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Abstract

To infer the sequence and RNA structure speci�cities of RNA-binding proteins (RBPs) from
experiments that enrich for bound sequences, we introduce a convolutional residual network
which we call ResidualBind. ResidualBind signi�cantly outperforms previous methods on
experimental data from many RBP families. We interrogate ResidualBind to identify what
features it has learned from high-a�nity sequences with saliency analysis along with 1st-
order and 2nd-order in silico mutagenesis. We show that in addition to sequence motifs,
ResidualBind learns a model that includes the number of motifs, their spacing, and both
positive and negative e�ects of RNA structure context. Strikingly, ResidualBind learns RNA
structure context, including detailed base-pairing relationships, directly from sequence data,
which we con�rm on synthetic data. ResidualBind is a powerful, �exible, and interpretable
model that can uncover cis-recognition preferences across a broad spectrum of RBPs.

Introduction

The life-cycle of RNA, including transcription, splicing, polyadenylation, transport, localization, and transla-
tion, is mediated by interactions with RNA-binding proteins (RBPs) (König et al , 2012). To gain mechanistic
insight into RBP-regulated processes, it is essential to understand the speci�city of RNA-RBP recognition.
RNA-binding proteins contain modular binding domains that confer speci�c recognition preferences for RNA
sequence and structure (Lunde et al , 2007; Campbell and Wickens, 2015; Jankowsky and Harris, 2015). To
identify the RNA sequence preferences of an RBP, a variety of in vitro and in vivo experimental methods
enrich for protein-bound RNA sequences (Lambert et al , 2014; Tome et al , 2014; Guenther et al , 2013;
Ray et al , 2017; Licatalosi et al , 2008; Hafner et al , 2010; Konig et al , 2010; Sundararaman et al , 2016),
and computational methods are used to deduce the consensus RNA sequence and/or structure features that
these bound sequences share (Foat et al , 2006; Maticzka et al , 2014; Kazan et al , 2010; Maticzka et al , 2014;
Orenstein et al , 2016; Alipanahi et al , 2015). Many analysis methods use position-weight-matrices (PWMs)
or k -mers to model an RBP's recognition code. Many of these methods make simplifying assumptions that
do not necessarily capture all biologically important features, especially the positions of motifs and/or the
in�uence of RNA secondary structure.
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As powerful function approximators (Cybenko, 1989; Sonoda and Murata, 2015; Raghu et al , 2016;
Shaham et al , 2016), deep neural networks (NNs) can learn a functional mapping between input genomic
sequences and an output such as a bound/unbound label, or a binding a�nity. Deep NNs do not necessarily
have to make strong assumptions about what features of the input are important, because they autonomously
build hierarchical representations of the data, in a machine learning approach called deep learning (LeCun
et al , 2015). For supervised classi�cation tasks, a deep NN is comprised of arti�cial neurons arranged in
multiple layers: an input layer, one or more hidden layers, and an output layer where predictions are made
(Goodfellow et al , 2016). Convolutional neural networks (CNNs) are a popular architectural choice that is
well suited to detecting short contiguous patterns, such as motifs, along longer genomic sequences (Alipanahi
et al , 2015; Zhou and Troyanskaya, 2015).

DeepBind was the �rst deep learning approach to analyze RBP-RNA interactions (Alipanahi et al , 2015).
It demonstrated improved performance over PWM- and k-mer-based methods on the 2013-RNAcompete
dataset, a standard benchmark dataset that consists of 244 in vitro a�nity selection experiments that span
across many RBP families (Ray et al , 2013). Recently, RCK (Orenstein et al , 2016), a k-mer-based approach,
narrowly outperformed DeepBind. DeepBind's design includes just a single convolutional layer which may
limit its ability to learn feature representations that deeper CNNs with two or more convolutional layers
could achieve. However, deeper models tend to be more di�cult to train, and they can lack interpretability,
making it challenging to understand what they have learned.

Recent advances in computer vision have introduced �residual networks� (He et al , 2016), a technique
that makes it easier to train deep NNs, and an approach called �saliency analysis� that makes it easier to
interpret what features they have learned (Simonyan et al , 2013; Springenberg et al , 2014; Shrikumar et al ,
2016). Here we apply these advances to develop a convolutional residual network approach which we call
ResidualBind.

Results

ResidualBind architecture

ResidualBind takes as input an RNA sequence and outputs a binding score prediction for a given RBP.
ResidualBind can be decomposed into 5 stages (Fig. 1): (1) convolutional layer, (2) residual module, (3)
mean-pooling layer, (4) convolutional layer, and (5) fully-connected output layer. Stage 1 is a convolutional
layer that takes as input 41 nucleotide (nt) one-hot encoded sequences (X). 96 convolution �lters, each of
length 12 (W(1)), calculate a 1-dimensional cross-correlation across the sequence, outputting similarity scores
at di�erent positions, also known as feature maps (Z(1)). Each feature map is further processed with batch
normalization (Io�e and Szegedy, 2015) and a recti�ed linear unit (ReLU) activation (H(1)). In stage 2, the
residual module takes H(1) as input and performs two successive convolutional layers. H(1) and the output
of the 2 convolutional layers within the residual module are combined by an element-wise sum prior to a
ReLU activation (H(3)). This skipped connection is the essence of the residual module, which foster training
deeper networks by providing improved gradient �ow (He et al , 2016). In stage 3, H(3) is downsampled with
a mean-pooling layer by averaging non-overlapping window sizes of 10 neurons separately for each �lter,
resulting in 3 neurons per �lter that capture di�erent spatial regions of the input sequence (Ĥ(3)). Stage 4
employs a convolutional layer (H(4)) with 196 �lters that have the same size as Ĥ(3), which is equivalently
a fully-connected layer. Finally, stage 5 consists of a fully-connected output layer that takes H(4) as input
and performs a linear regression to a single output neuron (O), where binding score predictions are given.

ResidualBind's parameters, from each convolutional layer, batch normalization, and fully-connected layer,
are determined through an iterative training procedure that minimizes the squared error between the pre-
dicted binding scores and the experimental binding scores (see Methods). We explored various hyperparam-
eter settings by comparing the performance of candidate models with randomly-sampled hyperparamters
on a validation dataset (Bergstra and Bengio, 2012). Many parameter settings perform comparably, so
ResidualBind's �nal hyperparameter setting was manually selected and �xed throughout all analyses in the
paper.
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Figure 1: 5-stage architecture of ResidualBind. ResidualBind stages consist of: (1) convolutional layer
(details at left), (2) residual module (details at right), (3) mean-pooling layer, (4) convolutional layer, and a
(5) fully-connected output layer, where the binding score predictions are given. The dimensions are shown
in green on the bottom right of each feature map and �lter. The convolutional layers in the residual module
employ zero-padding to ensure the dimensions remain the same (not shown).

ResidualBind yields state-of-the-art predictions on the RNAcompete dataset

To benchmark the performance of ResidualBind against previously published methods, we used the 2013-
RNAcompete dataset. RNAcompete consists of about 241,000 38-41 nt RNA sequences that are divided into
two halves, `set A' and `set B', each of which consist of a di�erent set of sequences that contain 8 copies of all
possible 9-mers. RBPs are incubated with a 75-fold excess of RNA sequences so that the proportion of each
bound RNA should scale with its relative a�nity for the RBP at equilibrium. The experimental binding
score given by RNAcompete is a normalized log-ratio of the �uorescence intensities of bound vs unbound
RNA.

To compare ResidualBind against previous methods, we preprocessed experimental binding scores similar
to (Orenstein et al , 2016; Alipanahi et al , 2015) by clipping large experimental binding scores to their 99.9th
percentile value and normalizing to a z-score, a technique we refer to as clip-transformation. RNA sequences
were converted to a one-hot representation with zero-padding added as needed to ensure all sequences
had the same length of 41 nucleotides. For each RNAcompete experiment (i.e. each RBP) in the 2013-
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RNAcompete dataset, we trained a separate, randomly-initialized ResidualBind model on `set A' sequences
using experimental binding scores as training labels. Then, we predicted binding scores on `set B' sequences
using corresponding experimental binding scores to test the e�cacy of our trained models.

We compared ResidualBind's performance against MATRIXReduce (Foat et al , 2006), RNAcontext
(Kazan et al , 2010), GraphProt (Maticzka et al , 2014), DeepBind (Alipanahi et al , 2015), and RCK (Oren-
stein et al , 2016). MATRIXReduce and RNAcontext are PWM-based methods. RNAcontext considers RNA
secondary structure predictions along with RNA sequences. Graphprot employs a support vector machine
with graph-kernel features. RCK is a method that replaces RNAcontext's PWMs with k-mers. A common
metric previously used to compare the performance of di�erent models on the RNAcompete datasets is the
Pearson correlation between model predictions and experimental binding scores on the held-out test set. Un-
der this metric, ResidualBind signi�cantly outperforms previously-reported methods, including the current
state-of-the-art RCK (Fig. 2A). The mean Pearson correlation across all 244 experiments was 0.69±0.17 for
ResidualBind in comparison to 0.409 ± 0.166 for DeepBind and 0.460 ± 0.14 for RCK (errors are standard
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Figure 2: Performance comparison on the 2013-RNAcompete dataset. (A) Box-violin plot of Pearson cor-
relations between experimental binding scores and predicted binding scores using di�erent computational
methods on the held-out test set for all 244 2013-RNAcompete experiments. Each data point represents
one RBP experiment. Median value is shown as a white dot. (B) Scatter plot of ResidualBind's Pearson
correlations and RCK's Pearson correlations. (C,D) Scatter plot of ResidualBind's predicted binding scores
and experimental binding scores from the test set of an RBP experiment in the 2013-RNAcompete dataset
(RNCMPT00216) processed according to (C) clip-transformation and (D) log-transformation. (B-D) Red
dashed line serves as a guide-to-the-eye for a perfect correlation. (E) Box-violin plot of the Pearson cor-
relations between predicted binding scores given by ResidualBind and experimental binding scores of the
test set for all 244 2013-RNAcompete experiments processed according to clip-transformation (blue) and
log-transformation (red).
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deviation of the mean). On a case-by-case basis, the Pearson correlations achieved by ResidualBind are
nearly always found to be higher than RCK (Fig. 2B). This demonstrates that ResidualBind yields more
accurate predictions that better re�ect experimental binding scores in the RNAcompete dataset.

We noticed that clip-transformation adversely a�ects the �delity of ResidualBind's predictions for higher
binding scores, the most biologically relevant regime (Fig. 2C). We prefer preprocessing experimental binding
scores with a log-transformation similar to a Box-Cox transformation (see Methods), so that its distribution
approaches a normal distribution while also maintaining their rank-order. With log-transformation, we found
that ResidualBind yields higher quality predictions in the high-binding score regime (Fig. 2D), although
average performance was essentially the same (Fig. 2E). Henceforth, our results will be based on preprocessing
experimental binding scores with log-transformation.

ResidualBind learns expected sequence motifs

We veri�ed that ResidualBind learns expected consensus sequence motifs by performing in silico mutagenesis
experiments, where we systematically make each nucleotide mutation to a canonical motif embedded in a
synthetic sequence and ask how this alters ResidualBind's binding score predictions. For each motif variant,
we embed a single motif at the center of many di�erent random RNA sequences, which serve to average out
background noise. For example, Figure 3A shows results for RBFOX1, a well-studied protein whose canonical
motif is `UGCAUG' (dataset id: RNCMPT00168) (Auweter et al , 2006; Lambert et al , 2014; Lovci et al ,
2013). ResidualBind �nds that `GCAUG' are the most important nucleotides in the RBFOX1 motif with
minimal contributions from the 5' U, which agrees with RBFOX1's PWM in the CISBP-RNA database
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Figure 3: ResidualBind learns the expected RBFOX1 motif. (A) Heatmap of the di�erence between Resid-
ualBind's average binding score for 1,000 synthetic sequences embedded with each possible single nucleotide
mutation of the canonical motif and the average binding score for 1,000 synthetic sequences embedded with
a canonical RBFOX1 motif. A sequence logo of the RBFOX1 PWM from the CISBP-RNA database (ID:
A2BP1 M159_0.6) is shown above. (B) Scatter plot of the experimental lnKd ratio of the mutant to wild
type measured via surface plasmon resonance (Auweter et al , 2006) versus ResidualBind's average binding
score for synthetic sequences embedded with a corresponding RBFOX1 variant. Each dot represents a dif-
ferent single nucleotide variant experiment, with the variant highlighted in red. (C,D) Scatter plot between
experimental binding scores from the 2013-RNAcompete dataset (ID: RNCMPT00168) versus predicted
binding scores given by (C) the maximum PWM score using an RBFOX1 PWM from the CISBP-RNA
database, and (D) ResidualBind. (C,D) Each dot represents a di�erent sequence in the test set.
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(ID: A2BP1 M159_0.6). The mean binding score for di�erent variants correlate well with experimentally-
determined lnKD ratios of the variants and wild type measured by surface plasmon resonance experiments
(Auweter et al , 2006) with a signi�cant negative correlation of −0.763 (p-value= 0.046, t-test) (Fig. 3B).

Other methods, including DeepBind and RCK, learn a similar motif. Simply learning an RBP's consensus
motif is not su�cient to explain ResidualBind's improved performance. For example, Figure 3C shows a
scatter plot of the best PWM score for each test sequence versus experimental binding scores using an
RBFOX1 PWM from the CISBP-RNA database (ID: A2BP1 M159_0.6). PWM scores do not correlate
well with experimental binding scores (Pearson correlation=0.443 and Spearman rank correlation=0.315),
particularly in the high binding score regime. In contrast, ResidualBind's predicted scores better correlate
with experimental binding scores (Fig. 3D, Pearson correlation 0.810, Spearman rank correlation=0.656),
suggesting it is learning more complex features beyond a simple PWM.

ResidualBind accounts for motif position, number and spacing

To identify nucleotides a deep network deems to be important, we employ saliency analysis (Shrikumar
et al , 2016; Simonyan et al , 2013; Springenberg et al , 2014). Saliency analysis determines the sensitivity of
predictions from perturbations to each nucleotide variant by calculating gradients of the outputs with respect
to the inputs. We employ guided-backprop saliency analysis, which recti�es gradients through each ReLU
activation to highlight the inputs that contribute toward increasing the prediction, a popular visualization
technique in computer vision (Springenberg et al , 2014). The resultant �saliency map� can give insight into
motifs that the neural network has learned and their spatial locations along a given sequence, without prior
knowledge of the motif. Saliency analysis can only be applied on an individual sequence basis. For ease of
viewing, we convert guided-backprop saliency maps into sequence logos (see Methods).

To show what ResidualBind has learned, we highlight saliency analysis for three sequences with high
predicted binding scores that have a perfect match, a single mismatch, and two mismatches to the canonical
RBFOX1 motif (Fig. 4A). We observe that a single intact RBFOX1 motif is su�cient for a high binding
score (Fig. 4A, i), and sequences that contain mismatches to the canonical motif can also have high binding
scores by containing additional `sub-optimal' binding sites (Fig. 4A, ii -iii). This suggests that the number
of motifs and possibly their spacing are relevant. This also raises the question of why a high RBFOX1 PWM
hit doesn't necessarily always correspond to high experimental binding scores (Fig. 3C). ResidualBind must
be learning additional context that makes a high-scoring PWM hit a poor binding site. An example of such
an e�ect could be a preference for the motif at certain positions.

We tested the e�ect of motif positional preference, motif numbers, and their spacings by systematically
interrogating ResidualBind with synthetic sequences (see Methods). We observe that ResidualBind learns
that RBFOX1 motifs near the 3' end yield signi�cantly lower binding scores compared to the rest of the
sequence (Fig. 4B). This positional bias was con�rmed by comparing the average experimental binding
score for 5,000 sequences with the highest PWM scores, where the highest PWM hit is located within the
�nal 3 positions of the 3' end (0.036±1.113, 1,062 total sequences) versus everywhere else (2.553±2.306,
3,938 total sequences). This suggests that RBFOX1 has a nonspeci�c requirement of at least 3 nts �anking
its speci�c motif for maximal binding. We also veri�ed that ResidualBind learns the contribution of each
motif is additive to the binding score (Fig. 4C), and the spacing between RBFOX1 motifs can decrease this
e�ect when they are too close (Fig. 4D), which manifests biophysically through steric hindrance. These
relationships are speci�c to RBFOX1 and di�er in detail for other RBPs (Supplemental code).

ResidualBind learns RNA secondary structures from sequence

In contrast to transcription factors, RNA structure is important for RBP recognition - some RBPs see struc-
tural targets, and some RBPs see unstructured targets that competing structures can block. Previous work,
including RCK and RNAcontext (Orenstein et al , 2016; Kazan et al , 2010), has included RNA structure
context prediction as an additional input with the sequence, and shown that this contributes to more ac-
curate predictions. We explored whether similar inclusion of secondary structure predictions could improve
ResidualBind's performance.

The 2013-RNAcompete dataset was speci�cally designed to be weakly structured (Ray et al , 2013), so
for these experiments we also used the 2009-RNAcomepete dataset, which consists of more structured RNA
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Figure 4: Features learned by ResidualBind for RBFOX1. (A) Scatter plot of experimental binding scores for
test sequences in the 2013-RNACompete dataset for RBFOX1 versus ResidualBind's predicted binding scores
(Pearson correlation = 0.81). The color of each point is determined by the number of mutations between
the canonical motif (UGCAUG) and its best match in the sequence. (i-iii) The inset shows sequence logos
for saliency maps of select sequences with high predicted binding scores, a sequence with at best: (i) a
perfect match, (ii) a single nucleotide mismatch, and (iii) a double nucleotide mismatch with the canonical
RBFOX1 motif. The input RNA sequence is shown below each sequence logo. A colored bar below the
sequence indicates the number of mutations with a star at locations of mismatches. (B) Box plot of binding
score predictions for 1,000 synthetic sequences with an RBFOX1 motif embedded at various positions. (C)
Box plot of binding score predictions for 1,000 synthetic sequences with varying numbers of embedded
canonical RBFOX1 motifs in each sequence. (D) Box plot of binding score predictions for 1,000 synthetic
sequences with two RBFOX1 motifs with varying degrees of separation.

probes that include stem-loops for nine RBPs (Ray et al , 2009). Following procedures used in RCK and
RNAcontext, we predicted two types of RNA secondary structure pro�les for each sequence using RNAplfold
(Lorenz et al , 2011) and a modi�ed RNAplfold script (Kazan et al , 2010). RNAplfold yields secondary
structure pro�les that consist of the probability for each nucleotide to be either paired or unpaired (PU). The
modi�ed-RNAplfold script annotates each nucleotide with a predicted structural context of paired, hairpin-
loop, internal loop, multi-loop, and external-loop (PHIME). Secondary structure pro�les are incorporated
into ResidualBind by creating additional input channels. The �rst convolutional layer now analyzes either
6 channels (4 channels for one-hot primary sequence and 2 channels for PU probabilities) or 9 channels (4
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Figure 5: E�ect of secondary structure. (A) Box plots of Pearson correlations between experimental and
predicted binding scores for sequence, sequence+PU, or sequence+PHIME, for all 244 RBPs of the 2013-
RNAcompete dataset. (B) Same, for 9 RBPs in the 2009-RNAcompete dataset. (C) Scatter plot of Residu-
alBind versus RCK of the Pearson correlation on test sets of 9 RBPs in the 2009-RNAcompete dataset. (D)
Scatter plot of experimental binding scores for test sequences in the 2009-RNAcompete dataset for VTS1
versus ResidualBind's predicted binding scores. The color of each point is determined by the number of
mutations between the CISBP-RNA-derived motif (GCUGG) and the best match across the sequence. The
inset shows sequence logos for saliency maps of representative sequences with high predicted binding scores
(i-ii) and low predicted binding scores which contain the VTS1 motif (iii-iv). The sequence-structure logos
contain the original sequence and structural pro�les in the center, where `U' represent unpaired (grey) and
`P' represents paired (black). The logo of the saliency map is placed on top for sequences and below for PU
structural pro�les.

channels for one-hot primary sequence and 5 channels for PHIME probabilities).
Structure pro�les do not increase ResidualBind's performance (Fig. 5, A-B), but ResidualBind outper-

forms RCK which does bene�t from structure pro�les (Fig. 5C). One possible explanation is that Resid-
ualBind has already learned secondary structure e�ects from sequence alone. We compared the saliency
representations learned by ResidualBind when trained on sequences with and without PU structural pro�les
for VTS1, a well-studied RBP whose SAM domain has a high a�nity towards RNA hairpins containing
`CNGG' (Aviv et al , 2006b,a). The VTS1 motif in the CISBP-RNA database derived from analysis of the
2009-RNAcompete data is `GCUGG'. Saliency analysis shows that for ResidualBind trained on sequences
alone, it has learned the canonical `(G)CNGG' motif, but with other �anking nucleotides deemed important
as well (Fig. 5D, i and ii). When PU secondary structural pro�les are included as input, sequence-structure
logos show that ResidualBind learns to recognize a VTS1 sequence motif in the context of a hairpin-loop
structure.

We also looked at consensus CNGG motifs in unfavorable structural context. There are sequences with
a VTS1 consensus CNGG sequence motif that have low experimental binding scores for which ResidualBind
correctly predicts low binding scores (Fig. 5D). Saliency analysis on these low binding score sequences shows
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that ResidualBind trained on sequences alone identi�es the canonical sequence motif and several �anking
nucleotides as well (Fig. 5D, iii and iv). When ResidualBind is trained on sequences and PU structural
pro�les, saliency analysis of the same sequence shows that it recognizes the canonical sequence motif but in
context of being overlapped by base pairs.

These results suggest that ResidualBind, trained on sequences alone, learns both positive and negative
contributions of RNA structure context; when a structural pro�le is provided as input, it makes use of the
pro�le instead, but either way gives similar performance. It seemed surprising to us that a CNN could
learn detailed base pairing features, which requires the network to learn long-distance pairwise correlations
(essentially XORs) on individual bases, using 1st layer feature detectors that are 12 nts wide. To test this, we
designed a simple experiment where we trained ResidualBind to make a binary classi�cation of whether or
not an RNA sequence contains a hairpin structure from sequences only (see Methods). Brie�y, we generated
synthetic sequences with an 11 nt Watson-Crick paired stem and 7 nt loop (positive class); while background
sequences contained random RNA sequences (negative class). After training, we gauge ResidualBind's
classi�cation performance with the area under the receiver-operator-characteristic curve (AUC) on a withheld
test set.

ResidualBind discriminated between hairpin sequences and unstructured sequences with an AUC of
0.9993. Saliency analysis on sequences with a high classi�cation prediction for a hairpin loop shows that
ResidualBind highlights nucleotides in the stem region of the synthetic RNA sequences (Fig. 6B). By itself,
this evidence only suggests that ResidualBind may be recognizing long-distance complementary base pairing.
To directly test whether it is, we employed a second-order in silico mutagenesis study, systematically scoring
all 16 possible nucleotide pairs for every pair of positions (820 total pairs). If ResidualBind has learned
detailed base-pairing interactions, we expect mutants with compensatory basepair substitutions to score
well, while other score poorly. Figure 6C shows that this indeed is the result.
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Figure 6: ResidualBind learns RNA base pairing from sequence input. (A) Saliency logo of a representative
positive sequence, with stem and loop positions indicated by black and grey bars. (C) Heatmap of the
di�erence between the average predicted binding scores of 2nd order mutagenesis sequences and the `wild
type' original sequences for all pairwise substitutions at stem positions 6-16 and 24-34 for 1,000 sequences with
a high prediction for a hairpin loop. The lower-bound of the colorbar is clipped at -1.38, which corresponds
to a 4 fold decrease in prediction from wild-type.
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ResidualBind learns other sequence biases

For many RBPs, the saliency map for top scoring sequences contains high GC content towards the 3' end
(Fig. 7). We did not observe any consistent secondary structure preference for the 3' GC-bias. RBPs
with similar binding motifs exhibit the same 3' GC-bias trends; for instance, top scoring sequences for MSI
(RNCMPT00040), Tb_0252 (RNCMPT00252) and RBM28 (RNCMPT00049), which all share a similar
`GUAG' motif, contain a 3' GC-bias, but A2BP1 (RNCMPT00123) and ASD-1 (RNCMPT00180), which
share a similar binding motif as RBFOX1, did not exhibit a noticeable 3' GC-bias. We veri�ed that Residu-
alBind had learned a 3' GC-bias e�ect for a subset of RBPs by constructing and scoring synthetic sequences
with and without an embedded motif and a 3' GC bias (Fig. 7). We do not know the origin of this e�ect;
it may be some sort of artifact that a�ects the abundance-levels of RNA probes. RNAcompete experiments
determine the observed binding score as the ratio of the microarray �uorescence intensities from the a�nity
pull-down versus the remainder of unbound probes. This assumes that each RNA probe has approximately
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Figure 7: E�ect of 3' GC-bias. (A-D) CISBP-RNA motifs and representative sequence-structure logos of
a high scoring sequence are shown for (A) MSI (RNCMPT00040), (B) CG11360 (RNCMPT00036), (C)
RBFOX1 (RNCMPT00168), and (D) SNRPA (RNCMPT00071). Shown on the right is a box plot of the
average binding scores predicted by ResidualBind for 1,000 sequences embedded with a pattern described
in the x-label: `Random' is random RNA sequences; `Random+GC (3')' is random RNA sequences with
GCGCGC embedded on the 3' end of the sequence; `Motif' is random RNA sequences with a motif embedded
at the center; `Motif+GC (3')' is random RNA sequences with a motif embedded at the center and GCGCGC
embedded at the 3' end of the sequence; `Motif+GC (5')' is random RNA sequences with a motif embedded
at the center and GCGCGC embedded at the 5' end of the sequence. The motif patterns used for MSI,
CG11360, RBFOX1 and SNRPA were GUAG, CAGA, UGCAUG, UGCACA, respectively.
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an equal abundance. However, if abundance levels are low, then the intensity ratio is more susceptible to
statistical �uctuations. It is plausible that lower abundance probes tend to contain speci�c motifs. Many
experimental steps in the RNAcompete protocol could lead to a GC-bias speci�cally on the 3' end, including
linker ligation, PCR ampli�cation, transcription, among others (Wang et al , 2015; Sundararaman et al , 2016;
Friedersdorf and Keene, 2014).

Discussion

ResidualBind's design. ResidualBind is designed to autonomously learn discriminative features in RNA
sequences that are predictive of RBP binding scores. The features it can learn are not limited to the
convolutional �lter size, because ResidualBind's multiple convolutional layers can combine partial features
learned in lower layers in a hierarchical manner (Koo and Eddy, 2018). ResidualBind employs a mean-
pooling size that allows it to build representations across a large region, while maintaining general positions
of individual features along the sequence. ResidualBind is a �exible model that can be broadly applied to a
wide range of di�erent RBPs without modifying hyperparameters for each speci�c experiment.

Interpretability. Tools for interpreting what deep learning models have learned are improving. We have
shown that pertinent information learned by ResidualBind can be extracted via interrogation methods with
saliency analysis and in silico experiments. While saliency analysis is a powerful approach to uncover features
without any prior knowledge, it can only do so on an individual sequence basis. Thus, relevant features
have to be deduced by observing general patterns across multiple sequences. Moreover, saliency methods
yield seemingly noisy representations at times; in some cases, it is unclear whether certain nucleotides are
important or not. To go a step further, we have found it useful to interrogate neural networks with synthetic
sequences to uncover functional relationships between putative features and predictions. This approach
allows us to directly test hypotheses of putative features with sequences in a controlled manner. Through
saliency analysis and in silico experiments, we can see that ResidualBind has learned 3 cis-recognition
principles that in�uence the sequence speci�cities of RBPs in the RNAcompete dataset: (1) multiple binding
sites and their positions and spacings along a sequence, (2) the structural context and accessibility of each
motif, and a (3) 3' GC-bias. Using synthetic data is a powerful technique for model interpretability in
regulatory geneomics. However, its application to natural language processing and computer vision may be
limited, because it is not straightforward how to systematically synthesize data to test speci�c hypotheses
in these other �elds.

In vitro-to-in vivo generalization. Ideally, a computational model trained on an in vitro dataset would
learn principles that generalize to other datasets, including in vivo datasets. However, models trained
on one dataset typically perform worse when tested on other datasets derived from di�erent sequencing
technologies/protocols (Weirauch et al , 2013). Di�erent experimental protocols tend to produce biases that
do not generalize (Wheeler et al , 2018; Wang et al , 2015; Sundararaman et al , 2016; Friedersdorf and Keene,
2014). For example, RNAcompete experiments: (1) perform a pull-down of a single binding domain of an
RBP as opposed to the whole RBP, which is done in vivo; (2) perform experiments under conditions that
may not recapitulate in vivo conditions; (3) employ a limited set of short RNA probes that are designed
for sequence content, i.e. all possible 9-mers, while in vivo sequences are biased through evolution; and (4)
employ RNA probes that are designed to contain weak secondary structures, whereas in vivo sequences may
contain more complicated structures (Mortimer et al , 2012). We found that ResidualBind learned a 3' GC-
bias in RNAcompete experiments that helps it to perform better than previous methods on test sequences
derived from the same technology. However, we think the 3' GC-bias is an example of a bias that arises
from the particulars of the protocol. We do not think this feature is relevant to in vivo sequences, and our
preliminary studies (of CLIP data) support this view. Better generalization to in vivo datasets is something
that we hope to address in future work.

Generality of ResidualBind. ResidualBind could be applied to understand signals in biological sequence
data that enrich for any quantitative molecular sequence recognition phenotype, such as protein binding,
histone modi�cation, and chromatin accessibility, not just RNA binding. Our study demonstrates how a
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deep neural network like ResidualBind has a powerful ability to learn biological signals such as motifs, as
well as confounding technical biases, and how such models can be interrogated with saliency analysis and
synthetic data to reveal and test what principles the network has learned.

Materials and methods

RNAcompete dataset

Overview. We obtained the 2013-RNAcompete dataset from (Ray et al , 2013), where a full explanation
of the data can be found. Brie�y, the 2013-RNAcompete experiments consist of an Agilent 244K microarray
which contains 240,000 oligonucleotides of length 30-41 nucleotides. The library of oligo sequences was
designed to ensure that all possible combinations of 9-mers are sampled at least 16 times. The probes are
divided into two sets - `set A' (120,326 sequences) and `set B' (121,031 sequences). A pool of RNA sequences
is prepared from the microarray and incubated with a recombinantly-expressed RBP of interest tagged with
glutathione S-transferase (GST). The total RNA concentration is in 75-fold molar excess over protein (20 nM
protein, 1,500 nM RNA) so that at equilibrium the proportion of each sequence bound to RBP is expected
to be proportional to its a�nity. Bound RNA is recovered by a pull down, labeled with Cy5, and combined
with the Cy3-labeled input RNA pool. The mixture of labelled RNA is hybridized to a copy of the same
Agilent 244K microarray. The provided binding score for each sequence is the log-ratio of the �uorescence
intensities of pull-down versus input, which serves as a measure of binding a�nity and therefore sequence
preference, that is normalized to remove various technical biases. The 2013-RNAcompete dataset consists
of 244 experiments for 207 RBPs using only weakly structured probes (Ray et al , 2013). We also obtained
the 2009-RNAcompete dataset, which is comprised of nine RBP experiments that employ a mix of probes
that were predicted to be either weakly structured or contain stem-loops (Ray et al , 2009).

Preparation of RNAcompete datasets. Each sequence from `set A' and `set B' was converted to a
one-hot representation. The one-hot sequences and the experimental binding scores for each experiment in
the 2013-RNAcompete dataset were stored in a single HDF5 �le (availability: eddylab.org/publications/
KooEddy19/residualbind_data.tar.gz). We �ltered out sequences with a binding score of NaN. We then
performed either clip-transformation or log-transformation. Clip-transformation is performed by clipping
the extreme binding scores to the 99.9th percentile binding score. Log-transformation processes the binding
scores according to the function: log (S − SMIN + 1), where S is the raw binding score and SMIN is the
minimum value across all raw binding scores. This monotonically reduces extreme binding scores while
maintaining their rank order, and also yields a distribution that is closer to a Normal distribution. The
processed binding scores of either clip-transformation or log-transformation were converted to a z-score. We
randomly split set A sequences to fractions 0.9 and 0.1 for the training set and validation set, respectively.
Set B data was held out and used for testing.

Secondary structure predictions. For each sequence, structural pro�les, which consist of predicted
paired-unpaired (PU) probabilities for each nucleotide, were calculated using RNAplfold (Bernhart et al ,
2005). Structural pro�les consisting of predicted paired probabilities of �ve types of RNA structure -
paired, hairpin-loop, internal loop, multi-loop, and external loop (PHIME) - were calculated using a modi-
�ed RNAplfold script (Kazan et al , 2010). For each sequence, the window length (-W parameter) and the
maximum spanning base-pair distance (-L parameter) were set to the full length of the sequence.

In silico experimental design

RBFOX1 mutagenesis. 1,000 random RNA sequences, each 41 nucleotides long, were simulated from an
equiprobable i.i.d. uniform sequence model. A canonical RBFOX1 motif, i.e. UGCAUG, or each of the 21
possible single-nucleotide variants of it was embedded in each random sequence at position 22-28, resulting
in 22,000 total sequences. Since the same 1,000 random sequences to embed each motif variant, the same
background noise distribution is shared across di�erent variants.
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Binding site location. 1,000 random RNA sequences, each 41 nucleotides long, were simulated from
a uniform sequence model. 4,000 additional sequences were generated by embedding each of the 1,000
sequences with a single RBFOX1 motif at positions 4-9, 14-19, 24-29, and 34-39.

Multiple binding sites. 1,000 random RNA sequences, each 41 nucleotides long, were simulated from
a uniform sequence model. 4,000 additional sequences were generated by embedding each of the 1,000
sequences with: 1 RBFOX1 motif (positions: 18-23), 2 RBFOX1 motifs (positions: 11-16 and 18-23), 3
RBFOX1 motifs (positions: 11-16, 18-23, and 26-31), and 4 RBFOX1 motifs (positions: 4-9, 11-16, 18-23,
and 26-31).

Motif separation. 1,000 random RNA sequences, each 41 nucleotides long, were simulated from a uniform
sequence model. 4,000 additional sequences were created by embedding 4 patterns starting at position 16
in each of the 1,000 sequences: UGCAUG, UGCAUGAUG, UGCAUGUGCAUG, and UGCAUGNNNUG-
CAUG, where N represents a random nucleotide.

GC-bias. 1,000 random RNA sequences, each 41 nucleotides long, were simulated from a uniform sequence
model. 4,000 additional sequences were created by embedding one of 4 patterns: (1) GCGCGC at the 3' end
at positions 35-40, (2) a motif embedded at the center (starting at position 17), (3) a motif embedded at the
center and GCGCGC at the 3' end, and (4) a motif embedded at the center and GCGCGC at the 5' end at
positions 1-6. The embedded motifs were GUAG (MSI, RNCMP00040), CAGA (CG11360, RNCMP00006),
UGCAUG (RBFOX1, RNCMPT00168), and UGCAC (SNRPA, RNCMPT00071).

RNA hairpin. Synthetic 41 nt RNA stem-loop sequences were generated as random sequences of equiprob-
able composition, with positions 25-35 �xed to be complementary to positions 7-17. Unstructured synthetic
sequences were generated as random sequences of equiprobable composition. 100,000 synthetic RNA stem-
loop sequences (positive class) and 100,000 random RNA sequences were randomly split 80% to a training
set, 10% validation set, and 20% test set.

Saliency analysis

Saliency analysis was performed by guided-backprop which calculates the gradients of the outputs with
respect to the inputs (Springenberg et al , 2014). In contrast to standard backpropagation, guided-backprop
recti�es negative gradients that pass through each ReLU activation in each hidden layer.

To generate sequence logos, we normalized the guided-backprop-generated saliency maps by dividing
the maximum absolute value across the saliency map. Next, we applied an exponential �lter according to:
Ŝ = exp

[
λ S

max |S|

]
, where S is the saliency map, and λ is a scaling factor that we set to 3 in this paper. This

�ltering step supresses small gradient signals and enhances larger gradient signals. We have previously found
this �ltering step to empirically yield sequence logos that better re�ect PWMs from analysis on synthetic
sequences (Koo and Eddy, 2018). We then separately normalized each nucleotide position by dividing by
the sum of the �ltered saliency map, thereby providing a probability for each nucleotide at each position.
To generate a sequence logo, the normalized saliency value of each nucleotide a at position i was scaled
according to: Ŝa,i × Ii, where Ii = 2 +

∑
a Ŝa,i log2 Ŝa,i.

ResidualBind

Training ResidualBind. We trained a separate ResidualBind model on sequences in `set A' for each
RNAcompete experiment by minimizing the mean squared-error loss function between the model predictions
and the experimental binding scores. All models were trained with mini-batch stochastic gradient descent
(mini-batch of 100 sequences) with Adam updates using recommended default parameters with a constant
learning rate of 0.0003 (Kingma and Ba, 2014). Dropout was applied after each convolutional layer with
a dropout probability of 0.2, 0.1, 0.2, 0.5, sequentially from layer 1 to layer 4. During training, we also
employed L2-regularization with a strength equal to 10−6. Training was stopped when the loss on the
validation dataset does not improve for 20 epochs (early stopping). Optimal parameters were selected by the

13

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 15, 2018. ; https://doi.org/10.1101/418459doi: bioRxiv preprint 

https://doi.org/10.1101/418459
http://creativecommons.org/licenses/by-nc-nd/4.0/


epoch which yields the lowest loss on the validation dataset. The parameters of each model were initialized
according to He initialization (He et al , 2015). Training was performed on a NVIDIA GTX Titan X Pascal
graphical processing unit with acceleration provided by cuDNN libraries (Chetlur et al , 2014). On average,
training was complete after about 50 epochs, where each epoch takes 1-3 seconds on average.

Modi�ed-ResidualBind for binary classi�cation. To make binary classi�cation predictions as opposed
to a continuous binding score prediction, we modi�ed ResidualBind by placing its linear output through a
logisitic function, also known as a sigmoid activation. The mean-squared loss function was also changed to
a binary cross-entropy loss function using binary labels corresponding to the presence or absence of a RNA
hairpin structure in the sequence.

NeuralBinder

Our implementation of ResidualBind utilizes a custom-written, open-source Python package that we call
NeuralBinder. NeuralBinder includes high-level Python scripts and Python notebooks that provide step-
by-step instructions on how to build, optimize, save, and load neural network models, how to evaluate
a trained model on new sequences, and how to perform saliency analysis. NeuralBinder in turn wraps
Deepomics, a custom-written module that contains high-level APIs written on top of TensorFlow (Abadi
et al , 2016) to build, train, test, and evaluate neural network models. NeuralBinder can be applied to
perform similar analyses on any a�nity selection-based experiments, such as RNAcompete, SELEX (Tuerk
and Gold, 1990), ChIP-seq, or CLIP-seq. Code to replicate this study is provided in the supplementary
materials. An updated version of NeuralBinder that is continually under development can be found via:
https://github.com/p-koo/neuralbinder.

Acknowledgements

We thank Harleen Saini, Tom Jones, Tim Dunn, Elena Rivas, Fred Davis, Nick Carter, and other members
of the Eddy/Rivas lab for helpful discussions and feedback.

References

Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, et al
(2016) Tensor�ow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint

arXiv 1603.04467

Alipanahi B, Delong A, Weirauch MT, Frey BJ (2015) Predicting the sequence speci�cities of DNA-and
RNA-binding proteins by deep learning. Nature Biotechnology 33: 831�838

Auweter SD, Fasan R, Reymond L, Underwood JG, Black DL, Pitsch S, Allain FHT (2006) Molecular basis
of RNA recognition by the human alternative splicing factor Fox-1. The EMBO Journal 25: 163�173

Aviv T, Amborski AN, Zhao XS, Kwan JJ, Johnson PE, Sicheri F, Donaldson LW (2006a) The NMR and
X-ray structures of the Saccharomyces cerevisiae Vts1 SAM domain de�ne a surface for the recognition of
RNA hairpins. Journal of Molecular Biology 356: 274�279

Aviv T, Lin Z, Ben-Ari G, Smibert CA, Sicheri F (2006b) Sequence-speci�c recognition of RNA hairpins by
the SAM domain of Vts1p. Nature Structural amp Molecular Biology 13: 168�176

Bergstra J, Bengio Y (2012) Random search for hyper-parameter optimization. Journal of Machine Learning

Research 13: 281�305

Bernhart SH, Hofacker IL, Stadler PF (2005) Local RNA base pairing probabilities in large sequences.
Bioinformatics 22: 614�615

Campbell ZT, Wickens M (2015) Probing RNA�protein networks: biochemistry meets genomics. Trends in
Biochemical Sciences 40: 157�164

14

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 15, 2018. ; https://doi.org/10.1101/418459doi: bioRxiv preprint 

https://doi.org/10.1101/418459
http://creativecommons.org/licenses/by-nc-nd/4.0/


Chetlur S, Woolley C, Vandermersch P, Cohen J, Tran J, Catanzaro B, Shelhamer E (2014) cudnn: E�cient
primitives for deep learning. arXiv preprint arXiv 1410.0759

Cybenko G (1989) Approximation by superpositions of a sigmoidal function. Mathematics of Control Signals

and Systems 2: 303�314

Foat BC, Morozov AV, Bussemaker HJ (2006) Statistical mechanical modeling of genome-wide transcription
factor occupancy data by MatrixREDUCE. Bioinformatics 22: e141�e149

Friedersdorf MB, Keene JD (2014) Advancing the functional utility of PAR-CLIP by quantifying background
binding to mRNAs and lncRNAs. Genome Biology 15: R2

Goodfellow I, Bengio Y, Courville. A (2016) Deep learning . MIT press

Guenther UP, Yandek LE, Niland CN, Campbell FE, Anderson D, Anderson VE, Harris ME, Jankowsky E
(2013) Hidden speci�city in an apparently nonspeci�c RNA-binding protein. Nature 502: 385�388

Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M, Jungkamp
AC, Munschauer M, et al (2010) Transcriptome-wide identi�cation of RNA-binding protein and microRNA
target sites by PAR-CLIP. Cell 141: 129�141

He K, Zhang X, Ren S, Sun J (2015) Delving deep into recti�ers: Surpassing human-level performance on
imagenet classi�cation. In Proceedings of the IEEE International Conference on Computer Vision

He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition

Io�e S, Szegedy C (2015) Batch normalization: Accelerating deep network training by reducing internal
covariate shift. arXiv preprint arXiv 1502.03167

Jankowsky E, Harris ME (2015) Speci�city and nonspeci�city in RNA-protein interactions. Nature Reviews
Molecular Cell Biology 16: 533�544

Kazan H, Ray D, Chan ET, Hughes TR, Morris Q (2010) RNAcontext: a new method for learning the
sequence and structure binding preferences of RNA-binding proteins. PLoS Computational Biology 6

Kingma D, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv 1412.6980

König J, Zarnack K, Luscombe NM, Ule J (2012) Protein�RNA interactions: new genomic technologies and
perspectives. Nature Reviews Genetics 13: 77�83

Konig J, Zarnack K, Rot G, Curk T, Kayikci M, Zupan B, Turner D, Luscombe N, Ule J (2010) iCLIP
reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nature Structural
Molecular Biology 17: 909�915

Koo PK, Eddy SR (2018) Representation Learning of Genomic Sequence Motifs with Convolutional Neural
Networks. BioRxiv

Lambert N, Robertson A, Jangi M, McGeary S, Sharp PA, Burge CB (2014) RNA Bind-n-Seq: quantitative
assessment of the sequence and structural binding speci�city of RNA binding proteins. Molecular Cell 54:
887�900

LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521: 436�444

Licatalosi DD, Mele A, Fak JJ, Ule J, Kayikci M, Chi SW, Clark TA, Schweitzer AC, Blume JE, Wang X,
et al (2008) HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456:
464�469

Lorenz R, Bernhart SH, Zu Siederdissen CH, Tafer H, Flamm C, Stadler PF, Hofacker IL (2011) ViennaRNA
Package 2.0. Algorithms for Molecular Biology 6: 26

15

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 15, 2018. ; https://doi.org/10.1101/418459doi: bioRxiv preprint 

https://doi.org/10.1101/418459
http://creativecommons.org/licenses/by-nc-nd/4.0/


Lovci MT, Ghanem D, Marr H, Arnold J, Gee S, Parra M, Liang TY, Stark TJ, Gehman LT, Hoon S, et al
(2013) Rbfox proteins regulate alternative mRNA splicing through evolutionarily conserved RNA bridges.
Nature Structural Molecular Biology 20: 1434�1442

Lunde BM, Moore C, Varani G (2007) RNA-binding proteins: modular design for e�cient function. Nature
Reviews Molecular Cell Biology 8: 479�490

Maticzka D, Lange SJ, Costa F, Backofen R (2014) GraphProt: modeling binding preferences of RNA-binding
proteins. Genome Biology 15

Mortimer SA, Trapnell C, Aviran S, Pachter L, Lucks JB (2012) SHAPE-Seq: High-Throughput RNA
Structure Analysis. Current Protocols in Chemical Biology : 275�297

Orenstein Y, Wang Y, Berger B (2016) RCK: accurate and e�cient inference of sequence-and structure-based
protein�RNA binding models from RNAcompete data. Bioinformatics 32: 351�359

Raghu M, Poole B, Kleinberg J, Ganguli S, Sohl-Dickstein J (2016) On the expressive power of deep neural
networks. arXiv preprint arXiv 1606.05336

Ray D, Ha KC, Nie K, Zheng H, Hughes TR, Morris QD (2017) RNAcompete methodology and application
to determine sequence preferences of unconventional RNA-binding proteins. Methods 118: 3�15

Ray D, Kazan H, Chan ET, Castillo LP, Chaudhry S, Talukder S, Blencowe BJ, Morris Q, Hughes TR
(2009) Rapid and systematic analysis of the RNA recognition speci�cities of RNA-binding proteins. Nature
Biotechnology 27: 667�670

Ray D, Kazan H, Cook KB, Weirauch MT, Najafabadi HS, Li X, Gueroussov S, Albu M, Zheng H, Yang A,
et al (2013) A compendium of RNA-binding motifs for decoding gene regulation. Nature 499: 172�177

Shaham U, Cloninger A, Coifman RR (2016) Provable approximation properties for deep neural networks.
Applied and Computational Harmonic Analysis

Shrikumar A, Greenside P, Shcherbina A, Kundaje A (2016) Not just a black box: Learning important
features through propagating activation di�erences. arXiv preprint arXiv 1605.01713

Simonyan K, Vedaldi A, Zisserman A (2013) Deep inside convolutional networks: Visualising image classi�-
cation models and saliency maps. arXiv preprint arXiv 1312.6034

Sonoda S, Murata N (2015) Neural network with unbounded activation functions is universal approximator.
Applied and Computational Harmonic Analysis

Springenberg JT, Dosovitskiy A, Brox T, Riedmiller M (2014) Striving for simplicity: The all convolutional
net. arXiv preprint arXiv 1412.6806

Sundararaman B, Zhan L, Blue SM, Stanton R, Elkins K, Olson S, Wei X, Van Nostrand EL, Pratt GA,
Huelga SC, et al (2016) Resources for the comprehensive discovery of functional RNA elements. Molecular

Cell 61: 903�913

Tome JM, Ozer A, Pagano JM, Gheba D, Schroth GP, Lis JT (2014) Comprehensive analysis of RNA-protein
interactions by high-throughput sequencing-RNA a�nity pro�ling. Nature Methods 11: 683�688

Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacte-
riophage T4 DNA polymerase. Science 249: 505�510

Wang T, Xiao G, Chu Y, Zhang MQ, Corey DR, Xie Y (2015) Design and bioinformatics analysis of genome-
wide CLIP experiments. Nucleic Acids Research 43: 5263�5274

Weirauch MT, Cote A, Norel R, Annala M, Zhao Y, Riley TR, Saez-Rodriguez J, Cokelaer T, Vedenko
A, Talukder S, et al (2013) Evaluation of methods for modeling transcription factor sequence speci�city.
Nature Biotechnology 31: 126�134

16

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 15, 2018. ; https://doi.org/10.1101/418459doi: bioRxiv preprint 

https://doi.org/10.1101/418459
http://creativecommons.org/licenses/by-nc-nd/4.0/


Wheeler E, Van Nostrand E, Yeo G (2018) Advances and challenges in the detection of transcriptomeâ��wide
proteinâ��RNA interactions. Wiley Interdisciplinary Reviews RNA 9: 1436

Zhou J, Troyanskaya OG (2015) Predicting e�ects of noncoding variants with deep learning-based sequence
model. Nature Methods 12: 931�934

17

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 15, 2018. ; https://doi.org/10.1101/418459doi: bioRxiv preprint 

https://doi.org/10.1101/418459
http://creativecommons.org/licenses/by-nc-nd/4.0/

