, together with the 

reported differences in velocity-dependent modulations of oscillatory activity are in line with the 

predictive processing approach (Clark, 2015). The frequently documented alpha desynchronization in 

sensory (e.g., occipital) and multimodal (e.g., parietal) cortical areas in traditional stationary EEG setups 

that investigate spatial orientation in movement-restricted participants might not reflect heading 
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computation per se, but rather the processing of a significant discrepancy of predicted and perceived 

sensory input (Clark, 2013; Flossmann & Rochefort, 2021). 

Using a MoBI approach that allows unrestricted physical movement in a spatial orientation task, we 

demonstrated pronounced differences in spectral modulation for heading computation based on visual 

flow, as compared to self-generated movements that allow utilizing idiothetic information from the visual, 

vestibular, and proprioceptive senses for heading computation. The results revealed a velocity-dependent 

modulation of brain regions that are part of the navigational network implying the relevance of velocity 

information from the vestibular system for heading computation. Finally, alpha desynchronization during 

spatial orientation tasks in traditional desktop-based setups that provide only visual flow information 

might point to sensory mismatch processing in cortical areas rather than heading computation itself.  
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Methods 

Participants 

Data were collected from 20 healthy adults (11 females) with a mean age of 30.25 years (SD = 7.68, 

ranging from ages 20 to 46) who received 10€/h or course credit for compensation. All participants 

reported normal or corrected to normal vision and no history of neurological disease. Eighteen 

participants reported being right-handed (two left-handed). To control for the effects of different reference 

frame proclivities on neural dynamics, the online version of the spatial reference frame proclivity test 

(RFPT44, 45) was administered prior to the experiment. Participants had to consistently use an ego- or 

allocentric reference frame in at least 80% of their responses. Of the 20 participants, nine preferentially 

used an egocentric reference frame, nine used an allocentric reference frame, and two used a mixed 

strategy. One participant (egocentric reference frame) dropped out of the experiment after the first block 

due to motion sickness and was removed from further data analyses. The reported results are based on the 

remaining 19 participants. The experimental procedures were approved by the local ethics committee 

(Technische Universität Berlin, Germany) and all participants signed a written informed consent in 

accordance with the Declaration of Helsinki. Data of the present study were further analyzed for different 

research purposes in Klug and Gramann (2020). 

Experimental Design and Task 

Participants performed a spatial orientation task in a sparse virtual environment (WorldViz Vizard, Santa 

Barbara, USA) consisting of an infinite floor granulated in green and black (see figure 1B and 

complementary video 1). The experiment was self-paced and participants advanced the experiment by 

starting and ending each trial with a button press using the index finger of the dominant hand. A trial 

started with the onset of a red pole, which participants had to face and align with. Once the button was 

pressed the pole disappeared and was immediately replaced by a red sphere floating at eye level. The 

sphere automatically started to move around the participant along a circular trajectory at a fixed distance 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 3, 2021. ; https://doi.org/10.1101/417972doi: bioRxiv preprint 

https://doi.org/10.1101/417972
http://creativecommons.org/licenses/by/4.0/


19 

 

(30m) with one of two different velocity profiles (see Supplement for a description of the cosine 

functions). Participants were asked to rotate on the spot and to follow the sphere, keeping it in the center 

of their visual field (outward rotation). The sphere stopped unpredictably at varying eccentricity between 

30° and 150° and turned blue, which indicated that participants had to rotate back to the initial heading 

(backward rotation). When participants had reproduced their estimated initial heading, they confirmed 

their heading with a button press and the red pole reappeared for reorientation. To ensure that the floor 

could not be used as an external landmark during the trials, it was faded out, turned randomly, and faded 

back in after each outward and backward rotation.  

 

The participants completed the experimental task twice, using i) a traditional desktop 2D setup (visual 

flow controlled through joystick movement; “joyR”), and ii) equipped with a MoBI setup (visual flow 

controlled through active physical rotation with the whole body; “physR”). The condition order was 

balanced across participants. To ensure the comparability of both rotation conditions, participants carried 

the full motion capture system at all times. In the joyR condition participants stood in the dimly lit 

experimental hall in front of a standard TV monitor (1.5m viewing distance, HD resolution, 60Hz refresh 

rate, 40″ diagonal size) and were instructed to move as little as possible. They followed the sphere by 

tilting the joystick and were thus only able to use visual flow information to complete the task. In the 

physical rotation condition participants were situated in a 3D virtual reality environment using a head 

mounted display (HTC Vive; 2x1080x1200 resolution, 90 Hz refresh rate, 110° field of view). 

Participants’ movements were unconstrained, i.e., in order to follow the sphere they physically rotated on 

the spot, thus enabling them to use motor and kinesthetic information (i.e., vestibular input and 

proprioception) in addition to the visual flow for completing the task. If participants diverged from the 

center position as determined through motion capture of the head position, the task automatically halted 

and participants were asked to regain center position, indicated by a yellow floating sphere, before 

continuing with the task. Each movement condition was preceded by recording a three-minute baseline, 

during which the participants were instructed to stand still and to look straight ahead. 
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The starting condition (visual flow only or physical rotation) was also counterbalanced for participants 

with different reference frame proclivities, such that five egocentric, four allocentric, and two mixed-

strategy participants started with the joyR condition, and four egocentric, five allocentric participants 

started with the physR condition. In each rotation condition, participants practiced the experiment in three 

learning trials with instructions presented on screen. Subsequently, the main experiment started, including 

140 experimental trials per rotation condition. The experimental trials in each condition were randomized 

and split into five blocks of 28 trials each. The breaks were self-paced and the next block was initiated 

with the push of a button. The sphere moved either clockwise or anticlockwise around the participant; this 

movement was either slow or fast (randomized), depending on two different velocity profiles. The 

eccentricities of the sphere’s end positions were clustered from -15° to +15° around the mean eccentric 

end positions of 45°, 90°, and 135° in steps of 3° (e.g., the cluster 45° eccentricity ranged from 30° and 

60° with 11 trials covering all eccentricities). In addition, eccentricities of 67° and 112° (2 x 8 trials) were 

used to achieve a near continuous distribution of end positions for the outward rotation in both rotation 

directions.  

Mobile Brain/Body Imaging (MoBI) setup 

To allow for a meaningful interpretation of the data modalities and to preserve their temporal context, the 

EEG data, motion capture data from different sources, and experiment event marker data were time-

stamped, streamed, recorded, and synchronized using the Lab Streaming Layer (Kothe, 2014).  

Data Recordings: EEG 

EEG data was recorded from 157 active electrodes with a sampling rate of 1000 Hz and band-pass filtered 

from 0.016 Hz to 500 Hz (BrainAmp Move System, Brain Products, Gilching, Germany). Using an 

elastic cap with an equidistant design (EASYCAP, Herrsching, Germany), 129 electrodes were placed on 

the scalp, and 28 electrodes were placed around the neck using a custom neckband (EASYCAP, 

Herrsching, Germany) in order to record neck muscle activity. Data were referenced to an electrode 
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located closest to the standard position FCz. Impedances were kept below 10kΩ for standard locations on 

the scalp, and below 50kΩ for the neckband. Electrode locations were digitized using an optical tracking 

system (Polaris Vicra, NDI, Waterloo, ON, Canada). 

Data Recordings: Motion Capture  

Two different motion capture data sources were used: 19 red active light-emitting diodes (LEDs) were 

captured using 31 cameras of the Impulse X2 System (PhaseSpace Inc., San Leandro, CA, USA) with a 

sampling rate of 90 Hz. They were placed on the feet (2 x 4 LEDs), around the hips (5 LEDs), on the 

shoulders (4 LEDs), and on the HTC Vive (2 LEDs; to account for an offset in yaw angle between the 

PhaseSpace and the HTC Vive tracking). Except for the two LEDs on the HTC Vive, they were 

subsequently grouped together to form rigid body parts of feet, hip, and shoulders, enabling tracking with 

six degrees of freedom (x, y, and z position and roll, yaw, and pitch orientation) per body part. Head 

motion capture data (position and orientation) was acquired using the HTC Lighthouse tracking system 

with 90Hz sampling rate, since it was also used for the positional tracking of the virtual reality view. 

Because the main focus of the study concerned the head movement-related modulation of neural 

dynamics in RSC, only data streams from the head motion capture data were used for the analysis. 

Data Analysis 

Data analysis was done in MATLAB (R2016b version 9.1; The MathWorks Inc., Natick, Massachusetts, 

USA), using custom scripts based on the EEGLAB (Delorme & Makeig, 2004), MoBILAB (Ojeda et al., 

2014), RSA (Nili et al., 2014), and in-house toolboxes (Klug & Gramann, 2020).  

Motion Capture Data Analysis: Automatic Detection of Movement Markers 

Motion capture data was preprocessed using MoBILAB (Ojeda et al., 2014) with adapted functions. The 

rigid body data was recorded in x, y, z, as well as quaternion orientation values, a 6 Hz zero-lag lowpass 

FIR filter was applied to the data, the orientation was then transformed into Euler angles and three time 
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derivatives were subsequently calculated. For movement detection the absolute velocity of head 

orientation (yaw) was used (“physR” condition: visual flow controlled by head MoCap; “joyR”: visual 

flow controlled by the joystick). For convenience, in the remainder the term “head movement” refers to 

both rotation conditions. Head movement onset and offset events were extracted based on the velocity: A 

movement onset was initially defined as having a greater velocity than the 65% quantile of the complete 

data set (estimating movement to happen 35% of the time during the experiment). Once this coarse 

threshold was reached, the movement onset and offset event markers were created based on a finer 

threshold of 5% of the maximum velocity in a window of 2s around the detected movement. New 

movements could only be detected after the offset of the previous movement. A minimal movement 

duration of 285ms was defined to exclude movement artefacts created by jitter in the MoCap recording. 

The final data was exported as EEGLAB data set, synchronized, and different streams (EEG, MoCAP) 

were split into separate sets to allow for EEG-specific analysis based on movement markers. 

Behavioral Data Analysis – Heading Error 

Absolute heading error. For each epoch the absolute heading error was defined by taking the absolute 

difference between the participant’s initial start orientation (yaw; Euler angles) and the participant’s 

orientation after completing the backward rotation (completion indicated by the button press). The 

absolute heading error gives a robust overall indication of deviations from the starting orientation, without 

considering direction-specific over- or underestimation. For each participant and condition occasional 

outlier epochs with errors larger than three standard deviations were excluded. Furthermore, filler trials 

were also excluded. Finally, the absolute heading errors from the remaining valid epochs were averaged 

for three eccentricity categories within a range of ± 15° (45°: 30–60°; 90°: 75–105°; 135°: 120–150°). 

The term “heading error” refers to the average within each eccentricity category.  

 

Statistics. The group-level statistics were performed with SPSS (version 25; IBM SPSS Statistics for 

Windows, Armonk, NY: IBM Corp.). For the absolute heading error a 2 x 2 x 3 factorial repeated 
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measures analysis of variance (rANOVA) was performed with the within-participant factors “rotation 

condition” (physR, joyR), “direction” (clockwise, anti-clockwise), and “eccentricity” (15°, 30°, 45°); for 

the signed heading error cf. Supplements. In case the assumption of sphericity was violated, Greenhouse-

Geisser corrected values are reported. If required, post hoc analysis was performed with the paired t-test. 

If the majority of data sets (≥ 50%) were not normally distributed (Kolmogorov-Smirnov test), post hoc 

testing was performed with the paired Wilcoxon signed-rank test. Bonferroni correction for post hoc 

testing was used in the case of multiple comparisons. Raw p-values are reported and indicated as 

significant if they were lower than the Bonferroni adjustment significance threshold. In general, while 

being aware that non-parametric post hoc testing was performed on ranks, for convenience the average 

values are presented as mean ± standard deviation (SD). 

Independent Component Analysis (ICA) 

Artefactual channels were manually identified, removed, and interpolated using spherical interpolation 

(on average, 17.6 channels were interpolated, SD=9.5). Subsequently, the data was re-referenced to the 

average of all channels and a zero-phase Hamming windowed high-pass FIR filter (order 827, pass-band 

edge 1 Hz) was applied to the data. Then artefactual time segments in the data were manually rejected; 

eye movements were not considered as artefacts. Data of both rotation conditions and their respective 

baselines were appended, and subsequently, the data was parsed into maximally independent components 

(IC), using an adaptive mixture independent component analysis (AMICA) algorithm (Palmer et al., 

2006) with a principal component analysis (PCA) reduction to the remaining rank of the data set. For each 

IC an equivalent dipole model was computed as implemented by DIPFIT routines (Oostenveld & 

Oostendorp, 2002). For this purpose the individually measured electrode locations were rotated and 

rescaled to fit a boundary element head model (BEM) based on the MNI brain (Montreal Neurological 

Institute, MNI, Montreal, QC, Canada). We refer to the approximated spatial origin of an IC as “in or 

near” the specified location. 
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Event-Related Spectral Perturbations (ERSP) 

A new copy of the pre-processed EEG data set was created, comprising interpolated channels and the 

complete continuous time courses, and the computed IC spatial filters and their respective source 

localization estimates were copied to this data set. Epochs of 13s length were created around the sphere 

onset markers, including a 1s pre-stimulus interval, resulting in 140 epochs per participant and condition. 

A spectrogram of all single trials was computed for all IC activation time courses using the newtimef() 

function of EEGLAB (3 to 100 Hz in logarithmic scale, using a wavelet transformation with 3 cycles for 

the lowest frequency and a linear increase with frequency of 0.5 cycles). To compute the final ERSP for 

the RSC region, artefactual epochs were first automatically rejected based on MoCap data and the IC 

activation time courses present in the respective cluster by removing epochs with baselines contaminated 

by head movements and epochs that contained considerable artefacts in the IC activation time course 

during task performance (as evaluated by epoch mean, standard deviation, and Mahalanobis distance 

(Nierula et al., 2013; see Supplements for more details). Artefact cleaning resulted in a sum of 1566 

ERSP epochs for the physical rotation condition and 1880 epochs for the joystick rotation condition.  

EEG Data Group-Level Analysis 

Repetitive clustering approach. To allow for a group-level comparison of EEG data at the source level 

(ICs), the 70 ICs of each participant explaining most of the variance of the data were selected (1330 ICs 

in total) and subsequently clustered based on their equivalent dipole locations (weight=6), grand-average 

ERSPs (weight=3), mean log spectra (weight=1), and scalp topography (weight=1), using a region of 

interest (ROI) driven repetitive k-means clustering approach. The weighted IC measures were summed 

and compressed using PCA, resulting in a 10-dimensional feature vector for clustering. ICs were clustered 

by applying the k-means algorithm with n=50 cluster centroids to the resulting vectors and their 

respective distance between each other in vector space. We chose to use fewer clusters than ICs per 

participant because of our assumption that, although statistically independent per time point, there may be 
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more than one IC per participant that is similar in function and location. ICs with a distance of more than 

three standard deviations from any final centroid mean were considered outliers.  

 

Crucially, to ensure replicability of the clustering, we clustered 10,000 times and selected the final 

solution based on the following approach: i) We defined the Retrosplenial Complex (RSC) as the ROI in 

Talairach coordinates (x=0, y=-45, z=10) for which the clustering should be optimized; ii) for each 

resulting cluster in the region of interest (cluster of interest; COI), we calculated the number of 

participants with an IC in the cluster, the ratio of the number of ICs per participant in the cluster, the 

spread of the cluster (average squared distance of each IC from the cluster centroid), the mean residual 

variance (RV) of the fitted dipoles in the cluster, x, y, z coordinates of the cluster centroid, the distance of 

the cluster centroid from the ROI, and the Mahalanobis distance of this COI from the median of the 

distribution of the 10,000 solutions. The x, y, z coordinates were only used to determine the Mahalanobis 

distance and were not in the final quality measure vector; iii) the quality measures were standardized to 

their respective maximum, then weighted (#participants: 2, ICs/participants: -3, spread: -1, RV: -1, 

distance from ROI: -3, Mahalanobis distance from the median: -1). These weights optimize for a 

clustering solution that contains a cluster close to the ROI of interest, which contains the ICs of many 

participants, but a low number of ICs per participant. Finally, the solutions were ranked according to their 

summed score, and the highest ranked solution was chosen as the final clustering solution.  The following 

“brain” and “non-brain” clusters were selected for further analyses, containing at least 70% of 

participants. 

 

Clustering results for RSC (cluster #16). The final solution for the RSC cluster contained the ICs from 15 

participants, a ratio of 1.13 ICs per participant, a mean RV of 10.3%, and a spread of 296 with a distance 

of 10.2 units in the Talairach space (both measures with regards to the ROI coordinates). 

The final solution for the right parietal cluster contained 20 ICs from 14 participants, a ratio of 1.43 ICs 

per participant, and a mean RV of 12.4%.  The final solution for the occipital cluster contained 22 ICs 
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from 15 participants, a ratio of 1.46 ICs per participant, and a mean RV of 8.2 %. For the eye cluster, 26 

ICs from 14 participants were included with a ratio of 1.86 ICs per participant and a mean RV of 23.1%. 

The neck cluster contained 20 ICs from 16 participants, a ratio of 1.25 ICs per participant and a mean RV 

of 34.8 %. 

 

Cluster cleaning with IClabel. Each selected cluster was further automatically analysed for potential 

“artifact” ICs using ICLabel (Pion-Tonachini et al., 2019). This algorithm allows to classify ICs into 

“brain“ or “non-brain“ origin, which was previously used in the context of evaluating different pre-

processing approaches for mobile EEG recordings (same data set of the present study; Klug & Gramann, 

2020). IClabel was run in the “default” version (beta version, 2017), using IC topography, 

autocorrelation, and spectrum for the classification and the selected classes were “brain” and “other” with 

a threshold of 0.7. After the classification n=15 participants remained for the RSC cluster, n=14 for 

parietal, n=15 for occipital, n=14 for the eye cluster and n=16 for the neck cluster, respectively. 

 

ERSP group-level analysis. ERSPs were computed for the RSC cluster by first averaging the time-

frequency data at the IC level, then at the participant level, and finally at the group level. The time-

frequency data of each trial was normalized by its mean activity (Grandchamp & Delorme, 2011) and the 

average ERSP for each IC was calculated and baseline-corrected using a divisive baseline (mean activity 

in the interval of 200ms prior to sphere movement onset). Subsequently, the ERSPs of all ICs per 

participant were averaged. Finally, the ERSPs of all participants were averaged and log-transformed from 

the power-space into decibels (dB=10*log10(power)). Statistical analysis comparing ERSP activity either 

against the baseline or between conditions was performed at the group level using a permutation test with 

2,000 permutations, and a multiple comparison correction using the false discovery rate (FDR; α=0.01). 

Final plots contain the significance thresholds as contours of significant time-frequency bins.  

 

EEG activity associated with varying head movement velocity 
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In order to estimate differential EEG activation depending on head movement velocity (slowest to largest) 

and frequency band (4-30.5 Hz), data of each IC (Hilbert-transformed (Clochon et al., 1996); baseline-

corrected amplitude during the outward rotation epochs, i.e., movement onset to offset), baseline-

corrected amplitude during the outward rotation epochs, i.e., movement onset to offset)  was subjected to 

a velocity binning procedure (Bassett & Taube, 2001; Linkenkaer-Hansen et al., 2004) and Mahalanobis 

distance-based Representational Similarity Analysis (Kriegeskorte & Kievit, 2013; Nili et al., 2014; 

Tanaka et al., 2018). For more details on the velocity binning, RSA (including single participant 

examples), and statistics please refer to the Supplements. 
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Figure legends 

Figure 1: Experimental setup, heading error and representative IC-cluster. A) Setup of the 

stationary condition with joystick rotation (joyR; visual flow only), displaying a sparse virtual 

environment with a local landmark providing the initial heading direction (pole). The joystick was placed 

on a table in front of the standing participant. B) Top-down view of a participant in the physical rotation 

(physR) condition with MoBI setup, displaying the rotation eccentricities (categorial eccentricities 

varying +/- 15° around 45°, 90°, and 135°, respectively). C) MoBI setup with a participant wearing high-

density EEG synchronized to motion capture (red LEDs on VR goggle) and a head-mounted VR. The 

inset displays the binocular view of the virtual environment. D) Absolute heading error (orientation yaw; 

Euler angles) after completing the back rotation, displayed for both rotation conditions as a function of 

eccentricity, averaged across rotation directions. The boxplot comprises all participants (median; whiskers 

extending to 1.5 times the interquartile range). Bonferroni-significant p-values of post hoc testing are 
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shown (Wilcoxon signed-rank test). ** indicates p < 0.01. E) Representative clusters of independent 

components (ICs) with single ICs displayed as small spheres and cluster centroid displayed as larger 

spheres. ICs are projected onto a standard brain (MNI) with sagittal, horizontal and coronal views from 

left to right. Cluster centroid in Talairach space for a cluster representing eye movement activity (blue; 

x=4, y=46, z=-28; no BA); a cluster representing right neck muscle activity (light blue; x=54; y=-85, z=-

10; no BA); a cluster representing activity originating in or near the restrosplenial complex (RSC) (dark 

red; x=8, y=-42, z=18; BA30); a cluster representing activity originating in or near the right inferior 

parietal cortex (yellow; x=44, y=-63, z=23; BA39); a cluster representing activity originating in or near 

the occipital cortex (orange; x=9, y=-81, z=20; BA18).  

 

Figure 2. Representational Similarity Analysis (RSA) of movement velocity-associated modulation 

of oscillatory activity in the right neck cluster. A) 3D-projection of IC-clusters onto a standard brain 

(described in detail in figure 1). B) Grand-average IC amplitudes across all ICs in the cluster sorted 

according to velocity bins from lowest velocity to highest velocity; color bar is scaled to min. and max. 

Displayed are the start categories of each frequency band (9 bands; non-overlapping 2.5 Hz steps), and 

each frequency band contains, in ascending order, 10 movement velocity bins (percentiles; 10-100 % 

referring to slowest and largest velocities, respectively). C) Grand-average normalized Mahalanobis 

distance (Representational Dissimilarity Matrix, RDM); color bar is symmetrically scaled to 85% of the 

max. value; the normalized Mahalanobis distance scales from 0 (no distance) to 1 (max. distance), values 

of ~0.5 are obtained on randomly shuffled data. D) RDM statistical significance (tested vs. noise level, 

permutation testing with n=10000 permutations, p=0.05) for the outward rotation (movement onset to 

offset). FDR – false discovery rate; IC – independent component; RDM – representational dissimilarity 

matrix; RSA – representational similarity analysis. 
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Figure 3: Event-related spectral perturbations (ERSPs) in representative IC-clusters. A) Clusters of 

ICs projected onto a standard brain space (MNI) with each small sphere representing individual ICs and 

the bigger sphere representing the cluster centroid (described in detail in figure 1). B) Time-warped event-

related spectral perturbations (ERSPs) in different clusters. Epochs were time-warped with respect to the 

sphere stimulus (time point zero) and to the mean rotation onset (head or joystick movement; second 

dotted vertical line) as well as the movement offset (end of trial). Upper and middle rows of each time-

warped ERSP: FDR-significant (0.01) differences to the baseline (-200ms to stimulus onset) are indicated 

by the traces around the respective time-frequency bins. Upper row) ERSP for the joystick rotation 

condition (joyR). Middle row) ERSP for the physical rotation condition (physR). Lower row) 

Difference-ERSP (joyR minus physR), traces indicating FDR-significant (0.01) time-frequency bins. 
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