Abstract
Our understanding of eukaryotic gene regulation is limited by the complexity of protein-DNA interactions that comprise the chromatin landscape and by inefficient methods for characterizing these interactions. We recently introduced CUT&RUN, an antibody-targeted nuclease-cleavage method that profiles DNA-binding proteins, histones and chromatin modifying proteins in situ with exceptional sensitivity and resolution. Here we describe an automated CUT&RUN platform and apply it to characterize the chromatin landscapes of human cell lines. We find that CUT&RUN profiles of histone modifications crisply demarcate active and repressed chromatin regions, and we develop a continuous metric to identify cell-type specific promoter and enhancer activities. We test the ability of automated CUT&RUN to profile frozen tumor samples, and find that our method readily distinguishes two diffuse midline gliomas by their subtype-specific gene expression programs. The easy, cost-effective workflow makes automated CUT&RUN an attractive tool for high-throughput characterization of cell types and patient samples.