Abstract
Habituation is a simple form of learning, where animals learn to reduce their responses to repeated innocuous stimuli. While habituation is simple in concept, its exact implementation in the vertebrate brain is not clear. It could occur via a single plasticity event at a singular site in the circuit, or alternatively via more complex strategies that combine multiple mechanisms at various processing stages and sites. Here, we use a visual habituation assay in larval zebrafish, where larvae habituate to sudden reductions in illumination (dark flashes). We find that 8 different components of this response habituate, including the probability of executing a response, its latency, and measures of its magnitude. Through behavioural analyses, we find that habituation of these different behavioural components occurs independently of each other and at different locations in the circuit. Further, we use genetic and pharmacological manipulations to show that habituation of different behavioural components are molecularly distinct. These results are consistent with a model by which visual habituation originates from the combination of multiple independent processes, which each act to adapt specific components of behaviour. This may allow animals to more specifically habituate behaviour based on stimulus context or internal state.
Footnotes
↵7 Co-senior authors