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Abstract

Background: The parasite Leishmania infantum causes zoonotic visceral leishmaniasis (VL), a
potentially fatal vector-borne disease of canids and humans. Zoonotic VL poses a significant risk
to public health, with regions of Latin America being particularly afflicted by the disease.

Leishmania infantum parasites are transmitted between hosts during blood feeding by infected
female phlebotomine sand flies. With a principal reservoir host of L. infantum being domes-
tic dogs, limiting prevalence in this reservoir may result in a reduced risk of infection for the
human population. To this end, a primary focus of research efforts has been to understand
disease transmission dynamics among dogs. One way this can be achieved is through the use of
mathematical models.

Methods: We have developed a stochastic, spatial, individual-based mechanistic model of L.
infantum transmission in domestic dogs. The model framework was applied to a rural Brazilian
village setting with parameter values informed by fieldwork and laboratory data. To ensure
household and sand fly populations were realistic, we statistically fit distributions for these
entities to existing survey data. To identify the model parameters of highest importance, we
performed a stochastic parameter sensitivity analysis of the prevalence of infection among dogs
to the model parameters.

Results: We computed parametric distributions for the number of humans and animals per
household and a non-parametric temporal profile for sand fly abundance. The stochastic pa-
rameter sensitivity analysis determined prevalence of L. infantum infection in dogs to be most
strongly affected by the sand fly associated parameters and the proportion of immigrant dogs
already infected with L. infantum parasites.

Conclusions: Establishing the model parameters with the highest sensitivity of average L.
infantum infection prevalence in dogs to their variation helps motivate future data collection
efforts focusing on these elements. Moreover, the proposed mechanistic modelling framework
provides a foundation that can be expanded to explore spatial patterns of zoonotic VL in humans
and to assess spatially targeted interventions.
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1 Background 1

Zoonotic visceral leishmaniasis (VL) is a potentially fatal disease of humans and canids caused 2

by the parasite Leishmania infantum. These parasites are transmitted between hosts during 3

blood-feeding by infected female phlebotomine sand fly vectors [1, 2]. Zoonotic VL poses a 4

significant risk to public health, being endemic in 65 countries in regions of Latin America, the 5

Mediterranean, central and eastern Asia, and East Africa, with a case fatality rate of 90% in 6

humans if left untreated [3–6]. 7

Human infection has not been proven to be able to maintain L. infantum transmission without 8

an infection reservoir [5]; the only proven reservoir host is domestic dogs [3–5]. Sand flies readily 9

feed upon many other animal species, which act as important blood meal sources that support egg 10

production. However, aside from domestic dogs these other animal species are considered “dead- 11

end” hosts for parasite transmission since generally they do not support Leishmania infections 12

and/or are not infectious. For most sand fly vector species, host preference is usually related 13

to host biomass rather than to specific identity [7]. As a consequence, in addition to dogs and 14

humans, domestic livestock living in close proximity to humans, such as chickens, pigs and cattle, 15

are epidemiologically significant blood meal sources for sand flies [8, 9]. 16

A primary focus of research efforts has been to understand the dynamics of L. infantum trans- 17

mission among dogs, with the intent that limiting prevalence in this reservoir will result in a 18

reduced risk of zoonotic VL infection for the human population. One way this can be achieved 19

is through the use of mathematical models. 20

Mathematical models are a tool that allow us to project how infectious diseases may progress, 21

show the likely outcome of outbreaks, and help to inform public health interventions. Through 22

sand fly abundance and seasonality, L. infantum infection, and thus VL cases, has both spatial 23

and temporal dependencies. There is, however, a surprising scarcity of mathematical models 24

capable of capturing these spatio-temporal characteristics. A review by Rock et al. [10] found 25

24 papers addressing relevant modelling of VL, of which only two consider spatial aspects of 26

transmission [11, 12]. Subsequent additions to the VL modelling literature since this review 27

continue the tendency to exclude spatial heterogeneity in transmission. In particular, three 28

recent studies (all published since the Rock et al. [10] review) have developed mathematical 29

models that describe zoonotic VL dynamics in Brazil, but none contain any spatial aspects [13– 30

15]. To our knowledge, there is presently no recorded work that specifies a spatial model of VL 31

incorporating humans, vectors, reservoir hosts (dogs) and dead-end hosts. 32

One country severely afflicted by zoonotic VL is Brazil [6]. VL is endemic in particular regions of 33

Brazil, exemplifying the spatial heterogeneity of the disease. In terms of canine VL, serological 34

studies undertaken in endemic areas of Brazil have found prevalence of L. infantum infection 35

to range from 25% [16] to more than 70% [17–20] depending on the diagnostic sample and 36

test employed. A consequence of the burden of L. infantum infection in the canine reservoir 37

is that Brazil has seen a steady rise in the number of human VL cases throughout the last 30 38

years [5, 21]. A reported 3,500 human VL cases occur in the country per year, 90% of all VL 39

cases reported in the Americas [1, 3], with the actual incidence (allowing for under-reporting) 40

estimated annually to be between 4,200 and 6,300 [1]. Accordingly, in Brazil importance is 41

attached to the management of infection prevalence among domestic dogs to diminish the public 42

health VL risk [22, 23]. 43

To this end, we herein develop a novel spatio-temporal mechanistic modelling framework for L. 44

infantum infection in domestic dogs. Applying the model to a rural Brazilian setting, we perform 45
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a sensitivity analysis to identify those model parameters that cause significant uncertainty in 46

the predicted prevalence of L. infantum infection. 47

2 Methods 48

2.1 Model description 49

Informed by presently available field and laboratory data, we have developed a stochastic, spatial, 50

individual-based, mechanistic model for L. infantum infection progression in domestic dogs in 51

order to estimate L. infantum prevalence amongst the domestic dog population. 52

In brief, the model incorporates spatial variation of both hosts (adults and adolescents, children, 53

dogs, and chickens) and vectors (sand flies) at the household level. Chickens represent dead- 54

end hosts available to the sand fly vector; we do not refer explicitly to other dead-end hosts, 55

such as pigs and cattle, as in the present study location chickens are the predominant domestic 56

blood meal source for sand flies and chicken sheds yield the vast majority of sand flies captured 57

within domestic areas [24–26]. Using a vectorial capacity type calculation, we derived a force 58

of infection that gives the probability a dog will become infected with the L. infantum parasite 59

via the sand fly vector. Infectious dogs increase the force of infection within a radius of their 60

household. We tracked and reported as the output of the model the number of infected dogs 61

each day. 62

Further details on each aspect of the model follow. 63

Households and hosts in space 64

We considered a configuration of rural households based on the latitude and longitude coor- 65

dinates of 235 households in Calderao, a village on the island of Marajó in Northern Brazil 66

(Figure 1). The household locations in Calderao are considered representative of a rural house- 67

hold spatial distribution in this endemic region. These household location data were collected 68

as part of an epidemiological study of VL on Marajó between 2004 and 2005 where 99% of 69

households were concurrently mapped by global positioning system technology (O. Courtenay 70

and R.J. Quinnell, unpublished observations). 71

The number of each type of host at each household was assigned in each model run by sampling 72

from distributions of host numbers per household (Figure 2). We obtained these distributions 73

by fitting to survey data from the Marajó region collected in July and August of 2010 at 140 74

households across seven villages [27]. Further details of this data and obtaining the distributions 75

can be found in Additional File 1. 76

Infection progression in dogs 77

The natural history of L. infantum infection in dogs consists of susceptible and infected states. 78

Prior work has established heterogeneities in the infectiousness of dogs (transmission of L. in- 79

fantum to the vector) [2, 28, 29]. Specifically, this heterogeneity in infectiousness results in 80

infected states representing highly infectious dogs (responsible for 80% or greater of all observed 81

transmission events), mildly infectious dogs (contributing to 20% or less of total transmission 82
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events), and noninfectious dogs that, although infected, never transmit the L. infantum parasite 83

back to susceptible sand flies [28]. 84

For modelling purposes we therefore stratified infected dogs into four states: (i) latently infected; 85

(ii) never infectious; (iii) low infectiousness; (iv) high infectiousness (Figure 3). Susceptible dogs 86

became latently infected at a rate dependent on the force of infection; full details of this will 87

follow. Movement between the latently infected state and the remaining three infected states 88

occurred at constant rates. Note that a fully recovered state was not included as the complete 89

cure of L. infantum infected dogs is rare (even after treatment), validated by experimental 90

observations finding minimal seroreversion from L. infantum parasite seropositivity [30]. 91

Deaths could occur from every state in the model and the mortality rates differed between 92

states. Upon death from any state, a new dog was introduced into the same household at a 93

given replacement rate. Newly-introduced dogs were placed either in the susceptible state or 94

one of the infected states, encapsulating both birth and immigration into the study region. It 95

follows that the initial dog populations corresponded to the maximum attainable population size 96

per household. 97

Force of infection 98

Sand fly dynamics operate on a faster time-scale compared to the other host species and processes 99

considered in the model; sand flies have an estimated life expectancy of a number of weeks at 100

most [10]. For that reason, we did not explicitly track the transitions of sand flies between 101

the susceptible and infectious states at an individual level. We instead considered sand fly 102

populations at each house as a collective which exert a force of infection, λ, on dogs at household 103

h at time t in the following way, 104

λh(t) = α× δ × Lh(t) × ηh,dog(t) × φh(t), (1) 105

where α is the biting rate of sand flies, δ is the probability of L. infantum transmission to dogs 106

as a result of a single bite from an infectious sand fly, Lh is the abundance of sand flies at 107

household h, ηh,dog is the probability of sand flies biting dogs at household h as opposed to any 108

other host, and φh is the proportion of sand flies that are infectious at household h. 109

As most sand fly activity occurs in the evening when the majority of hosts will be within their 110

household [31, 32], we discretised our simulations into daily time steps. Using daily time steps 111

gave the following probability for a susceptible dog at household h to become infected on day 112

t: 113

ph(t) = 1 − e−λh(t). (2) 114

The biting rate and probability of an infected sand fly transmitting L. infantum to a dog as 115

a result of a single bite were constant in the model. In contrast, sand fly abundance, host 116

preference, and the proportion of sand flies infected at each household were time-dependent; we 117

now outline the computation of each time-dependent component. 118

Sandfly abundance: Sand fly trapping data from villages in Marajó were used to obtain 119

realistic estimates of the abundance of sand flies, Lh, at households. As sand fly populations 120

have been observed to exhibit temporal dependencies Lh comprised of two parts: a constant 121

initial estimate and a seasonal scaling factor. 122
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Data on the abundance of female sand flies, specifically the vector species Lutzomyia longipalpis, 123

were available from a previous study of 180 households in fifteen villages on Marajó island where 124

sand fly numbers were surveyed using CDC light-traps [24]. The constant initial estimate of 125

abundance was sampled from these data and scaled by the expected proportion of unobserved 126

female sand flies at households. Data on the mean number of female Lutzomyia longipalpis 127

trapped over an eight month period across eight different households in the village of Boa Vista, 128

Marajó [33] were then used to find the seasonal scaling factor. Full details of this procedure to 129

estimate sand fly abundance can be found in Additional File 1. 130

Host preference: To parameterise sand fly biting preference towards the host species of 131

interest, we drew on findings from field and laboratory experiments performed in this setting by 132

Quinnell et al [7]. These experiments concluded that the attractiveness of the three host species 133

we consider (humans, dogs and chickens) to the Lutzomyia longipalpis vector seemed to largely 134

be a function of the relative host sizes. 135

These experimental findings were used to allocate a portion of sand fly bites to each host type 136

at each household, via each host type being assigned the following biomass value relative to 137

chickens: 138

• 1 dog = 2 chickens, 139

• 1 child = 5 chickens, 140

• 1 adult or adolescent = 10 chickens (using adult-child ratio: 1 adult = 2 children). 141

The preference, ηh,x, towards host type x at household h was computed as a simple proportion 142

of the total biomass, 143

ηh,x(t) =
Nh,xbx∑

s∈host type

Nh,sbs
, (3) 144

where Nh,x is the number of host type x at household h and bx is the biomass of host type x 145

relative to chickens. So, for example, bdog = 2. 146

Proportion of infectious sand flies: The proportion of infectious vectors at household h 147

was comprised of a time-independent background level of prevalence that was constant across 148

all households and an additional proportion dependent on the number of infectious dogs in the 149

neighbourhood of household h. We informed the radius defining this neighbourhood by matching 150

it to the maximum sand fly travel distance (taken as 300m at the baseline with a range from 151

20m to 2km to fully explore the parameter space [34], see Table 1). The contribution from 152

each type of infectious dog (high and low infectiousness) was computed separately under an 153

assumption that 80% of transmission from dogs to sand flies is caused by high infectiousness 154

dogs, with the remaining 20% of total transmission events contributed by infected dogs with low 155

infectiousness [28]. Further details on our calculation of the proportion of sand flies that were 156

infectious are given in Additional File 1. 157

2.2 Model outputs 158

Being a stochastic model, the infection dynamics vary on separate simulation runs even with all 159

parameters and other model inputs remaining fixed. By running the model multiple times we 160

obtain an ensemble of model outputs. This collection of model outputs permits the calculation 161
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of a variety of summary statistics describing the epidemiology of L. infantum infection among 162

domestic dogs, such as prevalence and incidence. 163

We focus here on the prevalence of infection. To clarify, an infection case refers to any dog 164

harbouring L. infantum parasites, including those with and without canine VL symptoms. Thus, 165

we defined infection prevalence at time t as the aggregated percentage of dogs in the latently 166

infected, never infectious, low infectiousness and high infectiousness states, which is equivalent 167

to calculating the proportion of dogs not in the susceptible state: 168

prevalence(t) =
# of dogs in population - # of dogs in susceptible state

# of dogs in population
× 100. (4) 169

The daily prevalence estimates were used to obtain an average prevalence, defined as the mean 170

of the daily prevalence estimates in a specified time period. Throughout this work, all average 171

prevalence values were computed from the daily prevalence values over the final year (365 days) 172

of each simulation run. Mathematically, with T denoting maximum time, average infection 173

prevalence may be expressed as 174

Average infection prevalence =

T∑
t=T−364

prevalence(t)

365
. (5) 175

2.3 Model summary 176

In summary, the arrangement of and interaction between the individual pieces of our stochastic, 177

spatial, individual-based model for L. infantum infection dynamics in dogs are displayed in 178

Figure 4. We refer to the process in Figure 4 as one run of the simulation. 179

2.4 Sensitivity analysis 180

Parameter values 181

We carried out a sensitivity analysis to determine the robustness of the model behaviour to 182

the biological parameter values and to ascertain which parameters had a high impact on the 183

average prevalence as predicted by the model. The values tested for each parameter were within 184

plausible ranges informed via published estimates from the literature and unpublished fieldwork 185

data (Table 1). 186

We undertook a one-at-a-time sensitivity analysis. That is, each parameter was varied in turn 187

while all others remained at their baseline value. We considered 46 parameter sets (Table 1), 188

and for each individual parameter set we performed 1000 separate model simulation runs. The 189

elapsed simulation time in each run corresponded to ten years. 190

Sensitivity coefficients 191

In addition to comparing the changes in average prevalence given by each parameter set, we 192

computed sensitivity coefficients. These reflect the ratios between the size of the change in a 193

model output (in this case, the change in average VL prevalence) with the corresponding size of 194

the change in the parameter [35]. The sensitivity coefficients therefore account for the different 195
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ranges in the values tested for each parameter (Table 1) and ensure that the parameters can be 196

sensibly compared. 197

However, in a stochastic modelling framework, such as this one, model outputs do not take a 198

unique value. To account for stochastic fluctuations while still allowing us to critically analyse 199

the sensitivity of the model parameters, we therefore calculated stochastic sensitivity coefficients 200

(as outlined in Damiani et al. [36], comprehensive explanation in Additional File 1). We ranked 201

the parameters according to the stochastic sensitivity coefficients, with a larger sensitivity co- 202

efficient corresponding to a parameter with higher sensitivity of average VL prevalence to its 203

variation. 204

All simulations were performed in Matlab® versions R2014a to R2015a. All other computa- 205

tions and plots were carried out in Matlab® version R2016b or later. 206

3 Results 207

3.1 Model simulations - Baseline parameters 208

As a form of model validation, we checked the plausibility of infection prevalence predictions 209

while each biological parameter was fixed to its baseline value (Table 1). Under these baseline 210

parameter values, the daily prevalence in dogs was generally between 46% and 68%. Averaging 211

over 1000 separate model simulation runs, the median trace for daily prevalence in dogs lay 212

between 55% and 59%. Seasonal oscillations in the median prevalence remained observable 213

across time, though ordinarily less pronounced compared to the seasonality-induced changes in 214

prevalence apparent in a single simulation run (Figure 5). 215

3.2 Sensitivity analysis 216

Under baseline parameter values, the median of the average infection prevalence over 1000 simu- 217

lation runs was 57% (95% prediction interval: [49%, 66%]). In addition, the ranges of the average 218

infection prevalence distributions were quantitatively similar irrespective of the parameter set 219

tested (Figure 6). 220

Among the 46 parameter sets tested, the largest median average infection prevalence prediction 221

(87%) was obtained when the background proportion of sand flies infected (parameter ID 12) 222

was increased from its baseline value of 0.01 to 0.26 (with all other biological parameters fixed 223

at baseline values). Similarly, the smallest median average infection prevalence prediction (36%) 224

was obtained when the background proportion of sand flies infected was lowered to 0.002 (with 225

all other biological parameters again fixed at baseline values). As a consequence, this parameter 226

set had an approximate 50% shift in absolute value of the median across the range of tested 227

values: the highest among the 15 biological parameters in this sensitivity analysis (Figure 6, 228

panel (12)). 229

Moreover, when comparing the respective sensitivity test values in three other sand fly-associated 230

parameter sets, sand fly bite rate (parameter ID 11), probability of a susceptible dog becoming 231

infected when bitten by an infected sand fly (parameter ID 13) and proportion of female sand flies 232

unobserved (parameter ID 15), in each case we found the median average infection prevalence 233

to differ by over 10% across the range of values tested (Figure 6, panels (11,13,15)). 234
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In the biological parameters associated with dogs, a visible rise in average infection prevalence 235

was evident for parameter ID 4, the probability of a newly introduced dog being infected (Fig- 236

ure 6, panel (4)). On the other hand, for the average mortality rate of a never infectious dog 237

(parameter ID 6), we saw a decrease of over 10% in the median estimates for average infection 238

prevalence across the four tested values. 239

In all remaining parameter sets, the differences between the four median estimates for average 240

infection prevalence were below 10% (Figure 6). 241

Parameter sensitivity rankings 242

By computing stochastic sensitivity coefficients and ranking the parameters by this measure, 243

we discerned that the average infection prevalence was most sensitive to the probability of a 244

newly introduced dog being infected (parameter ID 4). Of the four parameters linked to dog 245

mortality (parameter IDs 6-9), the most critical was the mortality rate of never infectious dogs 246

(parameter ID 6), which out of all 15 biological parameters under consideration ranked fourth 247

overall (Figure 7). 248

Four parameters associated with sand flies were among the top six most sensitive parameters 249

(Figure 7). The only sand fly-associated parameter that was not among these top six most 250

sensitive parameters was the probability of a susceptible sand fly becoming infected when biting 251

an infectious dog (parameter ID 14). 252

4 Discussion 253

Despite zoonotic VL being spatially heterogeneous, there remains few spatially explicit mathe- 254

matical models of Leishmania transmission to help inform infection and VL disease monitoring, 255

surveillance and intervention efforts [10–12]. Amongst prior work, Hartemink et al. [11] pre- 256

dicted spatial sand fly abundance in southwest France to inform the construction of a basic 257

reproductive ratio map for canine VL. However, these risk maps relied on sand fly abundance 258

estimates from a single sampling timepoint; no temporal dynamics of sand fly abundance, and 259

therefore of infection prevalence, were considered. A model developed by ELmojtaba et al. [12] 260

was used to analyse whether a hypothetical human VL vaccination could successfully reduce 261

prevalence when there is immigration of infected individuals into the population. While the 262

model includes spatial aspects through the immigration mechanism, it lacks any explicit spatial 263

structure in the modelled population. 264

In contrast, our study presents a novel spatio-temporal mechanistic modelling framework for 265

Leishmania infection dynamics, incorporating humans, vectors, reservoir hosts (dogs) and dead- 266

end hosts (chickens in this study; our nominal dead-end host species). We apply this model 267

to a rural village setting based on empirical datasets measured on Marajó in Brazil to draw 268

attention to those model inputs that cause significant uncertainty in the predicted prevalence of 269

L. infantum parasites in domestic dogs. 270

Curation of data 271

An integral part of the model set up involves incorporating data on host numbers per household, 272

spatial sand fly abundances, and the temporal profile of sand fly abundances. The scarcity of 273
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exhaustive information on these population-level attributes necessitated that we fit distributions 274

and smooth trend lines to small but informative datasets. The fitted host number distributions 275

and sand fly abundance profiles offer a resource that may readily be applied in settings with 276

similar social, environmental and climatic conditions. 277

Sensitivity of L. infantum infection to biological parameter variation 278

Running model simulations using baseline biological parameter values set within plausible ranges 279

determined from the literature generated infection prevalence predictions that were within the 280

range of empirical estimates from endemic regions of Brazil [16–20]. Variation in infection 281

estimates is expected as ultimately their precision depends on the type of diagnostic test used 282

(e.g. molecular vs. immunological), diagnostic test sensitivity and specificity, the choice of 283

clinical sample, and the stage of infection progression [17, 19, 20, 37]. Thus, for example, as dogs 284

acquire parasitological infection prior to detection of serum containing anti-Leishmania specific 285

antibodies (seroconversion), seroprevalence data may underestimate true infection rates. 286

The sensitivity parameter ranking reveals that ensuring sand fly vector associated parameters are 287

well-informed warrants major attention; four out of the five parameters associated with sand flies 288

were among the parameters with the highest sensitivity of average prevalence to their variation. 289

Particularly sensitive were the parameters for the probability of transmission of infection from an 290

infectious sand fly to a susceptible dog given that a contact between the two occurs (parameter 291

ID 13) and the proportion of female sand flies not observed in trapping studies (parameter ID 15). 292

It is unsurprising that the latter parameter displays high sensitivity; the proportion of female 293

sand flies not observed in trapping studies directly affects the estimated sand fly abundance and 294

thus the magnitude of the force of infection. 295

Ultimately, VL being a vector-borne disease means that infection events are driven by sand fly 296

biting behaviour and sand fly interactions with hosts. Accordingly, finding greater sensitivity 297

on infection prevalence when altering the parameters related to sand fly dynamics versus the 298

majority of parameters conditioned solely on dogs is not unexpected and is in agreement with 299

prior studies displaying the sensitivity of Leishmania transmission models to sand fly parameter 300

values [13, 38]. Furthermore, the importance of understanding sand fly biology and biting be- 301

haviours in relation to transmission probability and control has been underpinned by laboratory 302

experiments and observations in nature [32, 39–42]. 303

Overall, the parameter with the highest sensitivity coefficient was the probability of a newly 304

introduced dog being infected (parameter ID 4). Thus, reliably informing the relative amount 305

of dog immigration into a region versus birth, plus the proportion of immigrant dogs already 306

harbouring L. infantum parasites, is integral to providing reliable infection prevalence estimates. 307

Studies of domestic dog migration are few, but in most dog populations losses and replacements 308

appear relatively stable with estimates from Brazil of the percentage of new dogs being immi- 309

grants ranging from 37% to 50%, with up to 15% of immigrant dogs being Leishmania seropos- 310

itive on arrival [43–45]. Given the heterogeneities in sand fly abundance and infection [42], even 311

in highly endemic regions such as Marajó, migration of infected dogs between villages can have 312

a significant impact on transmission as demonstrated here. 313

Study limitations 314

Developing and parameterising an original mathematical framework in the face of limited data 315

has its restrictions. First, we acknowledge that our findings are likely to be sensitive to the 316
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biomass-linked assumption for sand fly biting preference towards host species. The literature 317

used to inform this assumption in the current model [7] is appropriate as it was conducted at 318

the same site where most of the data used in the model were generated and is, we believe, the 319

only experimental study of its type. However, the effect of alternative choices merits further 320

investigation in tandem with field work for further data collection. Second, our analysis has 321

focused on a single, rural household spatial configuration, although the selected configuration 322

was chosen as representative of a typical village in Marajó, from where the majority of the 323

parameter estimates were measured. Applying a similar methodological approach to semi-urban 324

and urban populations would be informative and timely as zoonotic VL has recently expanded 325

its geographical distribution to include urbanised communities [3, 46]. Such analysis offers the 326

opportunity to quantify the impact of household spatial configuration on infection prevalence 327

in domestic dogs across a range of environmental settings and the extent to which transmission 328

is driven by the level of clustering or regularity in household locations. Finally, we assumed a 329

maximum attainable dog population size per household and constant population sizes of other 330

hosts. It would be of interest to explore the impact on infection prevalence among domestic 331

dogs if there were to be an influx of alternative host livestock in close vicinity to households as 332

dead-end host abundance is variably associated with infection risk [47–49]. 333

Further work 334

We anticipate this modelling framework being extended in a variety of ways. One future devel- 335

opment would be to explore spatial patterns of zoonotic VL in humans resulting from the spatial 336

distribution of L. infantum infection in domestic dogs. Our mechanistic approach for evaluating 337

the force of infection is advantageous in that Equation (1) may be easily generalised to cater for 338

host types other than dogs. Furthermore, while we considered a solitary dead-end host type, 339

chickens, additional dead-end host types could seamlessly be incorporated using our modelling 340

framework, allowing it to be used in settings where multiple livestock species are present. 341

Another application is to assist in intervention planning, where there is a need to employ the 342

use of spatial models to predict best practice deployment of proposed controls through time and 343

space. The spatial nature of our model makes it amenable to incorporating innovative, spatially- 344

targeted vector and/or reservoir host control strategies that existing models were not designed to 345

explore. One example, whose deployment nature is inherently spatial, is a pheromone-insecticide 346

combination as a “lure and kill” vector control tool. Containing a long-lasting lure that releases 347

a synthetic male sex pheromone, attractive to both sexes of the target sand fly vector [50, 51], 348

this technology could be applied by disease control agencies to attract sand flies away from 349

feeding on people and their animals and towards insecticide treated surfaces where they can be 350

killed [50, 52]. To evaluate the impact of a pheromone lure via simulation, the intrinsic properties 351

of the lure, such as its longevity and the radius within which it has an effect, necessitate the use of 352

a spatio-temporal modelling framework such as the one presented here. A second example is the 353

use of deltamethrin-impregnated dog collars which aim to protect dogs from sand fly bites [53]. 354

Due to the decay of the effectiveness of the collars with time [53] and the spatial distribution 355

of dogs in villages in Marajó, the effectiveness of this collar-based intervention could again 356

be evaluated by our spatio-temporal modelling framework. With all repellent interventions, one 357

must be careful to ensure that sand fly feeding is not diverted onto other hosts, including humans; 358

an extended model variant considering zoonotic VL in humans could be used to estimate the 359

size of this effect. 360
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5 Conclusions 361

Zoonotic VL, caused by Leishmania parasites, is spatially heterogeneous and it is essential that 362

monitoring, surveillance and intervention strategies take this variation into account. At the time 363

of writing, there is a lack of spatially explicit mathematical models encapsulating Leishmania 364

infection dynamics. We have developed a novel individual-based, spatio-temporal mechanistic 365

modelling framework which, when parameterised according to data gathered from Marajó in 366

Brazil, generated plausible L. infantum infection prevalence estimates. 367

Our study determined infection prevalence in dogs to be most strongly affected by sand fly 368

associated parameters and the proportion of newly introduced (immigrant) dogs already infected. 369

Identifying the biological factors with the greatest influence on expected infection prevalence 370

motivates future data collection efforts into these particular elements; ensuring they are reliably 371

informed will reduce the amount of uncertainty surrounding mathematical model generated 372

predictions. Additionally, our mechanistic modelling framework provides a platform which can 373

be built upon to further explore the spatial epidemiology of zoonotic VL in humans and to assess 374

spatially-targeted interventions to inform VL response protocols. 375
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State, Brazil. Vet. Parasitol. 131(3-4), 305–309 (2005). doi:10.1016/j.vetpar.2005.05.008

[17] Quinnell, R.J., Courtenay, O., Davidson, S., Garcez, L., Lambson, B., Ramos, P., Shaw,
J.J., Shaw, M.A., Dye, C.: Detection of Leishmania infantum by PCR, serology and cellular
immune response in a cohort study of Brazilian dogs. Parasitology 122(Pt 3), 253–261
(2001)

[18] Felipe, I.M.A., de Aquino, D.M.C., Kuppinger, O., Santos, M.D.C., Rangel, M.E.S., Bar-
bosa, D.S., Barral, A., Werneck, G.L., Caldas, A.d.J.M.: Leishmania infection in humans,
dogs and sandflies in a visceral leishmaniasis endemic area in Maranhão, Brazil. Mem. Inst.
Oswaldo Cruz 106(2), 207–211 (2011). doi:10.1590/S0074-02762011000200015
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Figures

Figure 1: Locator maps. (Left) Map depicting Marajó, situated inside the light green box, within
Brazil (shaded in magenta). (Centre) Map depicting Calderao village, situated inside the yellow box,
within Marajó. (Right) Household locations within Calderao village (cyan filled circles). All map data
are from Google and plotted in Matlab®.
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Figure 2: Distributions of the number of hosts per household. (Top left) Number of adults
and adolescents; (Top right) children; (Bottom left) Number of dogs; (Bottom right) Number of
chickens. Full details on how these distributions were obtained can be found in Additional File 1.
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Figure 3: Model of L. infantum infection status in dogs. Death and replacement of deceased
dogs (through birth and immigration) are not shown in the figure
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Figure 4: Visual schematic of model framework for each simulation run. Red filled ovals rep-
resent model inputs and outputs; blue filled rectangles represent actions; yellow filled diamonds represent
decisions.
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Figure 5: Simulated daily prevalence in domestic dogs using baseline biological parameters.
Dashed, red line corresponds to the median prevalence and the grey, filled region depicts the 95% pre-
diction interval at each timestep obtained from 1000 simulation runs. Blue, dotted lines correspond to
measured prevalence from two individual simulation runs.
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Figure 7: Stochastic sensitivity coefficient parameter ranking. The parameter ID linked to
each stochastic sensitivity coefficient is placed aside the data point. Blue crosses denote those biological
parameters associated with dogs. Filled orange circles correspond to biological parameters associated
with sand flies. Average infection prevalence was most sensitive to parameter ID 4 (probability of a
newly introduced dog being infected).
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Tables

Table 1: Description of measurable biological variables that are used to inform parameters (either directly
or after performing additional calculations) in the model. Source listed as OC denotes (O. Courtenay,
unpublished observations).

Param.
ID

Symbol Description Baseline
value

Other values tested Sources

1 r Interaction range of dogs (km). 0.30 0.02, 0.7, 2 [34]
2 πnever Proportion of infected dogs that

are never infectious.
0.55 0.14, 0.28, 0.42 [28, 29]

3 π̃high Proportion of infectious dogs that
are highly infectious.

0.37 0.25, 0.60, 0.80 [2]

4 ξ Probability of a newly introduced
dog being infected.

0.130 0.0064, 0.29, 0.43 [43]

5 ν Per capita rate of progression of
dogs from latently infected to a fur-
ther state (days−1). 1/ν is the av-
erage duration of the latent period
(days).

0.0055 0.0042, 0.0047, 0.0065 [28]

6 µNeverInf Per capita mortality rate for la-
tently infected and never infectious
dogs (days−1).

0.0015 0.0012, 0.0023, 0.0031 OC

7 µLowInf Per capita mortality rate for dogs
with low infectiousness (days−1).

0.0020 0.0012, 0.0026, 0.0031 OC

8 µHighInf Per capita mortality rate for dogs
with high infectiousness (days−1).

0.0021 0.0012, 0.0026, 0.0031 OC

9 µSus Per capita mortality for susceptible
dogs (days−1).

0.00125 0.00105, 0.00112, 0.00118 OC

10 ψ Average time (days) for deceased
dog to be replaced.

121 0, 243, 578 [44]

11 α Biting rate of sand flies (per day).
(Number of times one sand fly
would want to bite a host per unit
time, if hosts were freely available).

0.333 0.25, 0.40, 0.50 [34]

12 φ Background proportion of sand
flies that are infected.

0.010 0.002, 0.100, 0.260 [18, 54, 55]

13 δ Probability of Leishmania trans-
mission from an infectious sand fly
to a susceptible dog given that a
contact bite occurs.

0.321 0.10, 0.20, 0.50 [56]

14 mavg Probability of Leishmania trans-
mission from an infectious dog to
a susceptible sand fly given that a
contact between the two occurs.

0.275 0.023, 0.150, 0.450 [28]

15 ζ Proportion of female sand fly pop-
ulation not observed in trapping
studies.

0.90 0.75, 0.80, 0.85 [34]
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