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Abstract

Background: The parasite Leishmania infantum causes zoonotic visceral leishmaniasis (VL), a
potentially fatal vector-borne disease of canids and humans. Zoonotic VL poses a significant risk
to public health, with regions of Latin America being particularly afflicted by the disease.

Leishmania infantum parasites are transmitted between hosts during blood feeding by infected
female phlebotomine sand flies. With domestic dogs being a principal reservoir host of Leishma-
nia infantum, a primary focus of research efforts has been to understand disease transmission
dynamics among dogs. The intention being that limiting prevalence in this reservoir will result
in a reduced risk of infection for the human population. One way this can be achieved is through
the use of mathematical models.

Methods: We have developed a stochastic, spatial, individual-based mechanistic model of
Leishmania infantum transmission in domestic dogs. The model framework was applied to a
rural Brazilian village setting with parameter values informed by fieldwork and laboratory data.
To ensure household and sand fly populations were realistic, we statistically fit distributions
for these to existing survey data. To identify the model parameters of highest importance, we
performed a stochastic parameter sensitivity analysis of the prevalence of infection among dogs
to the model parameters.

Results: We computed parametric distributions for the number of humans and animals per
household and a non-parametric temporal profile for sand fly abundance. The stochastic param-
eter sensitivity analysis determined prevalence of Leishmania infantum infection in dogs to be
most strongly affected by the sand fly associated parameters and the proportion of immigrant
dogs already infected with Leishmania infantum parasites.

Conclusions: Establishing the model parameters with the highest sensitivity of average Leish-
mania infantum infection prevalence in dogs to their variation helps motivate future data collec-
tion efforts focusing on these elements. Moreover, the proposed mechanistic modelling framework
provides a foundation that can be expanded to explore spatial patterns of zoonotic VL in humans
and to assess spatially targeted interventions.
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1 Background 1

Zoonotic visceral leishmaniasis (VL) is a potentially fatal disease of humans and canids caused 2

by the parasite Leishmania infantum (L. infantum). These parasites are transmitted between 3

hosts during blood-feeding by infected female phlebotomine sand fly vectors [1, 2]. Zoonotic VL 4

poses a significant risk to public health, being endemic in 65 countries, afflicting regions of Latin 5

America, the Mediterranean, central and eastern Asia, and East Africa, with a case fatality rate 6

of 90% in humans if left untreated [3–6]. 7

Human infection has not been proven to be able to maintain L. infantum transmission without an 8

infection reservoir [6]; the only proven reservoir host is domestic dogs [3, 4, 6]. Sand flies readily 9

feed upon many other animal species, which act as important blood meal sources that support egg 10

production. However, aside from domestic dogs these other animal species are considered “dead- 11

end” hosts for parasite transmission since generally they do not support Leishmania infections 12

and/or are not infectious. For most sand fly vector species, host preference is usually related 13

to host biomass rather than to specific identity [7]. As a consequence, in addition to dogs and 14

humans, domestic livestock living in close proximity to humans, such as chickens, pigs and cattle, 15

are epidemiologically significant blood meal sources for sand flies. 16

A primary focus of research efforts has been to understand the dynamics of L. infantum trans- 17

mission among dogs, with the intent that limiting prevalence in this reservoir will result in a 18

reduced risk of zoonotic VL infection for the human population. One way this can be achieved 19

is through the use of mathematical models. 20

Mathematical models are a tool that allow us to project how infectious diseases may progress, 21

show the likely outcome of outbreaks, and help to inform public health interventions. Through 22

sand fly abundance and seasonality, L. infantum infection, and thus VL cases, has both spatial 23

and temporal dependencies. There is, however, a surprising scarcity of mathematical models 24

capable of capturing these spatio-temporal characteristics. A review by Rock et al. [8] found 25

24 papers addressing relevant modelling of VL, of which only two consider spatial aspects of 26

transmission [9, 10]. Subsequent additions to the VL modelling literature since this review 27

continue the tendency to exclude spatial heterogeneity in transmission. In particular, two recent 28

studies have developed mathematical models that describe zoonotic VL dynamics in Brazil, but 29

neither contains any spatial aspects [11, 12]. To our knowledge, there is presently no recorded 30

work that specifies a spatial model of VL incorporating humans, vectors, reservoir hosts (dogs) 31

and dead-end hosts (chickens). 32

One country severely afflicted by zoonotic VL is Brazil. VL is endemic in particular regions of 33

Brazil, exemplifying the spatial heterogeneity of the disease. In terms of canine VL, serological 34

studies undertaken in endemic areas of Brazil have found prevalence of L. infantum infection 35

to range from 25% [13] to more than 70% [14–17] depending on the diagnostic sample and test 36

employed. A consequence of the burden of L. infantum infection in the canine reservoir is that 37

Brazil has seen a steady rise in the number of human VL cases throughout the last 30 years [6, 18]. 38

A reported 3,500 human VL cases occur in the country per year, 90% of all VL cases reported in 39

the Americas [1, 3], with the actual incidence estimated annually to be between 4,200 and 6,300 40

due to under-reporting [1]. Accordingly, in Brazil importance is attached to the management of 41

infection prevalence among domestic dogs to diminish the public health VL risk. 42

To this end, here we develop a novel spatio-temporal mechanistic modelling framework for L. 43

infantum infection in domestic dogs. Applying the model to a rural Brazilian setting, we perform 44

a sensitivity analysis to identify those model parameters that cause significant uncertainty in 45

the predicted prevalence of L. infantum infection. 46
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2 Methods 47

2.1 Model description 48

Informed by presently available field and laboratory data, we have developed a stochastic, spatial, 49

individual-based, mechanistic model for L. infantum infection progression in domestic dogs in 50

order to estimate prevalence. 51

In brief, the model incorporates spatial variation of both hosts (adults and adolescents, children, 52

dogs, and chickens) and vectors (sand flies) at the household level. Using a vectorial capacity 53

type calculation, we derived a force of infection that gives the probability a dog will become 54

infected with the L. infantum parasite via the sand fly vector. Infectious dogs increase the 55

force of infection within a radius of their household. The number of infected dogs each day was 56

tracked and reported as the output of the model. 57

Further details on each aspect of the model follow. 58

Households and hosts in space 59

We considered a configuration of rural households based on the latitude and longitude coor- 60

dinates of 235 households in Calderao, a village on the island of Marajó in Northern Brazil 61

(Figure 1), considered representative of a rural household spatial distribution in this endemic 62

region. These household location data were collected as part of an epidemiological study of 63

VL on Marajó between 2004 and 2005 where 99% of households were concurrently mapped by 64

global positioning system technology (O. Courtenay and R.J. Quinnell, unpublished observa- 65

tions). 66

The number of each type of host at each household was assigned in each model run by sampling 67

from distributions of host numbers per household, fit to survey data from the Marajó region con- 68

ducted in July and August of 2010 at 140 households across seven villages. Via a questionnaire, 69

data were collected on the number of adults, adolescents, and children resident in the home, as 70

well as the number of dogs and chickens kept at the home [19]. 71

A Poisson distribution was fitted to the data for each host; a negative binomial distribution 72

was also fitted when the sample variance was less than the sample mean. Distributions were 73

fitted using maximum likelihood estimation via the poissfit and fitdist functions from the 74

Matlab® Statistics and Machine Learning Toolbox. Fitted Poisson and negative binomial 75

distributions were compared using the Akaike information criterion (AIC) [20]. 76

Infection progression in dogs 77

The natural history of L. infantum infection in dogs consists of susceptible and infected states. 78

Prior work has established heterogeneities in the infectiousness of dogs (transmission of L. in- 79

fantum to the vector) [2, 21, 22]. This was represented in the model by stratifying infected dogs 80

into four states: (i) latently infected; (ii) never infectious; (iii) low infectiousness; (iv) high infec- 81

tiousness (Figure 2). Particularly noteworthy is that never infectious dogs, although infected, do 82

not transmit the L. infantum parasite back to susceptible sand flies. Susceptible dogs became 83

latently infected at a rate dependent on the force of infection λ; full details of this will follow. 84

Movement between the latently infected state and the remaining three infected states occurred 85

at constant rates. 86
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Deaths could occur from every state and the mortality rates were state specific (µSus, µNeverInf, 87

µLowInf, µHighInf). Upon death from any state, a new dog was introduced into the same house- 88

hold at a given replacement rate (1/ψ). These newly-introduced dogs were placed either in the 89

susceptible state or one of the infected states (with probabilities 1−ξ and ξ accordingly), encap- 90

sulating both birth and immigration into the study region. It follows that the initially sampled 91

populations corresponded to the maximum attainable dog population size per household. 92

Force of infection 93

Sand fly dynamics operate on a faster time-scale compared to the other host species and processes 94

considered in the model; sand flies have an estimated life expectancy of a number of weeks at 95

most [8]. For that reason, we did not explicitly track the transitions of sand flies between 96

the susceptible and infectious states at an individual level. We instead considered sand fly 97

populations at each house as a collective which exert a force of infection, λ, on dogs at household 98

h at time t in the following way, 99

λh(t) = α× δ × Lh(t) × ηh,dog(t) × φh(t), (1) 100

where α is the biting rate of sand flies, δ is the probability of L. infantum transmission to dogs as 101

a result of a single bite from an infectious sand fly, Lh is the abundance of sand flies at household 102

h, ηh,dog is the host preference of sand flies towards dogs (that is, the probability of sand flies 103

biting dogs at household h as opposed to any other host), and φh is the proportion of sand flies 104

that are infectious at household h. 105

As most sand fly activity occurs in the evening when most hosts will be within their house- 106

hold [23, 24], we discretised our simulations into daily time steps. This gave the following 107

probability for a susceptible dog at household h to become infected on day t: 108

ph(t) = 1 − e−λh(t). 109

The biting rate and probability of an infected sand fly transmitting L. infantum to a dog as 110

a result of a single bite were constant in the model. In contrast, sand fly abundance, host 111

preference, and the proportion of sand flies infected at each household were time-dependent; we 112

now outline the computation of each time-dependent component. 113

Sandfly abundance: Sand fly trapping data from villages in Marajó were used to obtain 114

realistic estimates of the abundance of sand flies, Lh, at households. For each household h, Lh 115

comprised of two parts: a constant initial estimate Kh

(
1

1−ζ

)
and a seasonal scaling v(t). 116

Data on the abundance of female sand flies, specifically the vector species Lutzomyia longipalpis, 117

were available from a previous study of 180 households in fifteen villages on Marajó island where 118

sand fly numbers were surveyed using CDC light-traps [25]. The trap-count abundance, Kh, 119

was sampled from these data. With traps only capturing a proportion of female sand flies 120

expected at households, a proportion of the female sand fly population, ζ, remained unobserved. 121

Accounting for this inconsistency necessitated the scaling of the trap-count abundance by a 122

factor of 1
1−ζ . 123

Sand fly populations have been observed to exhibit temporal dependencies. To incorporate 124

this seasonality into the model, we applied a time-dependent scaling factor, v(t), to all initial 125

abundance estimates at the beginning of each time step. To produce the scaling factor v(t), a 126
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smooth trend line was fitted, via a Lowess smoother, to the mean number of female Lutzomyia 127

longipalpis trapped over an eight month period across eight different households in the village of 128

Boa Vista, Marajó [26]. The curve was extrapolated over the remaining four months of the year 129

for which no data were available and then normalised by dividing by the maximum value. 130

Putting this together leads to the following seasonally-scaled sand fly abundance at household 131

h at time t, 132

Lh(t) = Kh

(
1

1 − ζ

)
v(t). 133

Host preference: To parameterise sand fly biting preference towards the host species of 134

interest, we drew on findings from field and laboratory experiments performed in this setting by 135

Quinnell et al [7]. These experiments concluded that the attractiveness of the three host species 136

under study (humans, dogs and chickens) to the Lutzomyia longipalpis vector seemed to largely 137

be a function of the relative host sizes. 138

These experimental findings were used to allocate a portion of sand fly bites to each host type 139

at each household, via each host type being assigned the following biomass value relative to 140

chickens: 141

• 1 dog = 2 chickens, 142

• 1 child = 5 chickens, 143

• 1 adult or adolescent = 10 chickens (using adult-child ratio: 1 adult = 2 children). 144

The preference towards host type x at household h was computed as a simple proportion of the 145

total biomass as follows, 146

ηh,x(t) =
Nh,xbx∑

s∈host type

Nh,sbs
, 147

where Nh,x is the number of host type x at household h and bx is the biomass of host type x 148

relative to chickens. 149

Proportion of infectious sandflies: The proportion of infectious vectors at household h 150

was comprised of a time-independent background level of prevalence, φ, constant across all 151

households plus an additional proportion dependent on the number of infectious dogs in the 152

neighbourhood of household h. The contribution from each type of infectious dog (high and low 153

infectiousness) was computed separately. We matched the radius r defining this neighbourhood 154

with the maximum sand fly travel distance (taken as 300m at the baseline [27], see Table 1). 155

Initially, we computed the proportion of biomass of infectious dogs of type x within radius r of 156

household h. This proportion of biomass was then weighted using a linear weighting function to 157

account for the reduction in impact with increasing distance from household h: 158

Bh,x(r, t) =

∑
k∈Hh(r)

r−d(h,k)
r Nh,xbx

∑
k∈Hh(r)

r−d(h,k)
r

( ∑
s∈host type

Nh,sbs

) , 159

where Hh(r) is defined as the set of households within distance r of household h, d(h, k) is the 160

distance between households h and k, and Nh,s is the number of dogs of infectiousness type s at 161

household h. 162

5

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 21, 2018. ; https://doi.org/10.1101/418558doi: bioRxiv preprint 

https://doi.org/10.1101/418558
http://creativecommons.org/licenses/by/4.0/


Using these weighted biomass computations for infectious dogs, the proportion of sand flies that 163

were infectious at household h on day t was computed as: 164

φh(t) = φ+ (mhigh − φ)Bh,dhigh(r, t) + (mlow − φ)Bh,dlow(r, t), 165

where φ is the constant background level of prevalence, and mhigh and mlow are upper bounds 166

on the proportion of infectious sand flies obtained when the only hosts present were high infec- 167

tiousness dogs or low infectiousness dogs respectively. These quantities were obtained under an 168

assumption that 80% of transmission from dogs to sand flies is caused by high infectiousness 169

dogs [21]. 170

The explicit calculations for mlow and mhigh were as follows, with π̃low and π̃high denoting the 171

proportion of infectious dogs that have low and high infectiousness, respectively: 172

mlow =
0.2mavg

π̃low
, mhigh =

0.8mavg

π̃high
, 173

where mavg corresponds to the proportion of infectious sand flies obtained when the only 174

hosts present are infectious dogs, obtained by averaging over both high and low infectiousness 175

dogs. 176

2.2 Model outputs 177

Being a stochastic model, the infection dynamics vary on separate simulation runs even with 178

all parameters and other model inputs remaining fixed. By running the model multiple times 179

we obtain an ensemble of model outputs. This permits the calculation of a variety of summary 180

statistics describing the epidemiology of L. infantum infection among domestic dogs, such as 181

prevalence and incidence. 182

We focus here on the prevalence of infection. To clarify, an infection case refers to any dog 183

harbouring L. infantum parasites, including those with and without canine VL symptoms. Thus, 184

we defined infection prevalence at time t as the aggregated percentage of dogs in the latently 185

infected, never infectious, low infectiousness and high infectiousness states, which is equivalent 186

to calculating the proportion of dogs not in the susceptible state: 187

prevalence(t) =
# of dogs in population - # of dogs in susceptible state

# of dogs in population
× 100. 188

The daily prevalence estimates were used to obtain an average prevalence, which was defined as 189

the mean of the daily prevalence estimates in a specified time period. Throughout this work, 190

all average prevalence values were computed from the daily prevalence values over the final year 191

(365 days) of each simulation run. Mathematically, with T denoting maximum time, this may 192

be expressed as 193

Average infection prevalence =

T∑
t=T−364

prevalence(t)

365
. 194

2.3 Model summary 195

In summary, the arrangement of and interaction between the individual pieces of our stochastic, 196

spatial, individual-based model for L. infantum infection dynamics in dogs are displayed in 197

Figure 3. We refer to the process in Figure 3 as one run of the simulation. 198
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2.4 Sensitivity analysis 199

2.4.1 Parameter values 200

We carried out a sensitivity analysis to determine the robustness of the model behaviour to 201

the biological parameter values and to ascertain which parameters had a high impact on the 202

average prevalence as predicted by the model. The values tested for each parameter were within 203

plausible ranges informed via published estimates from the literature and unpublished fieldwork 204

data (Table 1). 205

We undertook a one-at-a-time sensitivity analysis. That is, each parameter was varied in turn 206

while all others remained at their baseline value. We considered 46 parameter sets (Table 1), 207

and for each individual parameter set we performed 1000 separate model simulation runs. The 208

elapsed simulation time in each run corresponded to ten years. 209

2.4.2 Sensitivity coefficients 210

A typical sensitivity measure is to compute sensitivity coefficients, which reflect the ratios be- 211

tween the change in a biological model output and the perturbation of system parameters that 212

cause this change [28]. However, outputs do not take a unique value in a stochastic modelling 213

framework. Instead, they take a range of values with a given probability, defined by a probability 214

density function f . 215

Therefore, to calculate a stochastic sensitivity coefficient for each parameter we followed the 216

procedure outlined in Damiani et al. [29]. In brief, this technique evaluates the sensitivity 217

coefficient Υu
p of the output variable of interest u with respect to each parameter p, 218

Υu
p =

∫
Ωp

{∫
Ωu

∣∣∣∣∂f(u(p))

∂p

∣∣∣∣ f(u(p)) du

}
dp, (2) 219

where Ωu is the domain of integration of u. Due to the computational demands of evaluating the 220

density function for the entire parameter space, the integrals in Equation (2) were calculated on a 221

finite domain. The probability density function f(u(p)) and the partial derivatives ∂f(u(p))
∂p were 222

estimated using non-parametric kernel methods using simulation outputs from the model. 223

We then ranked the parameters according to the sensitivity coefficients, with a larger sensitivity 224

coefficient corresponding to a parameter with higher sensitivity of average VL prevalence to its 225

variation. 226

All calculations and simulations were carried out in Matlab®. 227

3 Results 228

3.1 Curating data 229

Household-level host distributions 230

We fit distributions to the data on the number of hosts in rural Brazilian households (Figure 4). 231

For the datasets fit with both Poisson and negative binomial distributions, AIC calculations 232
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determined the negative binomial distribution to be preferred (Additional file 1: Supplementary 233

Table 1). 234

Sandfly seasonality 235

Fitting a Lowess smoother to the longitudinal data on female Lutzomyia longipalpis capture 236

numbers and extrapolating over the remainder of the year where no data were available high- 237

lighted a peak in January at the transition from the dry to wet season (Figure 5). Expected 238

vector abundance then dropped and attained its minimum level in May and June, coinciding 239

with the end of the wet season. Normalising this curve between 0 and 1 gave our seasonal scaling 240

factor v(t). 241

Similar temporal patterns were observed in the data split by the eight households (Additional 242

file 1: Supplementary Figure 1) and split by location within household (Additional file 1: Sup- 243

plementary Figure 2). 244

3.2 Model simulations - Baseline parameters 245

As a form of model validation, we checked the plausibility of infection prevalence predictions 246

while each biological parameter was fixed to its baseline value (Table 1). Under these baseline 247

parameter values, the daily prevalence in dogs was generally between 46% and 68%. Averaging 248

over 1000 separate model simulation runs, the median trace for daily prevalence in dogs lay 249

between 55% and 59%. Seasonal oscillations in the median prevalence remained observable 250

across time, though ordinarily less pronounced compared to the seasonality-induced changes in 251

prevalence in a single simulation run (Figure 6). 252

3.3 Sensitivity analysis 253

Under baseline parameter values, the median of the average infection prevalence over 1000 simu- 254

lation runs was 57% (95% prediction interval: [49%, 66%]). In addition, the ranges of the average 255

infection prevalence distributions were quantitatively similar irrespective of the parameter set 256

tested (Figure 7). 257

Among the 46 parameter sets tested, the greatest median average infection prevalence prediction 258

(87%) was obtained when the background proportion of sand flies infected (parameter ID 12) 259

was increased from its baseline value of 0.01 to 0.26 (with all other biological parameters fixed 260

at baseline values). Similarly, the lowest median average infection prevalence prediction (36%) 261

arose when the background proportion of sand flies was lowered to 0.002 (with all other biological 262

parameter again fixed at baseline values). As a consequence, this parameter set had an approx- 263

imate 50% shift in absolute value of the median across the range of tested values: the highest 264

among the 15 biological parameters in this sensitivity analysis (Figure 7, panel (12)). 265

Moreover, in three other sand fly-associated parameter sets, sand fly bite rate (parameter ID 266

11), probability of a susceptible dog becoming infected when bitten by an infected sand fly 267

(parameter ID 13) and proportion of female sand flies unobserved (parameter ID 15), we found 268

the median average infection prevalence differed by over 10% across their respective sensitivity 269

test values (Figure 7, panels (11,13,15)). 270
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In the biological parameters associated with dogs, a visible rise in average infection prevalence 271

was evident for parameter ID 4, the probability of a newly introduced dog being infected (Fig- 272

ure 7, panel (4)). On the other hand, for the average mortality rate of a never infectious dog 273

(parameter ID 6), we saw a decrease of over 10% in the median estimates for average infection 274

prevalence across the four tested values. 275

In all remaining parameter sets, the differences between the four median estimates for average 276

infection prevalence were below 10% (Figure 7). 277

Parameter sensitivity rankings 278

By computing stochastic sensitivity coefficients and ranking the parameters by this measure, 279

we discerned that the average infection prevalence was most sensitive to the probability of a 280

newly introduced dog being infected (parameter ID 4). Of the four parameters linked to dog 281

mortality (parameter IDs 6-9), the most critical was the mortality rate of never infectious dogs 282

(parameter ID 6), which out of all 15 biological parameters under consideration ranked fourth 283

overall (Figure 8). 284

Four parameters associated with sand flies were among the top six parameters in the sensitivity 285

ranking. The only sand fly-associated parameter absent was the probability of a susceptible 286

sand fly becoming infected when biting an infectious dog (parameter ID 14) (Figure 8). 287

4 Discussion 288

Despite zoonotic VL being spatially heterogeneous, there remains few spatially explicit mathe- 289

matical models of Leishmania transmission to help inform infection and VL disease monitoring, 290

surveillance and intervention efforts [8–10]. Amongst prior work, Hartemink et al. [9] predicted 291

spatial sand fly abundance in southwest France and used this to construct a basic reproduc- 292

tive ratio map for canine VL. However, these risk maps relied on sand fly abundance estimates 293

from a single sampling timepoint; no temporal dynamics of sand fly abundance, and therefore 294

of infection prevalence, were considered. A model developed by ELmojtaba et al. [10] was used 295

to analyse whether a hypothetical human VL vaccination could successfully reduce prevalence 296

when there is immigration of infected individuals into the population. While the model includes 297

spatial aspects through the immigration mechanism, it lacks any explicit spatial structure in the 298

modelled population. 299

In contrast, our study presents a novel spatio-temporal mechanistic modelling framework for 300

Leishmania infection dynamics, incorporating humans, vectors, reservoir hosts (dogs) and dead- 301

end hosts (chickens). We apply this model to a rural village setting based on empirical datasets 302

measured on Marajó in Brazil to draw attention to those model inputs that cause significant 303

uncertainty in the predicted prevalence of L. infantum parasites in domestic dogs. 304

An integral part of the model set up involves incorporating data on host numbers per household, 305

spatial sand fly abundances, and the temporal profile of sand fly abundances. The scarcity of 306

exhaustive information on these population-level attributes necessitated that we fit distributions 307

and smooth trend lines to small but informative datasets. The fitted host numbers per household 308

distributions and sand fly abundance profiles offer a resource that may readily be applied in 309

settings with similar social, environmental and climatic conditions. 310
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Running model simulations using baseline biological parameter values set within plausible ranges 311

determined from the literature generated infection prevalence predictions that were within the 312

range of empirical estimates from this region of Brazil [13–17]. Variation in infection estimates 313

are expected as ultimately their precision depends on the sensitivity and specificity of diagnostic 314

tests, the type of test (e.g. molecular vs. immunological), the choice of clinical sample, and 315

the stage of infection progression [14, 16, 17, 30]. Thus, for example, as dogs acquire para- 316

sitological infection prior to detection of serum containing anti-Leishmania specific antibodies 317

(seroconversion), seroprevalence data may underestimate true infection rates. 318

The sensitivity parameter ranking reveals that ensuring sand fly vector associated parameters are 319

well-informed warrants major attention; four out of the five parameters associated with sand flies 320

were among the parameters with the highest sensitivity of average prevalence to their variation. 321

Particularly sensitive were the parameters for the probability of transmission of infection from an 322

infectious sand fly to a susceptible dog given that a contact between the two occurs (parameter 323

ID 13) and the proportion of female sand flies not observed in trapping studies (parameter ID 324

15). 325

Ultimately, VL being a vector-borne disease means that infection events are driven by sand fly 326

biting behaviour and sand fly interactions with hosts. Accordingly, finding greater sensitivity 327

on infection prevalence when altering the parameters related to sand fly dynamics versus the 328

majority of parameters conditioned solely on dogs is not unexpected and is in agreement with 329

prior studies displaying the sensitivity of Leishmania transmission models to sand fly parameter 330

values [31, 32]. Furthermore, the importance of understanding sand fly biology and biting be- 331

haviours in relation to transmission probability and control has been underpinned by laboratory 332

experiments and observations in nature [24, 33–36]. 333

Overall, the parameter with the highest sensitivity coefficient was the probability of a newly 334

introduced dog being infected (parameter ID 4). Thus, reliably informing the relative amount 335

of dog immigration into a region versus birth, plus the proportion of immigrant dogs already 336

harbouring L. infantum parasites, is integral to providing reliable infection prevalence estimates. 337

Studies of domestic dog migration are few, but in most dog populations losses and replacements 338

appear relatively stable with estimates from Brazil of the percentage of new dogs being immi- 339

grants ranging from 37% to 50%, with up to 15% of immigrant dogs being Leishmania seropos- 340

itive on arrival [37–39]. Given the heterogeneities in sand fly abundance and infection [36], even 341

in highly endemic regions such as Marajó, migration of infected dogs between villages can have 342

a significant impact on transmission as demonstrated here. 343

Developing and parameterising an original mathematical framework in the face of limited data 344

has its restrictions. First, we acknowledge that our findings are likely to be sensitive to the 345

biomass-linked assumption for sand fly biting preference towards host species. The effect of 346

alternative choices merits further investigation, in tandem with data collection. Second, our 347

analysis has focused on a single, rural household spatial configuration, although the selected 348

configuration was chosen as representative of a typical village in Marajó, from where the majority 349

of the parameter estimates were measured. Applying a similar methodological approach to 350

semi-urban and urban populations would be informative and timely as zoonotic VL has recently 351

expanded its geographical distribution to include urbanised communities [3, 40]. Such analysis 352

offers the opportunity to quantify the impact of household spatial configuration on infection 353

prevalence in domestic dogs across a range of environmental settings and the extent to which 354

transmission is driven by the level of clustering or regularity in household locations. Finally, 355

we assumed a maximum attainable dog population size per household and constant population 356

sizes of other hosts. It would be of interest to explore the impact on infection prevalence among 357
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domestic dogs if there were to be an influx of alternative host livestock in close vicinity to 358

households as dead-end host abundance is variably associated with infection risk [41–43]. 359

We anticipate this modelling framework being extended in a variety of ways. One future devel- 360

opment would be to explore spatial patterns of zoonotic VL in humans resulting from the spatial 361

distribution of L. infantum infection in domestic dogs. Our mechanistic approach for evaluating 362

the force of infection is advantageous in that Equation (1) may be easily generalised to cater for 363

host types other than dogs. 364

Another application is to assist in intervention planning, where there is a need to employ the 365

use of spatial models to predict best practice deployment of proposed controls through time 366

and space. The spatial nature of our model makes it amenable to incorporating innovative, 367

spatially-targeted vector and/or reservoir host control strategies that existing models were not 368

designed to explore. One particular example, whose deployment nature is inherently spatial, is 369

a pheromone-insecticide combination as a “lure and kill” vector control tool. Containing a long- 370

lasting lure that releases a synthetic male sex pheromone, attractive to both sexes of the target 371

sand fly vector [44, 45], this technology could be applied by disease control agencies to attract 372

sand flies away from feeding on people and their animals and towards insecticide treated surfaces 373

where they can be killed [44, 46]. To evaluate the impact of a pheromone lure via simulation, 374

the intrinsic properties of the lure, such as its longevity and the radius within which it has an 375

effect, necessitate the use of a spatio-temporal modelling framework such as this one. 376

5 Conclusions 377

Zoonotic VL, caused by Leishmania parasites, is spatially heterogeneous and it is essential that 378

monitoring, surveillance and intervention strategies take this variation into account. At the time 379

of writing, there is a lack of spatially explicit mathematical models encapsulating Leishmania 380

infection dynamics. We have developed a novel individual-based, spatio-temporal mechanistic 381

modelling framework which, when parameterised according to data gathered from Marajó in 382

Brazil, generated plausible L. infantum infection prevalence estimates. 383

Our study determined infection prevalence in dogs to be most strongly affected by sand fly 384

associated parameters and the proportion of newly introduced (immigrant) dogs already infected; 385

this motivates future data collection efforts into these particular elements. Additionally, our 386

mechanistic modelling framework provides a platform which can be built upon to further explore 387

the spatial epidemiology of zoonotic VL in humans and to assess spatially-targeted interventions 388

to inform VL response protocols. 389
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Figures

Figure 1: Locator maps. (Left) Locator map depicting the location of Marajó, situated inside the
light green box, within Brazil (shaded in magenta). (Centre) Locator map depicting the location of
Calderao village, situated inside the yellow box, within Marajó. (Right) Household locations within
Calderao village (cyan filled circles). All map data from Google.
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Figure 2: Model of L. infantum infection status in dogs. Death and replacement of deceased
dogs (through birth and immigration) are not shown in the figure.
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Figure 3: Visual schematic of model framework for each simulation run. Red filled ovals rep-
resent model inputs and outputs; blue filled rectangles represent actions; yellow filled diamonds represent
decisions.
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Figure 4: Distributions of the number of hosts per household. Data (bars), best fit Poisson
distributions (blue solid line) and negative binomial distributions where the sample variance was less than
the sample mean (red dashed line) fitted using maximum likelihood estimation for the number of adults
and adolescents, children, dogs, and chickens resident at households in Marajó.

Figure 5: The seasonality of sand fly abundance using data from Marajó. Data on the
number of female sand flies trapped in a night across eight household sites (blue dots), the mean over
household sites in a night (blue line), and a smooth trend line fitted using a Lowess smoother and linearly
extrapolated to give values for the remaining four months of the year (red line).
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Figure 6: Simulated infection prevalence in domestic dogs using baseline biological param-
eters. Dashed, red line corresponds to the median prevalence and the grey, filled region depicts the 95%
prediction interval at each timestep obtained from 1000 simulation runs. Blue, dotted lines correspond
to measured prevalence from two, individual simulation runs.
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Figure 8: Stochastic sensitivity coefficient parameter ranking. The parameter ID linked to
each stochastic sensitivity coefficient is placed aside the data point. Blue crosses denote those biological
parameters associated with dogs. Filled orange circles correspond to biological parameters associated
with sandflies. Average infection prevalence was most sensitive to parameter ID 4 (probability of a newly
introduced dog being infected).

21

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 21, 2018. ; https://doi.org/10.1101/418558doi: bioRxiv preprint 

https://doi.org/10.1101/418558
http://creativecommons.org/licenses/by/4.0/


Tables

Table 1: Description of measurable biological variables that are used to inform parameters (either directly
or after performing additional calculations) in the model. Source listed as OC denotes (O. Courtenay,
unpublished observations).

Param.
ID

Symbol Description Baseline
value

Other values tested Sources

1 r Interaction range of dogs (km). 0.30 0.02, 0.7, 2 [27]
2 πnever Proportion of infected dogs that

are never infectious.
0.55 0.14, 0.28, 0.42 [21, 22]

3 π̃high Proportion of infectious dogs that
are highly infectious.

0.37 0.25, 0.60, 0.80 [2]

4 ξ Probability of a newly introduced
dog being infected.

0.130 0.0064, 0.29, 0.43 [37]

5 ν Per capita rate of progression of
dogs from latently infected to a fur-
ther state (days−1). 1/ν is the av-
erage duration of the latent period
(days).

0.0055 0.0042, 0.0047, 0.0065 [21]

6 µNeverInf Per capita mortality rate for la-
tently infected and never infectious
dogs (days−1).

0.0015 0.0012, 0.0023, 0.0031 OC

7 µLowInf Per capita mortality rate for dogs
with low infectiousness (days−1).

0.0020 0.0012, 0.0026, 0.0031 OC

8 µHighInf Per capita mortality rate for dogs
with high infectiousness (days−1).

0.0021 0.0012, 0.0026, 0.0031 OC

9 µSus Per capita mortality for susceptible
dogs (days−1).

0.00125 0.00105, 0.00112, 0.00118 OC

10 ψ Average time (days) for deceased
dog to be replaced.

121 0, 243, 578 [38]

11 α Biting rate of sand flies (per day)
(Number of times one sand fly
would want to bite a host per unit
time, if hosts were freely available).

0.333 0.25, 0.40, 0.50 [27]

12 φ Background proportion of sand
flies that are infected.

0.010 0.002, 0.100, 0.260 [15, 47, 48]

13 δ Probability of Leishmania trans-
mission from an infectious sand fly
to a susceptible dog given that a
contact bite occurs.

0.321 0.10, 0.20, 0.50 [49]

14 mavg Probability of Leishmania trans-
mission from an infectious dog to
a susceptible sand fly given that a
contact between the two occurs.

0.275 0.023, 0.150, 0.450 [21]

15 ζ Proportion of female sand fly pop-
ulation not observed in trapping
studies.

0.90 0.75, 0.80, 0.85 [27]
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