TITLE

neoepiscope improves neoepitope prediction with multi-variant phasing

AUTHORS

Mary A. Wood (1, 2), Austin Nguyen (1,3), Adam Struck (1), Kyle Ellrott (1, 4), Abhinav Nellore* (1, 4, 5), Reid F. Thompson* (1, 2, 6, 7)

*co-corresponding authors [nellore@ohsu.edu, thompsre@ohsu.edu]

AFFILIATIONS

1. Computational Biology Program, Oregon Health & Science University
2. Portland VA Research Foundation
3. Oregon State University
4. Department of Biomedical Engineering, Oregon Health & Science University
5. Department of Surgery, Oregon Health & Science University
6. Department of Radiation Medicine, Oregon Health & Science University
7. Division of Hospital and Specialty Medicine, VA Portland Healthcare System

ABSTRACT

Existing tools for neoepitope prediction from DNA sequencing (DNA-seq) of complementary tumor and normal patient samples do not consider germline context or the potential for co-occurrence of two or more somatic variants on the same mRNA transcript. Without consideration of these phenomena, existing approaches are likely to produce both false positive and false negative results, resulting in an inaccurate and incomplete picture of the cancer neoepitope landscape. We developed neoepiscope chiefly to address this issue for single nucleotide variants (SNVs) and insertions/deletions (indels), and herein illustrate how germline and somatic variant phasing affects neoepitope prediction across multiple patient datasets. We estimate that up to ~5% of neoepitopes arising from SNVs and indels in cancer samples may require variant phasing for their accurate assessment. We further show that neoepitope prediction with neoepiscope starting from unaligned DNA-seq reads is approximately as fast as the fastest existing tools. neoepiscope uses HapCUT2 to perform variant phasing and works with a number of Major Histocompatibility Complex (MHC) binding affinity prediction tools including MHCflurry, MHCnuggets, and NetMHCpan. neoepiscope is open-source software licensed under the MIT license and is available at https://github.com/pdxgx/neoepiscope.

KEY POINTS

- Germline context and somatic variant phasing are important for neoepitope prediction
- Many popular neoepitope prediction tools have issues of performance and reproducibility
- We describe and provide performant software for accurate neoepitope prediction from DNA-seq data
INTRODUCTION
While mutations may promote oncogenesis, cancer-specific variants and the corresponding novel peptides they may produce ("neoepitopes") appear central to the generation of adaptive anti-tumor immune response [1]. The advent of immunotherapy as a promising form of cancer treatment has been accompanied by a parallel effort to explore tumor neoepitopes as potential mechanisms and drivers of therapeutic response. This has prompted the development of numerous neoepitope prediction pipelines. Initial bioinformatics approaches used tumor-specific sequencing data to focus on missense single nucleotide variants (SNVs) as the predominant source of neoepitopes (e.g. Epi-Seq [2]). However, as ~15% of neoepitopes are estimated to result from other types of mutations [3], additional tools were developed to predict neoepitopes from gene fusions (e.g. INTEGRATE-neo [4]), non-stop mutations (e.g. TSNAD [5]), and insertions and deletions (indels, from e.g. pVACseq [6], MuPeXI [7]), which may be of particular significance for anticipating cancer immunotherapy response [8]. Many of these tools enable comparable predictive capabilities, but each approach has its own unique set of features and limitations (See Figure 1).

However, a universal limitation of existing neoepitope prediction tools is that they consider individual somatic variants in the context of a single reference genome, neglecting widespread genetic variability among individuals [9]. Indeed, somatic and germline mutations may co-occur even within the 3 nucleotide span of a single codon [10]. Such immediate co-occurrences are not uncommon, affecting 17% of cancer patients on average, and can significantly alter variant effects including the amino acid sequence of any predicted neoepitope. Somatic mutations may also cluster or co-occur within a short span of each other. For instance, several hundred somatic mutations were found to co-occur within a <10bp intervariant distance among whole genome sequencing data from two breast cancer patients [11]. Furthermore, immediate co-occurrences of variants are not a prerequisite for phasing to be relevant to neoepitope prediction. For example, frameshifting indels upstream of a SNV can alter the peptide sequence in the vicinity of the SNV, as well as the consequences of the SNV itself.

Current neoepitope prediction tools only consider single somatic variants in isolation from each other, neglecting the potential for these compound effects. We developed neoepiscope chiefly to incorporate germline context and address variant phasing for SNVs and indels, and herein illustrate how these features affect neoepitope prediction across multiple patient datasets.

MATERIALS AND METHODS

Software
The neoepiscope neoepitope prediction pipeline is depicted in Figure 2. It is highly flexible and agnostic to the user’s preferred tools for alignment, human leukocyte antigen (HLA) typing, variant calling, and MHC binding affinity prediction. The pipeline upstream of neoepiscope takes as input DNA-seq (exome or whole-genome) FASTQs for a tumor sample and a matched normal sample. These FASTQs are used to perform HLA genotyping, e.g. using OptiType [12].
The FASTQs are also aligned to a reference genome with a DNA-seq aligner such as BWA [13] or Bowtie 2 [14]. The resulting alignments are subsequently used to call somatic and, optionally, germline variants. Somatic variants are obtained by running any somatic variant caller or combination of callers on the normal sample’s alignments. In most of our results, we used a combination of Pindel, MuSE, MuTect, RADIA, SomaticSniper, and VarScan 2 (see Variant identification and phasing). Germline variants are obtained by running a germline variant caller such as GATK’s HaplotypeCaller [15] or VarScan 2 [16] on the normal sample’s alignments. Next, somatic variants are phased, optionally with germline variants, by a variant phasing tool such as HapCUT2 [17] (note that neoepiscope expects HapCUT2-formatted input and has not been tested with other variant phasing tools). The resulting phased variants (“phase sets”) are input to neoepiscope together with a gene transfer format (GTF) file encoding known transcript variants (e.g., GENCODE).

The principal contribution of this manuscript is the neoepitope calling component of neoepiscope. Before it is run on the phase sets associated with a given tumor-normal sample pair, neoepiscope indexes the GTF into a set of pickled dictionaries that link exon, start codon, and stop codon blocks from transcripts to the genomic intervals they cover. These dictionaries can be reused with every run of neoepiscope. Prior to neoepitope prediction, unphased somatic variants from the somatic VCF are added to HapCUT2 output as their own haplotype blocks using neoepiscope's prep mode. For each haplotype block, neoepiscope determines if any mutation in the block overlaps any transcript(s) in the annotation, and then applies each mutation to the transcript (transcript sequences are obtained by concatenating relevant genomic sequence from an appropriate Bowtie [18] index). By default, all relevant somatic and germline variants in a haplotype block are applied, but users may choose to exclude either germline or somatic variants, or to exclude variant phasing entirely. Each transcript is translated in silico, proceeding from the annotated start codon (or the first annotated codon if no start is present), but this process may be modified via command line options to perform alternative start codon predictions. The resulting protein is kmerized in the vicinity of amino acid changes, and epitopes that do not match any peptide sequence in the normal protein are returned. We performed extensive unit testing on our software to ensure that both common and rare cases of somatic variants are handled accurately. Patient-specific HLA alleles and a choice of MHC binding prediction tools can be specified so that optional binding prediction can be performed for each potential neoepitope. As indicated in Figure 2, neoepiscope itself calls the user-specified MHC binding affinity prediction software to obtain HLA allele-associated binding affinities. By default, it installs MHCflurry [19] and MHCnuggets [20]. The user may also independently install NetMHCpan [19] or NetMHCIIpan [21] for use with neoepiscope.

Variant identification and phasing

We assembled a cohort of 361 tumor samples from 332 different cancer patients from publicly available data including 270 melanoma patients (298 tumor samples) [22–28], 34 non-small cell lung cancer patients (28 tumor samples) [29], and 28 colon, endometrial, and thyroid cancer patients (29 tumor samples) [30] (see Supplementary Table 1). Whole exome sequencing (WES) reads for each sample were aligned to GRCh37d5 using the Sanger cgpmap workflow.
[31], which uses bwa-mem (v0.7.15-1140) [32] and biobambam2 (v2.0.69) [33] to generate genome-coordinate sorted alignments with duplicates marked and Genome Analysis Toolkit (GATK, v3.6) to realign around indels and perform base recalibration for paired tumor and normal sequence read data. Somatic variants were called and filtered using MuSE (v0.9.9.5) [34], MuTect (v1.1.5) [35], Pindel (v0.2.5b8) [36], RADIA (v1.1.5) [37], SomaticSniper (v1.0.5.0) [38], and VarScan 2 (v2.3.9) [16] according to the mc3 variant calling protocol [39]. To make somatic variants reported across tools comparable, vt (v0.5772-60f436c3) [40] was used to normalize variants, decompose biallelic/block variants, sort variants, and produce a final, unique list of variants for each caller. Somatic variants that were reported by more than one tool, or that were reported by Pindel and overlapped at least one call from another tool, were retained for further analysis. Germline variants were called using GATK’s HaplotypeCaller (v3.5-0-g36282e4) [35], and germline variants were called using GATK HaplotypeCaller (v3.5-0-g36282e4), with VariantFiltration performed as described in “Variant Identification and Phasing”. HLA types were predicted from tumor WES reads using Optitype (v1.3.1) [12]. Patient-specific haplotypes were predicted using HapCUT2 [17] as described in “Variant Identification and Phasing”, both with and without the inclusion of germline variation. For use with pVACseq, somatic VCFs were annotated with Variant Effect Predictor (v91.3) [42] according to pVACseq recommendations. Neoepitope prediction with pVACseq, MuPeXI, and neoepiscope was performed with the most updated versions/commits of the software available on September 10, 2018. Across all tools, HLA binding predictions were performed with netMHCpan (v4.0 for MuPeXI/neoepiscope, v2.8 for pVAC-Seq, which uses IEDB Tools’ netMHCpan integration) [43] for consistency with MuPeXI’s requirements using alleles HLA-A*01:01, HLA-B*08:01, and HLA-C*07:01 (shared across all three patients). Uniform peptide length of 9 amino acids was used for prediction in all cases, with a maximum binding
score cutoff of 5x10^4 nM. For neoepiscope, prediction was run both based on germline-variation-included and germline-variation-excluded haplotypes. Performance time and predicted neoepitope sequences were compared across tools (Figure XX), using four Intel Xeon E5-2697 v2 processors (when multithreading was possible), each with twelve 2.70 GHz processing cores. Scripts to reproduce the benchmarking described here are available at https://github.com/pdxgx/neoepiscope-paper under the MIT license.

Estimation of variant co-occurrence rates
To estimate patient-specific variant co-occurrence, predicted haplotypes were used to determine when somatic variants were proximal to either a germline variant or another somatic variant within the span of an MHC-II epitope (72 bp/24 aa) in the cohort described in “Variant Identification and Phasing”. Because of variant decomposition during somatic variant calling, immediately adjacent somatic single nucleotide variants predicted to be in the same alleles were collapsed into a single multiple nucleotide variant. Nearby germline variants were counted both upstream and downstream of somatic variants, while somatic variants were only counted upstream of each other to avoid duplication. Proximity of frameshift variants was considered based on strand specificity of any transcripts overlapping a somatic variant, such that only the effects of upstream frameshifts were considered for downstream variants. Both the number of variants near a somatic variant and the minimum distance between a somatic variant and its nearby variants were recorded.

RESULTS
Somatic and germline variant co-occurrence
We analyzed the intervariant distance distribution among somatic and germline variants from 367 tumor samples, employing HapCUT2 [17] for patient-specific haplotype phasing (see Methods). We found that variant co-occurrence increases approximately linearly with increasing nucleotide span, with an average of 0.57% and 0.16% of somatic variants located within a 72bp inter-variant distance of another germline or somatic variant, respectively (Figure 3A). On a per patient basis, up to 1.58% and 2.65% of somatic variants co-occurred with at least one germline variant within the span of a MHC class I (≤33bp) and class II (≤72bp) epitope, respectively (Figure 3B). Additionally, up to 1.47% and 1.90% of somatic variants per patient co-occurred with at least one other somatic variant within the span of a MHC class I and class II epitope, respectively.

We also analyzed the prevalence of upstream frameshift indels neighboring somatic variants within a 94bp window (distance corresponding to an estimated ~95% probability of encountering a novel out-of-frame stop codon). On a per patient basis, an average of 0.037% of somatic variants overlapping transcripts were phased with an upstream indel, with up to 0.39% of a patient’s somatic variation being phased with an upstream indel. Based on these data, we estimate that neoepitope prediction without consideration of germline context or variant phasing could produce up to 3.0% false positive results, with an approximately balanced number of false
negative results, resulting in both an inaccurate and incomplete picture of the cancer neoepitope landscape.

Neoepitope prediction consequences of variant phasing

We identified specific examples of co-occurring variants from real patient data, as above, and show the neoepiscope-predicted consequences of both variant phasing and germline context for each of these examples in Figure 4. Co-occurrence of neighboring somatic and germline SNVs can produce neoepitopes with multiple simultaneous amino acid changes. For instance, germline (chr11:56230069 T->C) and somatic (chr11:56230065 C->T) variants in a melanoma patient (“Pat41” [26]) give rise to a collection of potential compound neoepitopes containing two adjoining amino acid changes (germline K270R and somatic M271I in ENST00000279791) (Figure 4A). Three neighboring somatic variants (chr21:31797833 C->T, chr21:31797825 T->C, and chr21:31797821 G->A) in another melanoma patient (“37” [28]) give rise, jointly, to three amino acid changes (R133K, T136A, and S137F in ENST00000390690) (Figure 4B). In such cases of neighboring SNVs, the anticipated proportion of compound neoepitopes is inversely and linearly related to the distance separating neighboring variants on both sides (Figure 4B).

It is also possible for frameshift indels to be located within upstream coding sequences near one or more phased variants. For instance, a somatic SNV (chr10:76858941 C->T) in the context of an upstream germline frameshifting deletion (chr10:76858961 CT->C) in another melanoma patient (“Pt3” [24]) introduces multiple novel potential neoepitopes arising from ENST00000478873 (Figure 4C). Importantly, without germline context, this somatic SNV is predicted to be a silent mutation and would not otherwise be predicted to give rise to any neoepitopes.

Finally, stop codon mutations that enable an extension of the reading frame may expose one or more downstream somatic or germline variants. For instance, a somatic SNV (chr17:39616462 A->T) in another melanoma patient (“Pt2” [24]) eliminates a stop codon in ENST00000225899, with an anticipated extension of translation of an additional 72 amino acids prior to encountering the next stop codon. However, the co-occurrence of a downstream germline frameshift deletion (chr17:39616288 TG->T) both shortens and alters the anticipated peptide composition (Figure 4D).

Software performance and benchmarking

We attempted to compare the performance of neoepiscope with all other publicly available neoepitope prediction tools, but were unable to recapitulate many of these pipelines despite availability of the code. For example, we were unable to install TSNAD due to numerous broken (uncorrectable) paths in its Makefile, while the local version of CloudNeo had several Dockerfile and code-level errors that prevented us from running the installed tool. This raises a significant reproducibility and generalizability issue among many existing software tools. However, we were able to successfully benchmark two popular neoepitope prediction tools (pVACseq and MuPeXI) along with neoepiscope (running in somatic-only, somatic+germline, or comprehensive modes).
Run as a full pipeline, neoepiscope outperformed pVACseq by an average of 94.7 minutes per sample, even when including germline variant calling (see Figure 5). MuPeXI outperformed the comprehensive neoepiscope pipeline (including germline variant calling) by an average of 87.3 minutes per sample, but was narrowly outperformed by the neoepiscope somatic-only pipeline by an average of 5.8 minutes per sample. This difference was predominantly accounted for by the average 83.7 minutes per sample runtime of germline variant calling, as well as the additional 5.7 minutes per sample runtime of HapCUT2 when phasing somatic and germline variants as opposed to somatic variants alone.

We also compared the neoepitope sequences predicted by each tool. While the vast majority of neoepitopes (90.6%) are consistent across all prediction tools, there are significant nuances and differences in predictions between tools (Figure 6). Of concern, we find that 3.5% of predicted neoepitopes from pVACseq and MuPeXI (or neoepiscope without germline variation) are spurious, while 1.8% of neoepitopes are unique to neoepiscope but erroneously missing from pVACseq and MuPeXI predictions. An additional 0.8% of neoepitopes are correctly reported by neoepiscope and MuPeXI but missing from pVACseq due to its inability to report epitopes that extend beyond the annotated stop codon. On the other hand, 0.1% of neoepitopes are reported by neoepiscope and pVACseq but missing from MuPeXI due to its misinterpretation of certain indel variants. Approximately 2.9% of neoepitopes arise from nonsense-mediated decay, polymorphic pseudogene sequences, IG V and TR V transcripts, or transcripts lacking annotated start and stop codons, which are of uncertain relevance but may be a source of antigenic peptides [44]. Unlike pVACseq and MuPeXI, neoepiscope does not process these sequences by default, but it is parameterized to report on these sequences as desired (comprehensive mode).

There are several other anticipated discrepancies between neoepiscope, pVACseq, and MuPeXI. For instance, there were nine neoepitopes derived from a mutation to a transcript from an unlocalized contig (chr1_KI270711v1_random) and 27 associated with presumed RNA-editing events (on transcripts ENST00000361453 and ENST00000362079) which were reported by pVACseq but not neoepiscope due to discrepancies in genomic annotation and variant effect prediction, respectively. However, in the absence of RNA-seq data, there is no way to reasonably differentiate performance for these sites.

DISCUSSION
We report here a novel, performant and flexible pipeline for neoepitope prediction from DNA-seq data (neoepiscope), which we demonstrate improves upon existing pipelines in several ways. In particular, we demonstrate the importance of germline context and variant phasing for accurate and comprehensive neoepitope identification. Not only do co-occurring somatic variants represent a source of previously unappreciated neoepitopes, but these compound epitopes may harbor more immunogenic potential compared to peptides from isolated somatic variants (due to multiple amino acid changes within the same epitope) [45,46]. Furthermore, we find that neoepiscope improves both sensitivity and specificity compared with existing
software (which incorrectly or incompletely predicts ~5% of neoepitopes). Indeed, this study is the first to critically evaluate and benchmark multiple neoepitope prediction tools, and raises the specter of broad reproducibility, accuracy, and usability issues within the field. Finally, we note that the neoepiscope framework is sufficiently flexible to accommodate numerous variant types, nonsense-mediated decay products, and epitope prediction across different genomes.

There are several limitations to neoepiscope at present. For instance, the software does not currently leverage RNA-seq data for gene expression or transcript-level variant phasing [47]. While the importance of gene dosing for neoepitope presentation remains unclear at this time, incorporation of transcript-level variant quantification could potentially improve accuracy of neoepitope prediction. Additionally, neoepiscope does not currently predict neoepitopes that may arise from alternative splicing events, RNA-editing, structural variation or gene fusions which are common across multiple cancer types [4,48–50]. Because neoepiscope implicitly assumes a diploid genome, due to its reliance on HapCUT2 for variant phasing, it may have decreased predictive accuracy in the context of significant somatic copy number alterations [51]. Lastly, as there remains significant uncertainty in predicting antigenicity in vivo, neoepiscope does not attempt to prioritize or rank putative neoepitopes in any way, relying instead on the end user to interpret results according to their own preferred schema.

In the future, we will address these limitations by incorporating downstream predictive methodologies which could aid in identifying the most immunogenic candidates (e.g., for personalized vaccine development [52,53]) and incorporating predictive features from RNA-seq as above to expand the repertoire of predicted neoepitopes. Given the proliferation of predictive tools, and their notable caveats and limitations as described in this study, we believe the field must advocate for the highest of standards in software reproducibility and transparency. Finally, we assert that future analyses should account for both germline context and variant phasing, and are happy to provide neoepiscope as a resource for the community, accordingly.

AVAILABILITY

neoepiscope is available on GitHub at https://github.com/pdxgx/neoepiscope under the MIT license. Scripts for reproducing results described in text are available at https://github.com/pdxgx/neoepiscope-paper under the MIT license.

FUNDING

This work was supported by the Sunlin & Priscilla Chou Foundation to RFT.

ACKNOWLEDGEMENTS

We would like to thank Mihir Paralkar and Mayur Paralkar for their support at neoepiscope’s inception. We would also like to thank Dr. Rachel Karchin for her group’s support with MHChnuggets integration. We finally thank Julianne David for her critical review of the manuscript.

CONFLICT OF INTEREST
DISCLAIMER
The contents do not represent the views of the U.S. Department of Veterans Affairs or the United States government.

FIGURES

Figure 1: A feature comparison of pVACseq and pVACfuse [6], INTEGRATE-neo [4], Epi-Seq [2], CloudNeo [54], TSNAD [5], MuPeXI [7], neoantigenR [55], NeoepitopePred [56], neoantigen_calling_pipeline (Van Allen laboratory) [26], retained-intron-neoantigen-pipeline (Van Allen laboratory) [48], Epidisco [57], antigen.garnish [58], NeoPredPipe [59], Neopepsee [60], and neoepiscope. Each column corresponds to a software tool, with software features listed by row. A green check mark indicates that the tool possesses or processes the indicated feature, while a red “X” indicates that the tool does not possess or process the indicated feature. Yellow ellipses (...) indicate features under active development, while an orange warning symbol (⚠) indicates that a tool incompletely supports the corresponding feature. Specifically, neoantigenR can only identify retained introns when using GTF annotations that contain labeled introns. Epidisco is limited to RNA-seq data and cannot account for downstream effects of a variant, though it can identify some events of alternative splicing, germline variation, and nearby somatic variation so long as they occur nearby a declared variant. Epi-Seq uses phasing information to determine the genotypes of variants and to identify other variants nearby variants.
that produce neoepitopes, but like Epidisco it does not take into account the downstream effects of a variant. Gray question marks (“?”) denote unknown or unassessed values. * A tool was considered to be under activate maintenance if a new release or GitHub commit had occurred within 6 months prior to submission of this manuscript. § Other MHC binding prediction tools used include NNalign, PickPocket, SMM, SMMPMBEC, and SMM align for pVACseq and pVACfuse; NetMHCII for antigen.garnish, and NetCTLpan for Neopepsee. ‡ A tool was considered to be performant if neoepitope prediction averaged less than 10 minutes per sample in our benchmarking (see Methods).
Figure 2: Neoepitope prediction pipeline diagram describing canonical neoepiscope workflow. Global inputs are shown at the top of the figure, with connecting arrows demonstrating interim inputs and outputs between processing steps. Multiple potential software options are shown at right for each relevant processing step as indicated by horizontal arrows (tools that were used for analysis in the present study are underlined).
Figure 3: Variant co-occurrence among 270 melanoma patients, 34 NSCLC patients, and 28 colon, endometrial, and thyroid cancer patients. A) The cumulative average percentage (y-axis) of somatic variants across all tumors that co-occur with germline variants (blue), other somatic variants (red), or either type of variant (black) is shown as a function of increasing nucleotide span (x-axis). Canonical MHC Class I and Class II epitope size ranges are shaded in light gray (24-33bp and 36-72bp, respectively). B) Box plots demonstrating per-patient percentage of somatic variants (y-axis) across all tumors that co-occur with germline variants (blue), other somatic variants (red), or either variant type (dark gray).
Figure 4: Neoepitope-level consequences of phased variants. Four coding sequences are shown to relative scale (gray horizontal bars), with corresponding approximate variant locations shown in red or blue tick marks for somatic and germline variants, respectively. Amino acid sequences corresponding to the reference coding sequence are shown in dashed boxes above their corresponding transcripts, with “...” indicating additional unspecified sequence, a “***” denoting a stop codon, and italicized characters indicating untranslated sequence. Colored highlighted boxes contain 9mer neoepitopes and their immediate context as predicted from phased variants, with shading corresponding to somatic variants alone (red) or including germline context (blue). Gray highlighted boxes contain 9mer neoepitopes and their immediate context as predicted from somatic variants in isolation, without consideration of phasing or germline context. Amino acid sequences that are directly affected by germline or somatic variants are displayed in bold underlined blue or red, respectively, while downstream variant consequences are shown without underline, and silent variant effects are neither bolded nor underlined. Corresponding symbols are shown at the right of each peptide and demonstrate the anticipated consequence of incorporating variant phasing and germline context, with yellow stars denoting novel neoepitopes, red NOT symbols denoting incorrectly predicted neoepitopes, green checkboxes denoting correctly predicted neoepitopes, black plus signs denoting novel proteomic context, and black check boxes denoting consistent proteomic context. Co-occurring variant phenomena correspond to real patient data as noted in the text and are depicted as follows: A) germline SNV + somatic SNV, B) multiple somatic SNVs, C) germline frameshift deletion + downstream somatic SNV, and D) somatic non-stop variant + downstream germline frameshift deletion.
Figure 5: Performance benchmarking of neoepiscope, pVACseq, and MuPeXI. The run times (y axis) of neoepiscope both including (+ or *) and excluding germline variation were compared with those of pVACseq and MuPeXI at a pipeline level. Time zero indicates the beginning of the neoepitope calling process from somatic (and germline, if relevant) variants, such that steps in the pipeline prior to neoepitope prediction (e.g. sequence read alignment, somatic variant calling, etc.) are displayed below time zero, and steps during or required for
neoepitope calling are displayed above time zero. Only neoepiscope pipelines required variant phasing, and only neoepiscope (+) required germline variant calling. neoepiscope (*) indicates comprehensive mode which includes analysis of nonsense-mediated decay, polymorphous pseudogene, IG V and TR V, and other sequences without annotated start or stop codons. Variant Effect Predictor (VEP) runtimes were included in the pVACseq neoepitope prediction step (VEP is a prerequisite for pVACseq).
Figure 6: Detailed comparison of neoepitope predictions between neoepiscope, MuPeXI, and pVACseq. The veracity of predictions corresponding to each tool are shown as pie charts along each row, with colors corresponding to true positive (“TP”, dark blue), false positive (“FP”, dark red), true negative (“TN”, light blue), false negative (“FN”, light red), and uncertain (“U”, gray) predictions. Uncertain predictions are considered a result of one or more factors including origin from IG V, TR V, or unassembled contig regions, or the presence of RNA edits. Each column corresponds to a different subset of neoepitopes with a particular pattern of overlap of predictions, depicted by interconnection of relevant outlined pie charts. The total number of neoepitopes predicted by each tool is shown as n (corresponding to each row), with the size of each neoepitope subset demonstrated as a bar in the upper pane (corresponding to each column).
SUPPLEMENTARY DATA

<table>
<thead>
<tr>
<th>Cancer type</th>
<th>Number of patients</th>
<th>Number of tumor samples</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melanoma</td>
<td>3</td>
<td>7</td>
<td>Carreno et al.</td>
</tr>
<tr>
<td>Melanoma</td>
<td>16</td>
<td>16</td>
<td>Gao et al.</td>
</tr>
<tr>
<td>Melanoma</td>
<td>38</td>
<td>39</td>
<td>Hugo et al.</td>
</tr>
<tr>
<td>Colon, endometrial, thyroid</td>
<td>28</td>
<td>29</td>
<td>Le et al.</td>
</tr>
<tr>
<td>NSCLC</td>
<td>34</td>
<td>34</td>
<td>Rizvi et al.</td>
</tr>
<tr>
<td>Melanoma</td>
<td>35</td>
<td>53</td>
<td>Roh et al.</td>
</tr>
<tr>
<td>Melanoma</td>
<td>64</td>
<td>64</td>
<td>Snyder et al.</td>
</tr>
<tr>
<td>Melanoma</td>
<td>110</td>
<td>110</td>
<td>Van Allen et al.</td>
</tr>
<tr>
<td>Melanoma</td>
<td>4</td>
<td>9</td>
<td>Zaretsky et al.</td>
</tr>
</tbody>
</table>

Supplementary Table 1: Summary of patients samples used to identify trends in variant phasing. Publicly available WES data from 9 studies was used to determine the frequency with which somatic variants are phased with germline or other somatic variants (see Materials and Methods). We summarize the study which produced each data set, the cancer types represented, and the number of patients/tumor samples sequenced.
REFERENCES

33. gt. gt1/biobambam2. In: GitHub [Internet]. [cited 12 Sep 2018]. Available: https://github.com/gt1/biobambam2

