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Abstract 29 

Whole-genome sequencing can be used to estimate subclonal populations in tumours and this 30 

intra-tumoural heterogeneity is linked to clinical outcomes. Many algorithms have been 31 

developed for subclonal reconstruction, but their variabilities and consistencies are largely 32 

unknown. We evaluated sixteen pipelines for reconstructing the evolutionary histories of 293 33 

localized prostate cancers from single samples, and eighteen pipelines for the reconstruction of 34 

10 tumours with multi-region sampling. We show that predictions of subclonal architecture and 35 

timing of somatic mutations vary extensively across pipelines. Pipelines show consistent types of 36 

biases, with those incorporating SomaticSniper and Battenberg preferentially predicting 37 

homogenous cancer cell populations and those using MuTect tending to predict multiple 38 

populations of cancer cells. Subclonal reconstructions using multi-region sampling confirm that 39 

single-sample reconstructions systematically underestimate intra-tumoural heterogeneity, 40 

predicting on average fewer than half of the cancer cell populations identified by multi-region 41 

sequencing. Overall, these biases suggest caution in interpreting specific architectures and 42 

subclonal variants. 43 

  44 
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Introduction 45 

Understanding tumour heterogeneity and subclonal architecture is important for the elucidation 46 

of the mutational and evolutionary processes underlying tumorigenesis and treatment resistance1–47 
4. Many studies of tumour heterogeneity have focused on small patient cohorts with multi-region 48 

sequencing5–11. This study design allows the reconstruction of sample trees that illustrate the 49 

relationships between multiple primary and metastatic lesions using shared and private 50 

mutations6,11. Despite their small sample sizes, these studies have provided remarkable insight, 51 

demonstrating multiple subclones within a single tumour, clonal relationships between primary 52 

and metastatic tumours and evidence for multiple primary tumours within a single patient. Many 53 

studies have further delved into intra-tumoural heterogeneity and constructed clone trees that 54 

demonstrate the phylogenetic relationship between cancer cell populations that are shared or 55 

unique between lesions5,7,9,12. The latter analyses not only provide insight to the convergent and 56 

branching evolution of cancer, but also characterize cancer cell migration and highlight the 57 

subclonal complexity within individual lesions. 58 

Some studies have applied these techniques to large cohorts of single-region tumour whole 59 

genomes. For example, we reconstructed the subclonal architectures of 293 localized prostate 60 

cancers using whole-genome sequencing (WGS) of a single region of the index lesion13. The 61 

larger sample sizes of single-region studies allow the identification of mutational events that are 62 

biased to occur at specific times during tumour development. Single-region subclonal 63 

reconstruction studies have also suggested that patients with less subclonal diversity (e.g. with 64 

only a single detectable population of cancer cells; termed monoclonal) tend to have superior 65 

clinical outcomes compared to those with more subclonal diversity (e.g. those with highly 66 

polyclonal tumours)13. 67 

A variety of algorithms have been developed to reconstruct the subclonal architecture of cancers 68 

from single-region or multi-region bulk DNA sequencing data14–21. These algorithms broadly 69 

attempt to infer cancer cell populations based on cancer cell fractions (the fraction of cancer cells 70 

in which each variant is present) of somatic single nucleotide variants (SNVs) and/or somatic 71 

copy number aberrations (CNAs). Several employ Bayesian models to cluster mutations, and 72 

estimate the number and prevalence of cancer cell populations15–17,20,22. Some algorithms are 73 

further able to infer phylogenetic clone trees, thus resolving the evolutionary relationship 74 
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between mutation clusters15,21. However, there has not been a systematic comparison of the 75 

features and consistencies of their reconstructions on a large dataset. It is thus unclear to what 76 

extent these pipelines agree on large cohorts of real data, whether specific pipelines are biased 77 

towards certain types of reconstructions, and to what degree reconstruction results are influenced 78 

by the somatic mutation inputs. It is further unclear to what extent single-sample reconstructions 79 

differ from multi-region reconstructions, raising questions on the magnitude of underestimation 80 

present in large-cohort studies. 81 

To address these gaps in the field, we evaluated pipelines consisting of twenty-two different 82 

combinations of well-established and independent SNV detection tools, subclonal CNA 83 

detection tools and subclonal reconstruction algorithms. Sixteen pipelines were applied to a set 84 

of 293 high-depth tumour-normal pairs13,23 and eighteen were applied to 10 tumours with multi-85 

region sequencing8,24. Our analyses reveal consistent biases and extensive differences across 86 

subclonal reconstruction pipelines in the predictions of subclonal architecture, identification and 87 

timing of variants and influence on downstream analyses. We also quantify the extent that 88 

single-region reconstructions underestimate intra-tumour heterogeneity as compared to 89 

reconstructions based on multiple regions of the tumour. Together, these findings generate 90 

guidance for the community and provide a resource for improving existing methods and 91 

benchmarking new ones.  92 
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Results 93 

Overview and Summary of Pipeline Runs 94 

We reconstructed the subclonal architectures of 293 primary localized prostate tumours using 95 

sixteen pipelines (Figure 1, Supplementary Data 1-20). Each patient had WGS of a single 96 

region taken from the index lesion (Methods) that was macro-dissected to > 70% tumour 97 

cellularity (mean coverage ± standard deviation [SD]: 63.9 ± 16.7) and WGS of matched blood 98 

reference tissue (mean coverage ± SD: 41.2 ± 9.0), as reported previously13. To investigate the 99 

influence of variant detection on subclonal reconstruction, we detected CNAs using Battenberg 100 

and TITAN7,25 and SNVs using SomaticSniper and MuTect26,27. We then used the CNAs and 101 

SNVs detected by these tools in factorial combinations as inputs for four widely-used subclonal 102 

reconstruction algorithms: PhyloWGS15, DPClust16, PyClone17 and SciClone20. Each subclonal 103 

reconstruction pipeline was thus composed of three algorithms: a SNV detection tool, a 104 

subclonal CNA detection tool and a subclonal reconstruction algorithm. Thus “PhyloWGS-105 

comprising pipelines” refers to all pipelines that use PhyloWGS as the subclonal reconstruction 106 

algorithm, in combination with any SNV and CNA detection tool. All subclonal reconstruction 107 

solutions were subjected to the same post-processing heuristics to minimize bias (Methods). We 108 

further quantified the variability that arises in subclonal reconstruction from spatially sampling 109 

the same tumour, focusing on ten tumours with multi-region WGS (2-4 regions per tumour, total 110 

of 30 regions)8,24. Multi-region WGS samples were further assessed using FACETS28 for 111 

subclonal CNA detection, and subclonal reconstruction was performed both with all regions 112 

together and with each region individually using PhyloWGS, PyClone and SciClone. 113 

Across all samples and pipelines, we attempted to execute 5408 subclonal reconstructions. Of 114 

these, 4447 (82.2%) successfully completed their execution (Supplementary Table 1). Among 115 

pipelines for the single-region subclonal reconstruction of 293 tumours, those using DPClust 116 

achieved the lowest failure rates (mean ± SD: 1.4% ± 1.5%), followed by those using PhyloWGS 117 

(2.2% ± 1.3%), PyClone (16.3% ± 9.8%) and SciClone (41.2% ± 22.4%; Supplementary 118 

Figure 1A). The primary reasons of failure for pipelines using DPClust and PhyloWGS were 119 

excessive memory requirements (> 250 GB RAM) or run-time (> 3 months). Lack of input 120 

SNVs was the largest failure reason for pipelines using PyClone and SciClone, as PyClone 121 

exclusively leverage SNVs from clonal CNA regions and SciClone utilizes SNVs in copy 122 
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number neutral regions. Since we used CNA detection tools that identified subclonal variation, in 123 

some cases insufficient clonal CNA regions were available. Post-processing heuristics also 124 

contributed to reconstruction failures across pipelines (Methods). 125 

Multi-region reconstructions with pipelines using PhyloWGS had the lowest failure rates on the 126 

10 tumours evaluated (mean failure rate ± SD: 5.0% ± 5.5%), followed by PyClone (45.0% ± 127 

26.6%) and SciClone (93.3% ± 10.7%; Supplementary Figure 1B). Reasons of failure for 128 

pipelines using PhyloWGS include lack of shared CNAs between samples from the same tumour 129 

and prediction of poly-tumour architectures (i.e., multiple independent primary tumours; 130 

Methods). PyClone leverages SNVs in clonal CNA regions that are shared between all samples 131 

from the same tumour for multi-region reconstructions and had higher failure rates. Due to 132 

similar requirements for SciClone that all SNVs be in copy number neutral regions and shared 133 

between all samples from the tumour, multi-region reconstructions using SciClone only 134 

succeeded in four cases overall and were excluded from further multi-region reconstruction 135 

analyses. 136 

Consistency of Subclonal Reconstruction from Single Samples 137 

To evaluate subclonal reconstruction solutions for 293 single-region tumours, we first compared 138 

tumour cellularity (sometimes called “tumour purity”) estimates across subclonal reconstruction 139 

pipelines. Cellularity estimates from CNA detection tools are inputs to PhyloWGS, PyClone and 140 

DPClust, and as expected predicted cellularity from pipelines using these algorithms correlated 141 

with those from the CNA detection tool used (TITAN: 0.212–0.623, Battenberg: 0.588–0.876, 142 

Spearman’s ρ; Figure 2A-B). By contrast, SciClone predicts sample cellularity using orthogonal 143 

evidence (VAF of SNVs in copy number neutral regions). SciClone-estimated cellularity in 144 

pipelines using SomaticSniper correlated better with estimates from CNA detection tools 145 

(SomaticSniper-TITAN-SciClone vs. TITAN: 0.363, SomaticSniper-Battenberg-SciClone vs. 146 

Battenberg: 0.670, Spearman’s ρ) than did pipelines using MuTect (MuTect-TITAN-SciClone 147 

vs. TITAN: 0.035, MuTect-Battenberg-SciClone vs. Battenberg: 0.348, Spearman’s ρ). This 148 

suggests that the VAFs of SNVs detected by MuTect have biased subclone cellular prevalence 149 

estimates. Pipeline-estimated cellularity by pipelines using PhyloWGS, PyClone and DPClust 150 

also dropped dramatically in correlation with CNA detection tool estimated cellularity once the 151 

latter reached 0.75 (TITAN: -0.478–(-)0.163, Battenberg: -0.396–(-)0.021, Spearman’s ρ). This 152 
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appears to lead to the anecdotal observation that high cellularity results from both Battenberg and 153 

TITAN could reflect unsuccessful CNA detection, and should be interpreted with caution and 154 

perhaps supported by orthogonal evidence. Finally, Battenberg- and TITAN-estimated 155 

cellularities showed poor correlation with each other (0.235, Spearman’s ρ). As a result, in 12/12 156 

pipelines using either PhyloWGS, PyClone or DPClust, changing the CNA detection tool 157 

influenced cellularity estimates more than changing the SNV detection tool. 158 

We next assessed if subclonal reconstruction pipelines differed in the number of subclones they 159 

predict. For each of the 293 tumours evaluated, up to 16 subclonal reconstruction pipelines were 160 

successfully executed, with a median of 14 successful executions (25th quantile [Q1]: 12, 75th 161 

quantile [Q3]: 16). Across samples, a median of 7/16 pipelines agreed on the number of 162 

subclones predicted (Q1: 6; Q3: 8). The median tumour was predicted to harbor one to three 163 

subclones across pipelines (lower range Q1: 1, Q3: 1; upper ranger Q1: 3, Q3: 5), and two 164 

randomly-selected successfully-executed pipelines would differ by 1.1 ± 1.3 (mean ± SD) in 165 

their predicted number of subclones across samples. These variabilities reflect substantial 166 

differences between subclonal reconstruction pipelines. Further, no pair of subclonal 167 

reconstruction algorithms consistently produced more similar results across mutation detection 168 

tool combinations. Pipelines using SomaticSniper for SNV detection achieved higher levels of 169 

agreement across subclonal reconstruction algorithms. All successfully-executed algorithms 170 

estimated the same number of subclones in 59.8% of samples in pipelines using SomaticSniper 171 

and Battenberg, and in 29.3% of samples in pipelines using SomaticSniper and TITAN, though 172 

the agreements were largely driven by concordant monoclonal reconstructions (Figure 3A-B). 173 

Pipelines using MuTect had much lower levels of agreement across subclonal reconstruction 174 

algorithms in pipelines using the same mutation detection tool combination (MuTect-Battenberg: 175 

21.5%, MuTect-TITAN: 12.4%; Figure 3C-D), although these results suggest pipelines using 176 

SomaticSniper may systematically underestimate subclonal complexity.  177 

To better understand the contribution of mutation detection tools to the discordance in predicted 178 

subclonal architectures across pipelines, we compared clonality solutions between pipelines 179 

using the same subclonal reconstruction algorithm across mutation detection tool combinations. 180 

There are strong interactions between mutation detection tools; for example, predictions by the 181 

SomaticSniper-Battenberg-PhyloWGS pipeline agreed poorly with predictions made by other 182 

pipelines using PhyloWGS (Supplementary Figure 2A). Agreement was highest between the 183 
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two pipelines using MuTect due to the high number of polyclonal solutions. This overall trend 184 

was replicated in pipelines using PyClone, where the SomaticSniper-Battenberg-PyClone 185 

pipeline had high agreement with the SomaticSniper-TITAN-PyClone pipeline but differed from 186 

pipelines using MuTect (Supplementary Figure 2B). DPClust-comprising pipelines using 187 

MuTect also predicted high numbers of polyclonal architectures and showed low agreements 188 

with other pipelines (Supplementary Figure 2C). Finally, results were similar for pipelines 189 

using SciClone, with pipelines using the same SNV detection tools achieving the highest 190 

agreement (Supplementary Figure 2D). 191 

As PhyloWGS is the only one of the four subclonal reconstruction algorithms evaluated that 192 

predicts the evolutionary relationship between subclones, we compared the phylogenetic clone 193 

trees for each sample as predicted by PhyloWGS-comprising pipelines (Supplementary Figure 194 

3A). The most frequently predicted polyclonal architecture was the bi-clonal tree, accounting for 195 

69.8 ± 25.4% (mean ± SD) of polyclonal solutions across pipelines. As multiple phylogenetic 196 

clone trees can be inferred from the same data2,29, we evaluated prediction stability across the 197 

2,500 Markov chain Monte Carlo (MCMC) iterations of PhyloWGS after burn-in 198 

(Supplementary Figure 3B-E). Most samples alternated between 1.9 ± 1.2 (mean ± SD) 199 

solutions. In 100% of the cases with an alternative phylogeny, the solution alternated at least 200 

once between phylogenetic clone trees with different numbers of subclones. Further, when 201 

PhyloWGS wavered between solutions that only differed in tree structures (not number of 202 

subclones), two alternatives dominated (2.1 ± 0.3, mean ± SD). These data suggest that the 203 

uncertainty in phylogenetic clone tree reconstruction comes from the combination of uncertainty 204 

from estimating subclone number and resolving their evolutionary relationships. 205 

Taking the consensus across mutation detection tools is a common approach for increasing 206 

confidence in mutation detection30. We evaluated how subclonal architectures predicted by 207 

PhyloWGS-comprising pipelines change when using the union and intersection of detected 208 

mutations (Methods). MuTect detected significantly more unique SNVs than SomaticSniper 209 

(medianUnique SNVs, MuTect = 5,330, medianUnique SNVs, SomaticSniper = 623, p < 2.2 x 10-16, Wilcoxon 210 

signed-rank test; Supplementary Figure 4A). CNAs detected by TITAN and Battenberg were 211 

also substantially imbalanced, with a median of 50.2% and 1.2% of the covered genome having 212 

uniquely detected CNAs across samples, respectively (p < 2.2 x 10-16, Wilcoxon signed-rank test; 213 

Supplementary Figure 4B). The pipeline using the union of SNVs and the intersect of CNAs 214 
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predicted clonality with similar skew to the pipeline using the union of both SNVs and CNAs, 215 

and the pipeline using the intersection of SNVs and union of CNAs predicted clonality with 216 

similar balance to the pipeline using the intersect of both SNVs and CNAs (Supplementary 217 

Figure 4C-F). This is consistent with our observation that pipeline predictions of complex 218 

polyclonal phylogenies using PhyloWGS are primarily driven by large numbers of SNVs 219 

detected by MuTect, and complexity in CNAs has a smaller influence on the delineation of 220 

cancer cell populations. 221 

Considering the strong influence of SNV detection tools on the number of subclones predicted, 222 

we investigated the VAFs and trinucleotide profiles of SNVs detected by MuTect and 223 

SomaticSniper. Across all 293 WGS tumour-normal pairs, MuTect-unique SNVs had 224 

significantly lower VAFs than those detected only by SomaticSniper or by both tools 225 

(medianVAF, MuTect-Unique = 9.8%, medianVAF, SomaticSniper-Unique = 24.0%, medianVAF, Intersect = 28.3%; 226 

both p < 2.2 x 10-16, Mann-Whitney U-test; Figure 4A). This supports the finding that the 227 

prediction of a higher number of cancer cell populations is associated with higher numbers of 228 

input SNVs with ranging VAFs15. SNVs detected by both tools exhibited a trinucleotide profile 229 

characterized by Np[C>T]G mutations, while a higher proportion of SomaticSniper-unique 230 

SNVs were T>C and MuTect-unique SNVs were characterized by a high proportion of C>A 231 

mutations, especially C[C>A]G and T[C>A]G (Figure 4B-D). This is suggestive of error 232 

profiles related to sequencing or alignment artefacts31. As all SNVs detected by SomaticSniper 233 

and MuTect were subjected to allow- and deny-list filtering13,23 prior to subclonal reconstruction 234 

(Methods), we also evaluated the effect of filtering on VAFs and trinucleotide profiles. In 235 

general, filtering removed low-VAF SNVs, but minimally influenced trinucleotide mutational 236 

profiles (Supplementary Figure 5A-E). 237 

Consistency of SNV Clonality 238 

One goal of subclonal reconstruction is to time when individual mutations occurred during 239 

tumour evolution. We therefore compared clonal and subclonal SNV identification for the same 240 

set of 293 WGS samples across sixteen pipelines for subclonal reconstruction. As expected from 241 

the different types of SNVs leveraged for subclonal reconstruction, algorithms were highly 242 

discordant in the numbers of SNVs identified as clonal or subclonal. In samples where the 243 

subclonal reconstruction algorithm was successfully executed across all four mutation detection 244 
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tool combinations, DPClust used and timed the most SNVs on average (2,941 ± 3,929, mean ± 245 

SD; Figure 5A), followed by PhyloWGS (2,473 ± 1,662, Figure 5B), PyClone (1,738 ± 1,580, 246 

Figure 5C) and SciClone (178 ± 480, Figure 5D). As expected from the influence of MuTect on 247 

the prediction of subclonal clusters, its use was associated with the identification of an order of 248 

magnitude more subclonal SNVs, but similar numbers of clonal SNVs as with use of 249 

SomaticSniper. 250 

To further evaluate how mutation detection tools affect the timing of SNVs, we calculated the 251 

Jaccard index of clonal SNVs identified between all pipeline pairs using the same subclonal 252 

reconstruction algorithm, and the same for subclonal SNVs (Figure 5E). In PhyloWGS-253 

comprising pipelines, clonal SNV identifications were in high agreement (mean Jaccard index ± 254 

SD: 44.6 ± 30.2%) but subclonal SNV identifications were significantly less so (10.0 ± 22.4%; p 255 

< 2.2 x 10-16, Wilcoxon signed-rank test), particularly between pipelines using different SNV 256 

detection tools. The results were similar for other algorithms: DPClust (clonal Jaccard index: 257 

46.3 ± 33.2%, mean ± SD; subclonal: 15.4 ± 27.5%), PyClone (clonal: 38.0 ± 32.2%; subclonal: 258 

9.6 ± 21.6%) and SciClone (clonal: 33.3 ± 31.5%; subclonal: 14.8 ± 29.3%). Overall, we observe 259 

diversity in SNV profiles and clonality predictions across pipelines, with extensive diversity in 260 

subclonal SNV profiles associated with mutation detection tools. 261 

To better understand how subclonal reconstruction algorithms differ in their prediction of SNV 262 

clonality, we next focused on SNVs identified as clonal across all pipelines using the same 263 

mutation detection tool combination. For each sample, we assessed the overlap in clonal SNVs 264 

identified by each pipeline and found only a small percentage of SNVs per sample that were 265 

unanimously identified as clonal: SomaticSniper-TITAN: 2.0 ± 5.8%, SomaticSniper-266 

Battenberg: 3.8 ± 8.0%, MuTect-TITAN: 0.5 ± 2.0%, MuTect-Battenberg: 1.0 ± 3.1% (mean ± 267 

SD; Supplementary Figure 6A-D). Nevertheless, most SNVs were identified as clonal by more 268 

than one algorithm (SomaticSniper-TITAN: 77.4 ± 25.2%, SomaticSniper-Battenberg: 91.9 ± 269 

17.8%, MuTect-TITAN: 48.3 ± 30.9%, MuTect-Battenberg: 71.9 ± 28.5%). Pipelines using 270 

Battenberg were characterized by large overlaps in clonal SNV identifications between 271 

PhyloWGS, DPClust and PyClone (SomaticSniper-Battenberg: 63.2 ± 34.3%, MuTect-272 

Battenberg: 46.2 ± 33.5%). Pipelines using TITAN were characterized by modest overlaps 273 

between these three, but stronger overlap between PhyloWGS and DPClust (SomaticSniper-274 

TITAN: 42.9 ± 35.4%, MuTect-TITAN: 27.1 ± 26.1%). Given the lack of correlation between 275 
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subclonal reconstruction algorithms in estimating the number of subclones present in a sample, 276 

this could suggest that disagreements between subclonal reconstruction algorithms mostly fall in 277 

defining the subclonal populations. 278 

Consistency of CNA Clonality 279 

We also evaluated the influence of mutation detection tools on clonal and subclonal CNA 280 

identification. We focused on PhyloWGS, as it was the only algorithm considered here that co-281 

clusters SNVs and CNAs. Previous work on this cohort using the SomaticSniper-TITAN-282 

PhyloWGS pipeline identified four clonal CNA subtypes and three subclonal CNA subtypes13, 283 

so we first evaluated their robustness across pipelines. In general, clonal subtypes were more 284 

robust to pipeline changes, while subclonal subtypes were less so (Supplementary Figure 7A-285 

B, Supplementary Data 21-32). Pipelines employing the same CNA detection tool also had 286 

more similar profiles then those using different ones. 287 

We next assessed the agreement of these pipelines in their identification of clonal and subclonal 288 

CNAs. We calculated the Jaccard index of the identification of 1.0 Mbp genomic bins with 289 

CNAs between pipeline pairs, where the direction of aberration (i.e., gain vs. loss) must match to 290 

be considered as an agreement. We found significantly greater agreement for clonal CNAs 291 

compared to subclonal CNAs across all pipeline pairs (mean clonal Jaccard index ± SD: 50.5 ± 292 

21.1%, subclonal Jaccard: 15.6 ± 21.8%; all p < 2.2 x 10-16, Wilcoxon signed-rank test; 293 

Supplementary Figure 7C). Pipelines using the same CNA detection tool tended to agree, 294 

although divergence was expected because the reconstructed clonality of CNA segments can be 295 

influenced by the VAFs of SNVs in the segment. By contrast, pipelines with different CNA 296 

detection tools had less clonal and little subclonal agreement. Thus, for both SNVs and CNAs, 297 

clonal mutational landscapes were relatively invariant to pipeline but subclonal ones were not. 298 

Impact of Reconstruction Variability on Downstream Analyses 299 

Given these differences in SNV and CNA clonality prediction across pipelines, we sought to 300 

understand how they might influence the timing of mutations in cancer driver genes. These genes 301 

are of particular relevance as they can be actionable as predictive or prognostic biomarkers. We 302 

examined the clonality of mutations in five genes driven by recurrent somatic SNVs (ATM, 303 

FOXA1, MED12, SPOP and TP53) and eight driven by recurrent somatic CNAs (CDH1, 304 

CDKN1B, CHD1, MYC, NKX3-1, PTEN, RB1 and TP53) in localized prostate cancer13,23. 305 
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Focusing on PhyloWGS-comprising pipelines, these driver events were overwhelmingly 306 

predicted to occur early (i.e. clonally) during tumour evolution, with 87.2 ± 16.8% (mean ± SD) 307 

of SNV and 91.5 ± 6.4% of CNA driver mutations identified as clonal across pipelines 308 

(Supplementary Figure 8A-B). There was also broad consensus in these predictions: when a 309 

clonal SNV was identified in a specific driver gene and sample by any single pipeline, all four 310 

pipelines identified a clonal SNV in that driver gene in the same sample in 39.5 ± 22.5% of cases 311 

(mean ± SD). CNAs showed even higher consensus (50.4 ± 14.8%; Supplementary Figure 8C). 312 

One outlier was MED12, where there was disagreement across pipelines with the same SNV 313 

detection tools: since MED12 is located on the X chromosome and Battenberg does not generate 314 

copy number status for regions of uncertainty and the sex chromosomes, its mutations were 315 

disregarded during subclonal reconstruction because PhyloWGS only considers SNVs with 316 

overlapping copy number status. 317 

We then evaluated how CNA clonality predictions would affect the identification of genes as 318 

significantly differentially mutated clonally vs. subclonally. Within each pipeline we determined 319 

whether each 1.0 Mbp genomic bin had different proportions of gains and losses clonally and 320 

subclonally (FDR < 0.05, Pearson’s χ2 Test, clonal: loss, neutral, gain vs. subclonal: loss, neutral, 321 

gain; Methods). The number of genes in regions with CNAs occurring statistically more 322 

frequently early or late differed dramatically across PhyloWGS-comprising pipelines (MuTect-323 

TITAN: 5,344; SomaticSniper-TITAN: 5,198; MuTect-Battenberg: 1,498; SomaticSniper-324 

Battenberg: 339). A consensus set of 339 genes showed a bias in timing in all pipelines as 325 

preferentially mutated clonally (Supplementary Figure 9A, Supplementary Data 33-36). 326 

These genes were enriched for TP53-based regulation of death receptors, TRAIL signaling and 327 

natural killer cell mediated cytotoxicity (FDR < 0.05; Supplementary Figure 9B). 328 

To evaluate whether pipeline differences could influence the accuracy of biomarkers, we focused 329 

on biochemical relapse after definitive local therapy. Previous work has identified clonality to be 330 

prognostic in this setting, both independently and when combined with an established multi-331 

modal (CNA, SNV, SV and methylation) gene-specific biomarker13,23. Discretization by 332 

clonality (monoclonal vs. polyclonal) only stratified patients by outcome in the SomaticSniper-333 

TITAN-PhyloWGS pipeline (p = 0.004, log-rank test; Supplementary Figure 10A), but not any 334 

other (all p > 0.05, log-rank test; Supplementary Figure 10B-P). The unified biomarker 335 

integrating clonality and a multi-modal biomarker achieved prognostic value in more pipelines (p 336 
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< 0.05 in 14/16 models, log-rank test; Supplementary Figure 11A-P), with concordant trends 337 

across all pipelines. Thus, the prognostic effect size of clonality in prostate cancer is smaller than 338 

the technological effect size in this cohort, with a clinical signal smaller than technical variance. 339 

As a result, the translational potential of clonality in localized prostate cancer is improved when 340 

it is integrated with complementary gene-specific biomarker information. 341 

Comparing Reconstructions using Single and Multiple Regions 342 

Our analyses of a large cohort of single-sample reconstructions highlight large inter-pipeline 343 

differences in the determination of subclonal architecture and prediction of mutation clonality. 344 

To better relate these results to the ground-truth, we focused on a set of ten localized prostate 345 

cancers where samples from multiple regions of the tumour were available (30 genomes in total, 346 

ranging from 2-4 per patient). These data allowed us to directly compare single-region to multi-347 

region reconstructions using PhyloWGS and PyClone, providing an estimate of the extent to 348 

which the former underestimates true clonal complexity. 349 

We first quantified the differences in the number of subclones predicted from single-region and 350 

multi-region reconstructions of the ten tumours (Supplementary Data 37-48). Multi-region 351 

reconstructions predicted more subclones than single-region reconstructions in pipelines using 352 

PhyloWGS: 4.6 ± 2.4 (mean ± SD) subclones were predicted with multi-region reconstructions 353 

while 2.0 ± 0.9 subclones were predicted with single-region reconstructions (Figure 6A). This 354 

difference was not seen in pipelines using PyClone (multi-region reconstructions: 2.2 ± 1.7, 355 

single-region reconstructions: 2.3 ± 2.0), likely due to the constraint that only mutations present 356 

in all samples are used for multi-region reconstruction (Figure 6B). These data suggest that the 357 

typical single-sample reconstruction identifies fewer than half of the subclones present in the 358 

tumour, and this could very well be a lower-bound estimate because of the limited sequencing 359 

depth and spatial sampling of this cohort. On the other hand, multi-sample reconstructions also 360 

predicted significantly more subclones within the index lesion sample compared to single-sample 361 

reconstruction of the index lesion alone in pipelines using PhyloWGS (mean number of 362 

subclones in index lesion from multi-region reconstruction ± SD: 2.6 ± 1.5, from single-region 363 

reconstruction: 1.9 ± 0.9; p = 2.4 x 10-4, Wilcoxon signed-rank test; Supplementary Figure 364 

12A), but not those using PyClone (multi-region reconstruction mean ± SD: 2.2 ± 1.7, single-365 

region reconstruction: 2.5 ± 2.5; p ≈ 1, Wilcoxon signed-rank test; Supplementary Figure 12B). 366 
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Together this suggests that single-region reconstructions are limited by spatial sampling from 367 

fully resolving the intra-tumoural heterogeneity of both the overall tumour and the sampled 368 

region, for example due to cases where subclones appear with the same CCF and are thus 369 

indistinguishable from single-region reconstructions alone32. 370 

We next sought to determine the extent of variability in SNV clonality predictions between 371 

single-region and multi-region reconstructions. We identified SNVs that were predicted be the 372 

same clonality (clonal or subclonal) in both single- and multi-region reconstructions (‘Match in 373 

Multi and Single’). For SNVs with mismatched clonality, we further categorized them as clonal 374 

in multi-region reconstruction and subclonal in single-region reconstruction (‘Clonal in Multi-375 

region’) or vice versa (‘Subclonal in Multi-Region’), or SNVs that were uniquely considered in 376 

single-region reconstructions (‘Unique in Single-region’) or multi-region reconstructions 377 

(‘Unique in Multi-region’). The last category of SNVs is unique to PhyloWGS as it is able to 378 

consider SNVs unique to individual samples for multi-region analysis. SNV clonality predictions 379 

matched less than half the time for pipelines using PhyloWGS (32.2 ± 24.5%, mean ± SD; 380 

Figure 7A). Pipelines using PyClone achieved modestly higher clonality agreement, perhaps due 381 

to the smaller number of subclones predicted in multi-region reconstructions and the lack of 382 

multi-region unique SNVs (38.6 ± 25.4%; Figure 7B). Mismatched SNVs tended to be clonal in 383 

single-region reconstructions and subclonal in multi-region reconstructions, as expected. 384 

Consistent with simulations33 and previous observations, multi-region reconstructions are able to 385 

better define subclonal populations of cells by identifying and disambiguating those missed or 386 

merged by single-region sampling. 387 

We also examined the agreement between single-region and multi-region reconstruction CNA 388 

clonality predictions in pipelines using PhyloWGS (Supplementary Figure 13). Agreements 389 

were similarly variable, with less than half of CNAs matching in clonality between the single- 390 

and multi-region reconstructions and extensive variance across samples and pipelines (35.2 ± 391 

31.5%, mean ± SD). As with SNVs, mismatches mostly involved clonal CNAs in single-region 392 

reconstructions that were identified as subclonal in multi-region reconstructions. 393 

To better understand this sampling bias, we analyzed how well the clonal population of the index 394 

lesion from single-region reconstruction represents the clonal population of the entire tumour. In 395 

PhyloWGS-comprising pipelines, multi-region reconstruction often showed that SNVs identified 396 
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as clonal in the index lesion were actually subclonal (Supplementary Figure 14A). 397 

Nevertheless, the majority of single-region clonal SNVs were truly clonal in multi-region 398 

reconstruction (66.6 ± 29.8%, mean ± SD). As before, pipelines using PyClone showed much 399 

higher agreement (91.4 ± 23.3%), likely because of the large number of excluded SNVs 400 

(Supplementary Figure 14B). A similar analysis of subclonal SNVs showed that, as expected, 401 

only a small proportion of subclonal SNVs defined by single-region reconstructions of the index 402 

lesion was clonal in multi-region reconstructions in pipelines using PhyloWGS and MuTect 403 

(12.2 ± 17.5%, mean ± SD). In contrast, multi-region reconstruction pipelines using PhyloWGS 404 

and SomaticSniper predicted many subclonal SNVs from single-region reconstructions as clonal 405 

(55.2 ± 40.3%). This highlights a potential limitation of multi-region subclonal reconstruction 406 

algorithms with a need for shared SNVs or CNAs. 407 

Discussion 408 

It is difficult to benchmark the accuracy of subclonal reconstruction methodologies since a 409 

robust gold-standard experimental dataset does not yet exist. Simulation frameworks are of great 410 

value, but might not fully recapitulate the error-profiles and signal-biases of real data34. To 411 

evaluate the technological variability in estimating aspects of subclonal architecture, we 412 

evaluated 293 tumours using sixteen pipelines. These data provide an experimental lower-bound 413 

on the algorithmic variability of tumour subclonal reconstruction in a large high-depth whole-414 

genome sequencing cohort, at least for a single cancer type and stage. We complement these data 415 

by assessing eighteen subclonal reconstruction pipelines across a set of 10 multi-region tumours 416 

to estimate the degree to which single-sample reconstructions underestimate clonal complexity 417 

the full tumour. 418 

Subclonal reconstruction algorithms differ substantially in their prediction of subclonal 419 

architecture across all mutation detection tool combinations, with no pair of algorithms 420 

consistently achieving similar results in cellularity estimates, prediction of subclone number and 421 

assignment of mutation clonality. While the subclonal CNA detection tool used mostly 422 

influenced cellularity estimates but no other aspects of subclonal architecture, large differences 423 

were driven by changing the SNV detection approach. Differences between SNV detection tools 424 

led to major divergences in subclonal reconstruction: pipelines using MuTect found extensive 425 

subclonal diversity, at least partly due to the greater number of low VAF mutations detected. 426 
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SNV detection benchmarking efforts31 could aid in the further characterization of the error 427 

profiles of SNV detection tools and optimize parameter tuning to improve subclonal 428 

reconstruction. Future studies might benefit from merging multiple subclonal reconstruction 429 

pipelines, for example to provide a potential envelope of upper and lower bounds on different 430 

features of the reconstruction. 431 

The potential translational and clinical impact of these technical variabilities is considerable. For 432 

example, technological differences between analysis pipelines were larger than the effect size of 433 

the association between evolutionary complexity and patient survival. This suggests that 434 

estimates of technical variability should be provided for analyses dependent on subclonal 435 

architecture, such as in studies mapping evolutionary and migration trajectories between primary 436 

and metastatic tumours. Studies identifying clonal and especially subclonal driver mutations 437 

should be interpreted with such variability estimates as reference since subclonal mutational 438 

landscapes were found to be especially vulnerable to pipelines changes when clonal ones were 439 

less so. Articulating how these algorithmic differences relate to the clinical effect-size will 440 

greatly improve interpretability of these types of data. 441 

Future studies also need to carefully consider the failure-rates of different reconstruction 442 

algorithms, as algorithms leveraging clonal or neutral copy number regions might not be suitable 443 

for tumour types characterized by large numbers of CNAs and might call for specific CNA 444 

detection strategies. Computational failures are problematic for clinical applications and, in 445 

combination with the substantive computational requirements that scale with the number of 446 

mutations, could be problematic for cancer types characterized by a high mutational burden. 447 

Our evaluation of subclonal reconstruction using data from spatially distinct regions of tumours 448 

found that reconstructions relying on a single sample systematically underestimated the number 449 

of subclones in a tumour. Input constraints and non-exhaustive sequencing depth and spatial 450 

sampling in multi-region reconstructions also suggest that the current level of underestimation is 451 

only the lower-bound. This is in line with previous work in kidney cancer6,11. These data also 452 

agree with previous work showing the distinct mutational profiles of prostate cancer samples 453 

from spatially distinct regions of the same tumour8 and reinforces the hypothesis that sufficient 454 

sampling will uncover multiple subclones in nearly all cancers. It also suggests that strategies for 455 
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robust multi-region-aware subclonal mutation detection would be a significant benefit to 456 

subclonal reconstruction analyses. 457 

Larger datasets are necessary to better evaluate the performance of subclonal reconstruction 458 

methodologies. While simulated data is valuable34, single-cell sequencing datasets will likely 459 

significantly improve the evaluation of ground truth for subclonal reconstruction algorithms in 460 

patient samples. In the meantime, this work involving a large clinical cohort will aid in refining 461 

subclonal reconstruction methods and provide guidance for evaluating the subclonal architecture 462 

of cancer samples. 463 

  464 
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Methods 465 

Patient Cohort 466 

We aggregated a retrospective cohort of localized prostate tumours with patient consent and 467 

Research Ethics Board approval from published datasets, with whole-genome sequencing of 468 

tumour samples and matched blood-based normal samples13,23,24,35–38. The cohort includes 293 469 

patients with tumour samples from the index lesion and 10 patients with multiple samples from 470 

intraductal carcinoma and juxtaposed adjacent invasive carcinoma. For patients receiving 471 

radiotherapy, the index tumour was identified on transrectal ultrasound and sampled by needle 472 

biopsies (TRUS-Bx) and was deemed the largest focus of disease that was confirmed 473 

pathologically. A fresh-frozen needle core ultrasound-guided biopsy to this index lesion was 474 

obtained for macro-dissection. For patients receiving surgery, the index tumour was identified 475 

macroscopically by a GU expert pathologist at the point of surgery and later sampled and 476 

biobanked. A fresh-frozen tissue specimen from the index lesion was then obtained from macro-477 

dissection. Details of the patient cohort have been described previously13,24. 478 

We focused on patients with clinical intermediate-risk disease as defined by NCCN, with 479 

intermediate-risk factors (T2b or T2c disease, ISUP Grade Group 2 or 3 or pre-treatment prostate 480 

specific antigen (PSA) serum levels between 10-20 ng/mL). All patients received either precision 481 

image-guided radiotherapy or radical prostatectomy with no randomization or classification and 482 

were hormone-naive at time of therapy. Four patients in the multi-region sequencing cohort 483 

carried germline BRCA2 mutations and had formalin-fixed paraffin-embedded tissues instead of 484 

fresh-frozen (CPCG9001, CPCG9002, CPCG9003, CPCG9005). Sample regions suitable for 485 

macro-dissection (tumour cellularity > 70%) were marked by genitourinary pathologists and 486 

manually macro-dissected, followed by DNA extraction and sequencing. 487 

Whole genome sequencing data analysis 488 

Protocols for whole-genome sequencing data generation and processing have been previously 489 

described13,23,24. Briefly, raw sequencing reads from the tumour and normal samples were 490 

aligned against human reference genome build hg19 using bwa-aln (v0.5.7)39. Lane-level BAMs 491 

from the same library were merged and duplicates were marked using picard (v1.92). Local 492 

realignment and base quality recalibration were performed together for tumour/normal pairs 493 

using GATK (v.2.4.9)40. Tumour and normal sample-level BAMs were extracted separately, had 494 
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headers corrected with SAMtools (v0.1.9)41 and were indexed with picard (v1.107). ContEst 495 

(v1.0.24530)42 was used to estimate lane-level and sample-level sample mix-up and lane-level 496 

cross-individual contamination on all sequences, with no significant contaminated detected. 497 

Tumour Somatic Mutation Assessment 498 

We detected subclonal copy number aberrations from whole-genome sequencing data using 499 

Battenberg (v2.2.6)7, TITAN (v1.11.0)25 and FACETS (v0.5.14)28. First, Battenberg (v2.2.6) was 500 

installed with underlying ASCAT (v2.5)43 using the installation and running wrapper 501 

cgpBattenberg (v3.1.0). Required reference files were downloaded as instructed in 502 

https://github.com/Wedge-Oxford/battenberg and further required data files were generated as 503 

instructed in https://github.com/cancerit/cgpBattenberg. An ignore file was created for the 504 

genome assembly hg19 to exclude all chromosomes not in 1-22. Battenberg (v2.2.6) was run 505 

with -gender of XY for male patients and -t of 14 to run using 14 threads, and otherwise default 506 

parameters. The resulting primary solution was subjected to manual refitting in situations 507 

meeting the following criteria: 1) the solution involved a high copy number segment with high 508 

BAF and low logR, indicating an unrecognized homozygous loss event, 2) nearly all copy 509 

number aberrations were subclonal, 3) there were unreasonably high copy numbers up to 510 

infinity. Refitting was performed until the concerns for refitting were resolved or for three 511 

attempts after which the original solution was accepted. The CNAs obtained from the primary 512 

solution, along with tumour cellularity and ploidy were used for further analysis. We have 513 

described subclonal copy number analysis using TITAN (v1.11.0) previously in detail13. Briefly, 514 

TITAN (v1.11.0) was run through the Kronos (v1.12.0)44 pipeline for whole-genome sequence 515 

preprocessing and subclonal copy number assessment. GC and mappability files for bias 516 

correction were prepared using HMMcopy (v0.1.1) and bowtie (v2.2.6)45 on the hg19 reference 517 

genome. Heterogeneous positions in the sequence data were identified by MutationSeq (v4.3.7)46 518 

using known dbSNP sites from GATK (v2.4.9). For each whole-genome sequence, TITAN 519 

(v1.11.0) made predictions of the existence of one to five subclones based on the given input 520 

numClusters and the solution with the lowest S_Dbw validity index25 was used to obtain the 521 

cellularity, ploidy and subclonal CNAs for downstream analysis. Finally, to prepare inputs for 522 

subclonal copy number assessment by FACETS (v0.5.14), the accompanying snp-pileup 523 

(v434b5ce) algorithm was installed with underlying htslib (v1.9)41. A SNP location VCF file was 524 

downloaded as instructed for hg19 with SNP version b151 and human genome build version 525 
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GrCh37p13 from 526 

ftp://ftp.ncbi.nlm.nih.gov/snp/organisms/human_9606_b151_GRCh37p13/VCF/00-527 

common_all.vcf.gz, and snp-pileup (v434b5ce) was run using developer recommended 528 

parameters (-g -q15 -Q20 -P100 -r25,0). All FACETS (v0.5.14) runs used the seed 1234 and 529 

default parameters for all steps, except for procSample where the developer recommended 530 

parameter cval = 150 was used. 531 

We used MuTect (v1.1.4)27 and SomaticSniper (v1.0.2)26 for the detection of somatic single 532 

nucleotide variants from whole-genome sequencing data. MuTect was run to obtain candidate 533 

SNVs with dbSNP13847, COSMIC (v66)48 and default parameters except the -tumor_lod option 534 

(tumor limit of detection). The -tumor_lod option was set to 10 to increase the stringency of 535 

detection. Outputs that contained REJECT were filtered out and the remaining SNVs were used 536 

for downstream analysis. Details for SomaticSniper (v1.0.2) variant detection have been 537 

described previously23. In short, SomaticSniper (v1.0.2) was used to identify candidate SNVs 538 

with default parameters except the -q option (mapping quality threshold), which was set to 1 as 539 

per developer recommendation. Candidate SNVs were filtered through standard and LOH 540 

filtering using a pileup indel file generated on the sequence data using SAMtools (v0.1.9)41, 541 

bam-readcount filtering and false positive filtering. Only high confidence somatic SNVs 542 

obtained from the high confidence filter using default parameters were used for further analysis, 543 

as per developer recommendations. We further performed annotation and filtering on all SNVs, 544 

with full details given previously13. In brief, SNVs obtained by MuTect (v1.1.4) and 545 

SomaticSniper (v1.0.2) were annotated with associated genes and functions by ANNOVAR 546 

(v2015-06-17)49 using RefGene, subjected to deny-list filtering to remove known germline 547 

contaminants and sequencing artifacts and allow-list filtering through COSMIC (v70)48. This 548 

was done before downstream subclonal reconstruction. SNVs were further subjected to filtering 549 

to remove SNVs not at callable bases (where callable bases are those with ≥ 17x coverage for the 550 

tumour and ≥ 10x coverage for the normal). 551 

Subclonal Reconstruction Pipeline Construction 552 

We define a subclonal reconstruction pipeline as comprised of a SNV detection tool, a CNA 553 

detection tool and a subclonal reconstruction algorithm. A pipeline is said to be using or 554 
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comprising of a tool and/or an algorithm when the tool/algorithm is incorporated as one step of 555 

the pipeline. 556 

For single-region reconstruction, the SNV detection tools SomaticSniper (v1.0.2) and MuTect 557 

(v1.1.4), the CNA detection tools Battenberg (v2.2.6) and TITAN (v1.11.0), and the subclonal 558 

reconstruction algorithms PhyloWGS (v3b75ba9), PyClone (v0.13.0), DPClust (v2.2.5) and 559 

SciClone (v1.0.7) were combined in factorial combinations to construct 16 pipelines. Subclonal 560 

reconstruction was run on the cohort of 293 tumours with index lesion sequencing for single-561 

region subclonal reconstruction. 562 

For multi-region reconstruction, the SNV detection tools SomaticSniper (v1.0.2) and MuTect 563 

(v1.1.4), the CNA detection tools Battenberg (v2.2.6), TITAN (v1.11.0) and FACETS (v0.5.14), 564 

and the subclonal reconstruction algorithms PhyloWGS (v3b75ba9), PyClone (v0.13.0) and 565 

SciClone (v1.0.7) were combined in factorial combinations to construct 18 pipelines. For the 10 566 

tumours with multi-region sequencing, each individual sequencing sample (total 30, 2-4 samples 567 

per tumour) was first subjected to single-region subclonal reconstruction using the 18 pipelines, 568 

followed by multi-region subclonal reconstruction using the 18 pipelines where all regions of a 569 

tumour were provided as input. 570 

Subclonal Reconstruction of Tumours using PhyloWGS 571 

We used the cnv-int branch of PhyloWGS (https://github.com/morrislab/phylowgs/tree/cnvint, 572 

commit: 3b75ba9c40cfb27ef38013b08f9e089fa4efa0c0)15 for the reconstruction of tumour 573 

phylogenies, as described previously13. Briefly, subclonal CNA segments and cellularity inputs 574 

were parsed using the provided parse_cnvs.py script (the parse_cnvs.py was custom augmented 575 

to process inputs from FACETS [v0.5.14]) and filtered to remove any segments shorter than 10 576 

kbp. The create_phylowgs_inputs.py script was used to generate PhyloWGS (v3b75ba9) inputs 577 

for each sample. All default parameters were used, including limiting the number of SNVs 578 

considered to 5,000 for the interest of runtime, to launch reconstructions using evolve.py. Multi-579 

region subclonal reconstruction was performed by providing all regions belonging to the same 580 

tumour as input for the reconstruction and the procedure was otherwise identical to the single-581 

region reconstructions. 582 

The best phylogenetic clone tree for each run and the CNAs and SNVs associated with each 583 

subclone in that structure were determined by parsing the output JSON files for the tree with the 584 
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largest log likelihood value. In addition to the best tree structure, the output JSON file was also 585 

parsed for all predicted tree structures as ordered by log likelihood values to assess the change in 586 

predictions across the 2,500 Markov chain Monte Carlo iterations. Only samples with a total of 587 

2,500 complete MCMC iterations were considered, and samples with poly-tumour or overly 588 

complex intermediate clone tree structures that were never the final solution for any sample were 589 

excluded. 590 

Subclonal Reconstruction of Tumours using PyClone 591 

We used PyClone (v0.13.0)17 for single- and multi-region mutation clustering. A mutation input 592 

file was created for each sample by obtaining the tumour reference and variant read counts for 593 

each SNV from input VCFs and annotating them with the clonal major and minor copy numbers 594 

for the position from CNA inputs. Since PyClone (v0.13.0) leverages SNVs in clonal CNA 595 

regions, all SNVs in subclonal CNA regions were not considered. SNVs in regions without copy 596 

number information were also discarded, and the normal copy number was set to 2 for autosomes 597 

and 1 for chromosomes X and Y. The mutation input file, along with tumour cellularity as 598 

predicted by the subclonal CNA detection tool were used as inputs for the run_analysis_pipeline 599 

to launch PyClone (v0.13.0)17, using 12345 as the seed for all runs. Notably, since PyClone 600 

(v0.13.0) was originally developed for deep sequencing (>100x) data, the developer 601 

recommended setting the “density” parameter to “pyclone_binomial” to account for 602 

characteristics whole-genome sequencing data. The number of Markov chain Monte Carlo 603 

iterations were also set to 100,000, with 1,000 burn-ins. Otherwise default parameters were used. 604 

PyClone (v0.13.0) outputted ‘cellular prevalence’ as defined by the authors as ‘the proportion of 605 

tumor cells harboring a mutation’ fits the definition of cancer cell fraction for this study, and 606 

cellular prevalence as defined in this study was calculated by multiplying the outputted ‘cellular 607 

prevalence’ with purity estimates from the respective CNA detection tool. Multi-region 608 

reconstructions using PyClone (v0.13.0) were launched by including all mutation input files and 609 

tumour cellularities prepared for single-region reconstructions as outlined above for all samples 610 

of a tumour as input to run_analysis_pipeline. Cellular prevalence as defined in this study was 611 

similarly obtained from ‘cellular prevalence’ as outputted by PyClone (v0.13.0) by individually 612 

adjusting for the tumour contents for each sample of the tumour. 613 
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Subclonal Reconstruction of Tumours using DPClust 614 

We used DPClust (v2.2.5)16 for single-region subclonal reconstruction. DPClust (v2.2.5) was run 615 

using the dpc.R pipeline available via the DPClust SMC-HET Docker 616 

(https://github.com/Wedge-Oxford/dpclust_smchet_docker, commit a1ef254), using also 617 

dpclust3p (v1.0.6). The pipeline was customized to process inputs from SomaticSniper (v.1.0.2) 618 

and TITAN (v1.11.0). The inputs for each tumour sample were the VCF file provided by the 619 

SNV detection tool, and subclonal copy number, cellularity, ploidy, and purity as predicted by 620 

the subclonal CNA detection tool, using 12345 as the seed and otherwise default parameters. The 621 

results in the subchallenge1C.txt output file were taken as the mutation clustering solution to 622 

obtain the number of subclones predicted by DPClust and their cellular prevalences (v2.2.5)16. 623 

Results in the subchallenge2A.txt output file were taken to define the mutation composition of 624 

each cluster. 625 

Subclonal Reconstruction of Tumours using SciClone 626 

We used SciClone (v1.0.7)20 for single- and multi-region subclonal reconstruction. Input VCFs 627 

were used to calculate variant allele frequencies (in percentage) and CNA inputs were used to 628 

determine regions with loss of heterozygosity. Only SNVs in clonally copy number neutral 629 

(major = 1, minor = 1) regions with no subclonal CNAs were considered by SciClone (v1.0.7) 630 

and all samples were run using default parameters. Multi-region reconstructions using SciClone 631 

(v1.0.7) were run by including inputs for all samples of a tumour. Mutation clusters defined by 632 

SciClone (v1.0.7) were characterized using variant allele frequencies, and their VAFs were 633 

multiplied by a factor of 2 to convert to cellular prevalence as defined in this study. 634 

Post Processing of Subclonal Reconstruction Solutions  635 

Since subclones in PhyloWGS (v3b75ba9) trees are numbered based on cellular prevalence 636 

instead of evolutionary relationship, trees were transformed to consistent representations to allow 637 

comparison across cohorts following two rules: 1) trees are left-heavy, 2) all nodes at a particular 638 

tree depth must have numbers greater than that of nodes at lower tree depths, with the root node 639 

(normal cell population) starting at 0. Further, pruning of nodes was performed following the 640 

heuristic that each node must have at least 5 SNVs or 5 CNAs and a minimum cellular 641 

prevalence of 10%, creating a subclonal diversity lower bound for each tumour13. A node was 642 

pruned and merged with its sibling if their cellular prevalence difference was ≤ 2% and if both 643 
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were driven purely by SNVs (had ≤ 5 CNAs). A node was merged with its parent node if their 644 

cellular prevalence difference was ≤ 2%. When PhyloWGS (v3b75ba9) produced a poly-tumour 645 

solution for the best consensus tree, the algorithm was re-run up to 12 times with different 646 

random number generator seeds after which the final poly-tumour solution was accepted and 647 

considered to be a reconstruction failure. The seeds were applied in the following order: 12345, 648 

123456, 1234567, 12345678, 123456789, 246810, 493620, 987240, 1974480, 3948960, 7897920 649 

and 15795840. In the event PhyloWGS (v3b75ba9) failed to produce a solution due to 650 

reconstruction failures or excessive runtime (> 3 months), the sample was excluded from 651 

analysis for that pipeline. 652 

PyClone (v0.13.0), DPClust (v2.2.5) and SciClone (v1.0.7) identified subclonal populations were 653 

pruned using similar heuristic as that for PhyloWGS (v3b75ba9). Specifically, for each tumour 654 

sample, a mutation cluster was pruned if it had fewer than five supporting SNVs or a cellular 655 

prevalence below 10% if it is the clonal cluster or below 2% if it is a subclonal cluster. If there 656 

were less than 5 total mutations (SNVs) assigned to clusters in a sample, or if all clusters had 657 

cellular prevalence of below 10%, a failed reconstruction was designated to the sample. 658 

Otherwise pruned clusters were merged with their nearest neighbor in cellular prevalence, and 659 

the weighted mean of cellular prevalence was assigned to the merged node. Moreover, two 660 

clusters were merged if they differed in cellular prevalence by ≤ 2%. Finally, mutation clusters 661 

were ordered by decreasing cellular prevalence and renumbered accordingly, and the cluster with 662 

the highest cellular prevalence was treated as the clonal cluster and its cellular prevalence taken 663 

as the cellularity estimated by the pipeline. This was a conservative approach as the detection of 664 

multiple primary tumours is challenging from single-sample subclonal reconstruction13. 665 

Union and Intersection of Mutation Detection Tools 666 

We obtained the union and intersection of raw SNVs by SomaticSniper (v1.0.2) and MuTect 667 

(v1.1.4) for each tumour sample using vcf-isec of vcftools (v0.1.15). The union and intersection 668 

sets of SNVs were then annotated and filtered with the same method as described above before 669 

being used in subsequent analysis13. For the comparison of characteristics between SNVs 670 

detected by MuTect (v1.1.4) and SomaticSniper (v1.0.2), all SNVs detected by each tool across 671 

all 293 index lesion samples were pooled to assess their VAFs and trinucleotide contexts. SNVs 672 

were grouped as intersect if detected by both tools, or as MuTect-unique or SomaticSniper-673 
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unique, both pre- and post-filtering. The effect of filtering was assessed by comparing SNVs 674 

retained after filtering (‘SomaticSniper’ and ‘MuTect’) with those removed by it (‘Removed 675 

SomaticSniper’ and ‘Removed MuTect’). Trinucleotide context profiles for each group of SNVs 676 

were normalized by the expected number of each trinucleotide across the hg19 genome. 677 

We determined the union and intersection of CNAs detected by TITAN (v1.11.0) and Battenberg 678 

(v2.2.6), first parsed using parse_cnvs.py script of PhyloWGS (v3b75ba9) for consistent 679 

formatting, on a per base-pair basis. The intersection of CNAs, based on genomic coordinates 680 

and major and minor copy number, was determined using the GenomicRanges (v1.28.6)50 681 

package in R (v3.2.5). Regions with disagreeing copy number were identified using bedtools 682 

(v2.27.1)51 and bedr (v1.0.6)52. A region is defined to have a tool-unique CNA if one tool 683 

detected a copy number aberration for the region while the other identified it as copy number 684 

neutral (major and minor copy number of 1, both clonally and subclonally). Regions were both 685 

algorithms detected different copy number aberrations were classified as disagreements. The 686 

union set of CNAs thus contained the intersection of CNAs and CNAs unique to either tool, and 687 

regions of disagreement were excluded as there was no natural way to resolve discrepancies. In 688 

contrast to TITAN, when a region is determined to have a subclonal aberration, Battenberg 689 

(v2.2.6) produces two entries, a clonal and subclonal copy number for each genomic region. 690 

These regions were labelled Battenberg-unique for its clear delineation of subclonal CNAs. 691 

However, the TITAN (v.1.11.0) copy number aberration result for the region (if any) is used in 692 

the union of CNAs to avoid conflicting CNAs in the same region, as one cannot combine clonal 693 

Battenberg (v2.2.6) results with TITAN (v1.11.0) aberrations. The union and intersection set of 694 

CNAs were further filtered to remove any segments under 10 Kbp. 695 

Four pipeline combinations using PhyloWGS (v3b75ba9) and the intersection and union of 696 

SNVs and CNAs were executed on 293 single-region samples. The script 697 

create_phylowgs_inputs.py was used to combine intersect and union of SNVs and CNAs as 698 

inputs for PhyloWGS (v3b75ba9), where no cellularity estimate was provided as there was no 699 

obvious way to derive that for the intersect and union of CNAs. The pipelines were run with 700 

otherwise identical procedure as single-region reconstructions with PhyloWGS (v3b75ba9). 701 
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Clonality Classification 702 

We classified the phylogenetic clone trees outputted by PhyloWGS (v3b75ba9) and mutation 703 

clustering results outputted by PyClone (v0.13.0), DPClust (v2.2.5) and SciClone (v1.0.7) as 704 

monoclonal or polyclonal based on the number of subclones they predicted. Solutions where 705 

only one subclone was predicted were termed monoclonal. In monoclonal reconstructions, the 706 

only subclone detected is then termed the clonal node. Solutions where more than one subclone 707 

was predicted were termed polyclonal. In polyclonal reconstructions, the subclone with the 708 

highest cellular prevalence was deemed clonal, and the rest of the subclones were subclonal. In 709 

situations where PhyloWGS (v3b75ba9) outputted phylogenies showing a normal root node with 710 

more than one direct child, the clone tree was termed poly-tumour, suggestive of multiple 711 

independent primary tumours. These were excluded from downstream analysis because the 712 

reconstruction of these phylogenies, especially from single sequencing samples, is challenging13. 713 

CNA and SNV mutations were classified as clonal or subclonal based on their node assignment 714 

in the best PhyloWGS (v3b75ba9) consensus clone tree and PyClone (v0.13.0), DPClust (v2.2.5) 715 

and SciClone (v1.0.7) mutation clusters. The mutations that define the clonal node were 716 

classified as clonal mutations, while all others were classified as subclonal mutations. The cancer 717 

cell fraction (CCF) of mutations was calculated by dividing the cellular prevalence of the node 718 

that the mutation belonged to by the predicted cellularity of the tumour sample. 719 

Analysis of Single Nucleotide Variants 720 

We compared the four pipelines using each subclonal reconstruction algorithm for their inference 721 

of clonal and subclonal SNVs. In each pairwise comparison, for each sample we noted the clonal 722 

SNV set identified by each algorithm and calculated the Jaccard index between the two sets. The 723 

analysis was performed separately for clonal and subclonal SNVs. 724 

Analysis of Copy Number Aberrations 725 

We further filtered the CNAs identified by PhyloWGS using OncoScan data for samples with the 726 

data available, removing the identified CNAs that did not overlap any OncoScan CNAs13. For 727 

samples without OncoScan data, CNAs outputted by PhyloWGS (v3b75ba9) were filtered to 728 

retain only those across genomic locations with recurrence of CNAs in OncoScan-filtered 729 

samples, with 10 being the established empirical recurrence threshold13. Bins of 1.0 Mbp were 730 

created across the genome to characterize the copy number profiles for each sample and were 731 
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assigned the copy number of overlapping genomic segments, either neutral or mutated. Regions 732 

not considered by PhyloWGS (v3b75ba9) due to lack of information were assumed to have the 733 

normal copy number of two. Profiles were created separately for clonal and subclonal CNAs. We 734 

further used previously identified clonal and subclonal subtypes to cluster samples13. Samples 735 

that were assigned a subclonal subtype in the SomaticSniper-TITAN pipeline13 but had no 736 

subclonal populations detected in another pipeline were excluded from subclonal subtype 737 

analysis for that pipeline. Samples that had no subclonal populations detected in the 738 

SomaticSniper-TITAN pipeline and were therefore never assigned to a subclonal subtype were 739 

not considered in any subclonal subtype analysis. For each pipeline, we used the copy number 740 

profiles of all samples with available data to generate average subtype-specific clonal and 741 

subclonal CNA profiles of localized prostate cancer, with standard deviation. 742 

We compared the CNA profiles identified by the four PhyloWGS-comprising pipelines by 743 

assessing the difference in clonal and subclonal CNAs between pipeline pairs. For each sample, a 744 

clonal CNA set was generated from pipeline results, where the direction of the CNA is taken into 745 

account. For example, if a sample was identified with a clonal gain in genomic bin 1 and a clonal 746 

loss in genomic bin 2, it would have the clonal CNA set +1, -2. The Jaccard index of clonal and 747 

subclonal CNA sets for each sample were calculated between all pipeline pairs.  748 

We identified CNAs that were differentially altered clonally and subclonally. Using 1.0 Mbp 749 

bins across the genome, we aggregated the number of samples with and without a CNA 750 

overlapping each 1.0 Mbp stretch, with gains and losses considered separately. Clonal and 751 

subclonal CNAs were annotated separately, and only samples with polyclonal phylogenies were 752 

considered, since they have both clonal and subclonal components. Pearson’s χ2 test was used 753 

with multiple testing correction (FDR ≤ 0.05) to define the bins that were significantly enriched 754 

for clonal or subclonal CNAs that were gain or loss. CNAs in these bins were thus considered 755 

significantly differentially altered, with a predisposition to occur clonally or subclonally as a gain 756 

or a loss. Genes affected by differentially altered CNAs were annotated using RefSeq, and the 757 

lists of genes considered to have CNA biases by the four pipelines were compared for overlap. 758 

We performed pathway enrichment analysis on the genes that were identified by all four 759 

PhyloWGS-comprising pipelines as affected by CNAs biased clonally or subclonally. Using all 760 

default parameters of gprofiler2 (v0.1.9) in R (v3.5.3)53, statistically significant pathways from 761 
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Gene Ontology (Biological Process, Molecular Function and Cellular Component), KEGG and 762 

Reactome were computed, with no electronic GO annotations. We discarded pathways that 763 

involved > 350 or < 5 genes. Cytoscape (v3.4.0) was used to visualize significant pathways54. 764 

Since all genes identified as significantly differentially altered were biased to be altered clonally, 765 

we defined these pathways as differentially altered clonally. 766 

Driver Mutation Analysis 767 

We gathered a list of known prostate cancer driver genes based on previous large sequencing 768 

studies13,23. The known CNA-affected driver genes considered were MYC, TP53, NKX3-1, RB1, 769 

CDKN1B, CHD1, PTEN and CDH1. The known SNV-affected driver genes considered were 770 

ATM, MED12, FOXA1, SPOP and TP53. PhyloWGS-comprising pipelines identified CNAs 771 

overlapping CNA-affected driver genes and SNVs that occurred in SNV-affected driver genes. 772 

These were defined to be driver CNAs and driver SNVs, respectively. A sample was considered 773 

to have a consensus driver mutation, CNA or SNV, if the mutation was identified with the same 774 

clonality by all four PhyloWGS-comprising pipelines. 775 

Driver SNVs and CNAs of each sample were categorized by the number of PhyloWGS-776 

comprising pipelines they were identified in. Since four PhyloWGS-comprising pipelines were 777 

used, in each sample driver SNVs and CNAs could be identified in all four pipelines, three 778 

pipelines, two pipelines or one pipeline. Proportions of each category were calculated by 779 

dividing the number of samples in that category by the sum of samples assigned to all categories 780 

for the driver SNV or CNA. The analysis was done separately for clonal and subclonal 781 

mutations, such that the category of the driver SNVs or CNAs in a sample was defined by the 782 

most frequent identification of the clonality. For example, if a driver SNV in a sample was 783 

identified as clonal by two pipelines, subclonal by one pipeline and wildtype by the last pipeline, 784 

it would be counted in both category two for the clonal analysis and in category one for the 785 

subclonal analysis. 786 

Biomarker Survival Analysis 787 

We assessed the utility of clonality (monoclonal vs. polyclonal) as a biomarker in all sixteen 788 

pipelines used for single region subclonal reconstruction of 293 samples. Tumours were grouped 789 

by clonality and the two groups were compared using a log-rank test for differences in outcome. 790 

Tumours were also grouped by integrating the previously defined multi-modal biomarker23 791 
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(groups patients into low risk and high-risk) and clonality, creating unified groups (unified-low: 792 

monoclonal low-risk, unified-intermediate: monoclonal high-risk or polyclonal low-risk, unified-793 

high: polyclonal high-risk)13 that were compared using a log-rank test. Primary outcome as time 794 

to biochemical recurrence (BCR) was described in detail previously13. In brief, BCR was defined 795 

as PSA rise of ≥ 2.0 ng/mL above the nadir for radiotherapy patients and two-consecutive post-796 

surgery PSA measurements > 0.2 ng/mL (backdated to the date of first increase in PSA) for 797 

surgery patients. If a surgery patient had a post-operative PSA ≥ 0.2 ng/mL this was considered 798 

primary treatment failure. After salvage radiation therapy, if PSA continued to rise, BCR was 799 

backdated to the first PSA measurement > 0.2 ng/mL, but if not then then this was not 800 

considered a BCR. Salvage therapy (hormone therapy or chemotherapy) was considered a BCR. 801 

Comparing Reconstruction using Single and Multiple Regions 802 

For each of the 10 tumours with multi-region sequencing, we compared the subclonal 803 

reconstruction solutions from each single region with the solutions obtained from subclonal 804 

reconstruction using all tumour regions. In addition to number of subclones predicted, we 805 

compared SNV and CNA clonality predictions between single- and multi-region reconstructions. 806 

For all SNVs that were identified in a single-region or its corresponding multi-region 807 

reconstruction, we calculated the proportion of SNVs in each of the following categories: 808 

1. Multi- and single-region match: same SNV clonality in single- and multi-region. 809 
2. Clonal in multi-region: SNV identified in both single- and multi-region 810 
reconstructions, but SNV is clonal in multi-region and subclonal in single-region. 811 
3. Subclonal in multi-region: SNV identified in both single- and multi-region 812 
reconstructions, but SNV is subclonal in multi-region and clonal in single-region. 813 
4. Unique in single-region: SNV only present in single-region reconstruction. 814 
5. Unique in multi-region: SNV only present in multi-region reconstruction. 815 

Similarly, all CNAs that were identified in a single-region reconstruction or its matching multi-816 

region reconstruction were assigned to categories defined in a similar fashion. Additional 817 

separation was added for CNAs to distinguish between clonal and subclonal predictions. 818 

Data Visualization and Reporting 819 

Data was visualized using the R statistical environment (v3.2.5 or v3.5.3), and performed using 820 

the lattice (v0.20-34), latticeExtra (v0.6-28), VennDiagram (v1.6.21)55 and BPG (v5.3.4)56 821 

packages. All boxplots show the median (center line), upper and lower quartiles (box limits), and 822 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 16, 2020. ; https://doi.org/10.1101/418780doi: bioRxiv preprint 

https://doi.org/10.1101/418780
http://creativecommons.org/licenses/by-nc/4.0/


Liu et al. 

 - Page 30 of 42 - 

whiskers extend to the minimum and maximum values within 1.5 times the interquartile range 823 

(Tukey boxplots). Figures were compiled in Inkscape (v0.91). Standard deviation of the sample 824 

mean was reported for point estimates. All statistical tests were two-sided. 825 

List of abbreviations 826 

CCF - Cancer Cell Fraction 827 
CNAs - Copy Number Aberrations 828 
II - Intersect of SNVs and Intersect of CNAs 829 
IU - Intersect of SNVs and Union of CNAs 830 
MB - MuTect-Battenberg 831 
MCMC - Markov chain Monte Carlo 832 
MF - MuTect-FACETS 833 
MT - MuTect-TITAN 834 
SB - SomaticSniper-Battenberg 835 
SD - standard deviation 836 
SF - SomaticSniper-FACETS 837 
SNVs - Single Nucleotide Variants 838 
ST - SomaticSniper-TITAN 839 
UI - Union of SNVs and Intersect of CNAs 840 
UU - Union of SNVs and Union of CNAs 841 
VAF - Variant Allele Frequency 842 
WGS -Whole-genome Sequencing 843 
  844 
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Data Availability 845 

Published data analyzed in this study, publicly available with appropriate Data Access 846 
Compliance Office authorization, include: 847 

WGS Data – Baca et al., 2013: dbGaP, phs000447.v1.p1 848 
[https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000447.v1.p1]35 849 

WGS Data – Berger et al., 2011: dbGaP, phs000330.v1.p1 850 
[https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000330.v1.p1]36 851 

WGS Data – CPC-GENE Espiritu et al., 2018: EGA, EGAD00001001094 852 
[https://www.ebi.ac.uk/ega/datasets/EGAD00001001094]13 853 

WGS Data – CPC-GENE Fraser et al., 2017: EGA, EGAD00001001094 854 
[https://www.ebi.ac.uk/ega/datasets/EGAD00001001094]23 855 

WGS Data – CPC-GENE Taylor et al., 2017: EGA, EGAD00001002739 856 
[https://www.ebi.ac.uk/ega/datasets/EGAD00001002739]24 857 

WGS Data – The Cancer Genome Atlas Research Network, 2015: 858 
https://portal.gdc.cancer.gov/projects/TCGA-PRAD37 859 

WGS Data – Weischenfeldt et al., 2013: EGA, EGAS00001000400 860 
[https://www.ebi.ac.uk/ega/studies/EGAS00001000400]38 861 

Data supporting the conclusions of this article is included within it and its additional files, and at: 862 
ICGC Data Portal under the project PRAD-CA [https://dcc.icgc.org/projects/PRAD-CA]. 863 

Source Data for Figures 4 is provided at: ICGC Data Portal under the project PRAD-CA 864 
[https://dcc.icgc.org/projects/PRAD-CA]. Data is available with appropriate ICGC Data Access 865 
Compliance Office approval. 866 

Source data for Supplementary Figure 1 is provided in Supplementary Information. 867 

Source data for Figures 2, 3, 6 and Supplementary Figures 2, 3A, 4C-F, 7, 8B, 9, 10, 11, 12, 13 868 
are provided in Supplementary Data. 869 

Source data for Figures 5, 7 and Supplementary Figures 3B-E, 4A-B, 5, 6, 8AC, 14 are provided 870 
in Source Data. 871 

Code Availability 872 

No custom algorithms or software were developed or utilized in this study. Custom data analysis 873 

& data visualization code is available upon request. 874 

  875 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 16, 2020. ; https://doi.org/10.1101/418780doi: bioRxiv preprint 

https://doi.org/10.1101/418780
http://creativecommons.org/licenses/by-nc/4.0/


Liu et al. 

 - Page 32 of 42 - 

References 876 

1. Abbosh, C. et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. 877 

Nature 545, 446–451 (2017). 878 

2. Jamal-Hanjani, M. et al. Tracking the Evolution of Non–Small-Cell Lung Cancer. N. 879 

Engl. J. Med. 376, 2109–2121 (2017). 880 

3. Turajlic, S. et al. Tracking Cancer Evolution Reveals Constrained Routes to Metastases: 881 

TRACERx Renal. Cell 173, 581-594.e12 (2018). 882 

4. Turajlic, S. et al. Deterministic Evolutionary Trajectories Influence Primary Tumor 883 

Growth: TRACERx Renal. Cell 173, 595-610.e11 (2018). 884 

5. Gundem, G. et al. The evolutionary history of lethal metastatic prostate cancer. Nature 885 

520, 353–357 (2015). 886 

6. Gerlinger, M. et al. Intratumor Heterogeneity and Branched Evolution Revealed by 887 

Multiregion Sequencing. N. Engl. J. Med. 366, 883–892 (2012). 888 

7. Nik-Zainal, S. et al. The life history of 21 breast cancers. Cell 149, 994–1007 (2012). 889 

8. Boutros, P. C. et al. Spatial genomic heterogeneity within localized, multifocal prostate 890 

cancer. Nat. Genet. 47, 736–745 (2015). 891 

9. Cooper, C. S. et al. Analysis of the genetic phylogeny of multifocal prostate cancer 892 

identifies multiple independent clonal expansions in neoplastic and morphologically 893 

normal prostate tissue. Nat. Genet. 47, 367–372 (2015). 894 

10. Mitchell, T. J. et al. Timing the Landmark Events in the Evolution of Clear Cell Renal 895 

Cell Cancer: TRACERx Renal. Cell 173, 611-623.e17 (2018). 896 

11. Gerlinger, M. et al. Genomic architecture and evolution of clear cell renal cell carcinomas 897 

defined by multiregion sequencing. Nat. Genet. 46, 225–233 (2014). 898 

12. Alves, J. M., Prieto, T. & Posada, D. Multiregional Tumor Trees Are Not Phylogenies. 899 

Trends in Cancer 3, 546–550 (2017). 900 

13. Espiritu, S. M. G. et al. The Evolutionary Landscape of Localized Prostate Cancers Drives 901 

Clinical Aggression. Cell 173, 1003-1013.e15 (2018). 902 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 16, 2020. ; https://doi.org/10.1101/418780doi: bioRxiv preprint 

https://doi.org/10.1101/418780
http://creativecommons.org/licenses/by-nc/4.0/


Liu et al. 

 - Page 33 of 42 - 

14. Jiao, W., Vembu, S., Deshwar, A. G., Stein, L. & Morris, Q. Inferring clonal evolution of 903 

tumors from single nucleotide somatic mutations. BMC Bioinformatics 15, 35 (2014). 904 

15. Deshwar, A. G. et al. PhyloWGS: Reconstructing subclonal composition and evolution 905 

from whole-genome sequencing of tumors. Genome Biol. 16, 35 (2015). 906 

16. Bolli, N. et al. Heterogeneity of genomic evolution and mutational profiles in multiple 907 

myeloma. Nat. Commun. 5, (2014). 908 

17. Roth, A. et al. PyClone: Statistical inference of clonal population structure in cancer. Nat. 909 

Methods 11, 396–398 (2014). 910 

18. Zare, H. et al. Inferring Clonal Composition from Multiple Sections of a Breast Cancer. 911 

PLoS Comput. Biol. 10, e1003703 (2014). 912 

19. Oesper, L., Mahmoody, A. & Raphael, B. J. THetA: Inferring intra-tumor heterogeneity 913 

from high-throughput DNA sequencing data. Genome Biol. 14, R80 (2013). 914 

20. Miller, C. A. et al. SciClone: Inferring Clonal Architecture and Tracking the Spatial and 915 

Temporal Patterns of Tumor Evolution. PLoS Comput. Biol. 10, 1003665 (2014). 916 

21. Jiang, Y., Qiu, Y., Minn, A. J. & Zhang, N. R. Assessing intratumor heterogeneity and 917 

tracking longitudinal and spatial clonal evolutionary history by next-generation 918 

sequencing. Proc. Natl. Acad. Sci. 113, E5528–E5537 (2016). 919 

22. Dentro, S. C. et al. Portraits of genetic intra-tumour heterogeneity and subclonal selection 920 

across cancer types. bioRxiv 312041 (2018) doi:10.1101/312041. 921 

23. Fraser, M. et al. Genomic hallmarks of localized, non-indolent prostate cancer. Nature 922 

541, 359–364 (2017). 923 

24. Taylor, R. A. et al. Germline BRCA2 mutations drive prostate cancers with distinct 924 

evolutionary trajectories. Nat. Commun. 8, 13671 (2017). 925 

25. Ha, G. et al. TITAN: Inference of copy number architectures in clonal cell populations 926 

from tumor whole-genome sequence data. Genome Res. 24, 1881–1893 (2014). 927 

26. Larson, D. E. et al. Somaticsniper: Identification of somatic point mutations in whole 928 

genome sequencing data. Bioinformatics 28, 311–317 (2012). 929 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 16, 2020. ; https://doi.org/10.1101/418780doi: bioRxiv preprint 

https://doi.org/10.1101/418780
http://creativecommons.org/licenses/by-nc/4.0/


Liu et al. 

 - Page 34 of 42 - 

27. Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and 930 

heterogeneous cancer samples. Nat. Biotechnol. 31, 213–219 (2013). 931 

28. Shen, R. & Seshan, V. E. FACETS: allele-specific copy number and clonal heterogeneity 932 

analysis tool for high-throughput DNA sequencing. Nucleic Acids Res. 44, e131–e131 933 

(2016). 934 

29. Qi, Y., Pradhan, D. & El-Kebir, M. Implications of non-uniqueness in phylogenetic 935 

deconvolution of bulk DNA samples of tumors. Algorithms Mol. Biol. 14, 19 (2019). 936 

30. Gerstung, M. et al. The evolutionary history of 2,658 cancers. Nature 578, 122–128 937 

(2020). 938 

31. Ewing, A. D. et al. Combining tumor genome simulation with crowdsourcing to 939 

benchmark somatic single-nucleotide-variant detection. Nat. Methods 12, 623–630 (2015). 940 

32. Dentro, S. C., Wedge, D. C. & Van Loo, P. Principles of Reconstructing the Subclonal 941 

Architecture of Cancers. Cold Spring Harb. Perspect. Med. 7, a026625 (2017). 942 

33. Sun, R. et al. Between-region genetic divergence reflects the mode and tempo of tumor 943 

evolution. Nat. Genet. 49, 1015–1024 (2017). 944 

34. Salcedo, A. et al. A community effort to create standards for evaluating tumor subclonal 945 

reconstruction. Nat. Biotechnol. 38, 97–107 (2020). 946 

35. Baca, S. C. et al. Punctuated evolution of prostate cancer genomes. Cell 153, 666–677 947 

(2013). 948 

36. Berger, M. F. et al. The genomic complexity of primary human prostate cancer. Nature 949 

470, 214–220 (2011). 950 

37. The Cancer Genome Atlas Research Network. The Molecular Taxonomy of Primary 951 

Prostate Cancer. Cell 163, 1011–1025 (2015). 952 

38. Weischenfeldt, J. et al. Integrative Genomic Analyses Reveal an Androgen-Driven 953 

Somatic Alteration Landscape in Early-Onset Prostate Cancer. Cancer Cell 23, 159–170 954 

(2013). 955 

39. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler 956 

transform. Bioinformatics 25, 1754–1760 (2009). 957 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 16, 2020. ; https://doi.org/10.1101/418780doi: bioRxiv preprint 

https://doi.org/10.1101/418780
http://creativecommons.org/licenses/by-nc/4.0/


Liu et al. 

 - Page 35 of 42 - 

40. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing 958 

next-generation DNA sequencing data. Genome Res. 20, 1297–303 (2010). 959 

41. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 960 

2078–2079 (2009). 961 

42. Cibulskis, K. et al. ContEst: Estimating cross-contamination of human samples in next-962 

generation sequencing data. Bioinformatics 27, 2601–2602 (2011). 963 

43. Van Loo, P. et al. Allele-specific copy number analysis of tumors. Proc. Natl. Acad. Sci. 964 

107, 16910–16915 (2010). 965 

44. Jafar Taghiyar, M. et al. Kronos: A workflow assembler for genome analytics and 966 

informatics. Gigascience 6, 1–10 (2017). 967 

45. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient 968 

alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009). 969 

46. Ding, J. et al. Feature-based classifiers for somatic mutation detection in tumour-normal 970 

paired sequencing data. Bioinformatics 28, 167–175 (2012). 971 

47. Sherry, S. T. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29, 308–972 

311 (2001). 973 

48. Forbes, S. A. et al. COSMIC: Exploring the world’s knowledge of somatic mutations in 974 

human cancer. Nucleic Acids Res. 43, D805–D811 (2015). 975 

49. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: Functional annotation of genetic 976 

variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164–e164 (2010). 977 

50. Lawrence, M. et al. Software for Computing and Annotating Genomic Ranges. PLoS 978 

Comput. Biol. 9, e1003118 (2013). 979 

51. Quinlan, A. R. & Hall, I. M. BEDTools: A flexible suite of utilities for comparing 980 

genomic features. Bioinformatics 26, 841–842 (2010). 981 

52. Haider, S. et al. A bedr way of genomic interval processing. Source Code Biol. Med. 11, 982 

14 (2016). 983 

53. Reimand, J., Kull, M., Peterson, H., Hansen, J. & Vilo, J. G:Profiler-a web-based toolset 984 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 16, 2020. ; https://doi.org/10.1101/418780doi: bioRxiv preprint 

https://doi.org/10.1101/418780
http://creativecommons.org/licenses/by-nc/4.0/


Liu et al. 

 - Page 36 of 42 - 

for functional profiling of gene lists from large-scale experiments. Nucleic Acids Res. 35, 985 

W193-200 (2007). 986 

54. Shannon, P. et al. Cytoscape: A software Environment for integrated models of 987 

biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003). 988 

55. Chen, H. & Boutros, P. C. VennDiagram: A package for the generation of highly-989 

customizable Venn and Euler diagrams in R. BMC Bioinformatics 12, 35 (2011). 990 

56. P’ng, C. et al. BPG: Seamless, automated and interactive visualization of scientific data. 991 

BMC Bioinformatics 20, 42 (2019). 992 

 993 

  994 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 16, 2020. ; https://doi.org/10.1101/418780doi: bioRxiv preprint 

https://doi.org/10.1101/418780
http://creativecommons.org/licenses/by-nc/4.0/


Liu et al. 

 - Page 37 of 42 - 

 995 

 996 

 997 

Acknowledgements 998 

The authors thank Dr. Reimand (University of Toronto) for technical support. We also thank all 999 
members of the Boutros and Kislinger labs for helpful suggestions and technical support. 1000 

This work was supported by Prostate Cancer Canada and is proudly funded by the Movember 1001 
Foundation - Grant #RS2014-01 to PCB. PCB was supported by a Terry Fox Research Institute 1002 
and CIHR New Investigator Awards. This work was supported by NSERC Discovery Grants to 1003 
QDM and PCB. This research is funded by the Canadian Cancer Society (grant #705649) and a 1004 
Project Grant from CIHR. This work was funded by the Government of Canada through Genome 1005 
Canada (OGI-125). VB, LYL and AS were supported by Fellowships from the Canadian 1006 
Institutes of Health Research. The results described here are in part based upon data generated by 1007 
the TCGA Research Network: http://cancergenome.nih.gov/. This work was supported by the 1008 
NIH/NCI under awards P30CA016042, 1U01CA214194-01, 1U24CA248265-01 and 1009 
1R01CA244729-01. 1010 

Author Contributions 1011 

Initiated the Project: VB, LYL, QDM, PCB 1012 
Data Analyses: LYL, VB, SMGE 1013 
Data Visualization: LYL, VB, AS 1014 
Supervised Research: QDM, TK, PCB 1015 
Wrote the First Draft of the Manuscript: VB, LYL, PCB 1016 
Approved the Manuscript: All Authors 1017 

Competing Interests 1018 

All authors declare that they have no conflicts of interest. 1019 

Ethics Compliance 1020 

All tumour samples in this study were obtained with patient informed consent, with approvals by 1021 
the University Health Network Institutional Research Ethics Board, the Centre Hospitalier 1022 
Universitaire de Québec Institutional Research Ethics Board and the University of California Los 1023 
Angeles Institutional Research Ethics Board, and following ICGC guidelines. 1024 

 1025 

 1026 

 1027 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 16, 2020. ; https://doi.org/10.1101/418780doi: bioRxiv preprint 

https://doi.org/10.1101/418780
http://creativecommons.org/licenses/by-nc/4.0/


Liu et al. 

 - Page 38 of 42 - 

 1028 
 1029 
 1030 
 1031 
 1032 

 1033 

 1034 

  1035 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 16, 2020. ; https://doi.org/10.1101/418780doi: bioRxiv preprint 

https://doi.org/10.1101/418780
http://creativecommons.org/licenses/by-nc/4.0/


Liu et al. 

 - Page 39 of 42 - 

Figure Legends 1036 

Figure 1 – Reconstruction Workflow and Experimental Design 1037 

Raw sequencing data from the tumour and normal samples were aligned against the hg19 build 1038 

of the human genome using bwa-aln and GATK. Somatic SNVs were detected using 1039 

SomaticSniper and MuTect and annotated for function. Somatic CNAs were detected using 1040 

TITAN, Battenberg and FACETS and filtered. All single-region tumour samples had their 1041 

subclonal architectures reconstructed using sixteen pipelines combining one of SomaticSniper 1042 

and MuTect, one of Battenberg and TITAN, and one of PyClone, PhyloWGS, DPClust and 1043 

SciClone. For tumours with samples from multiple regions, reconstructions of subclonal 1044 

architectures were performed by considering each individual region alone and by considering 1045 

samples from all regions together using eighteen pipelines. SNV, single nucleotide variant; 1046 

CNA, copy number aberration; WGS, whole-genome sequencing. 1047 

Figure 2 – Cellularity Estimates 1048 

Cellularity of samples as estimated by the CNA detection tool and by subclonal reconstruction 1049 

pipelines using the CNA detection tool a TITAN and b Battenberg. Each dot represents the 1050 

estimate for a sample and colors delineate subclonal reconstruction algorithms. Mutation 1051 

detection tool combinations using Battenberg include SomaticSniper-Battenberg and MuTect-1052 

Battenberg, and mutation detection tool combinations using TITAN include SomaticSniper-1053 

TITAN and MuTect-TITAN. Samples are ordered by cellularity estimates by the CNA detection 1054 

tool. The horizontal line indicates CNA detection tool estimated cellularity 0.75. TITAN: n=293 1055 

biologically independent samples; SomaticSniper-TITAN-PhyloWGS: n=289; SomaticSniper-1056 

TITAN-PyClone: n=221; SomaticSniper-TITAN-DPClust: n=293; SomaticSniper-TITAN-1057 

SciClone: n=100; MuTect-TITAN-PhyloWGS: n=289; MuTect-TITAN-PyClone: n=221; 1058 

MuTect-TITAN-DPClust: n=283; MuTect-TITAN-SciClone: n=182. TITAN-estimated 1059 

cellularity > 0.75: n=73; SomaticSniper-TITAN-PhyloWGS: n=69; SomaticSniper-TITAN-1060 

PyClone: n=54; SomaticSniper-TITAN-DPClust: n=73; SomaticSniper-TITAN-SciClone: n=20; 1061 

MuTect-TITAN-PhyloWGS: n=72; MuTect-TITAN-PyClone: n=53; MuTect-TITAN-DPClust: 1062 

n=70; MuTect-TITAN-SciClone: n=50. Battenberg: n=293; SomaticSniper-Battenberg-1063 

PhyloWGS: n=287; SomaticSniper-Battenberg-PyClone: n=277; SomaticSniper-Battenberg-1064 

DPClust: n=291; SomaticSniper-Battenberg-SciClone: n=150; MuTect-Battenberg-PhyloWGS: 1065 
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n=281; MuTect-Battenberg-PyClone: n=262; MuTect-Battenberg-DPClust: n=288; MuTect-1066 

Battenberg-SciClone: n=257. Battenberg-estimated cellularity > 0.75: n=47; SomaticSniper-1067 

Battenberg-PhyloWGS: n=44; SomaticSniper-Battenberg-PyClone: n=38; SomaticSniper-1068 

Battenberg-DPClust: n=47; SomaticSniper-Battenberg-SciClone: n=18; MuTect-Battenberg-1069 

PhyloWGS: n=42; MuTect-Battenberg-PyClone: n=37; MuTect-Battenberg-DPClust: n=46; 1070 

MuTect-Battenberg-SciClone: n=40. 1071 

Figure 3 – Number of Subclones Detected 1072 

Each panel compares the number of subclones predicted for each sample by subclonal 1073 

reconstruction pipelines using the same mutation detection tool combinations a SomaticSniper-1074 

Battenberg, b SomaticSniper-TITAN, c MuTect-Battenberg and d MuTect-TITAN. Each marker 1075 

represents the prediction for a sample by a successful pipeline execution, and the color of the 1076 

marker represents the subclonal reconstruction algorithm used in the pipeline. In cases where 1077 

algorithms predicted the same number of subclones, the markers were randomly overlaid. 1078 

Background color indicates the number of unique subclone number predictions across algorithms 1079 

that successfully executed for that sample. SomaticSniper-Battenberg: n=291 biologically 1080 

independent samples; SomaticSniper-TITAN: n=293; MuTect-Battenberg: n=288; MuTect-1081 

TITAN: n=290. 1082 

Figure 4 – SomaticSniper and MuTect 1083 

a Density plots of variant allele frequencies for SNVs across all samples that were detected by 1084 

both SomaticSniper and MuTect (Intersect, short dash orange line), only detected by MuTect 1085 

(MuTect Unique, solid green line) and only detected by SomaticSniper (SomaticSniper Unique, 1086 

long dash purple line). VAF, variant allele frequency. b Trinucleotide profile of SNVs that were 1087 

detected by both SomaticSniper and MuTect, where the number of SNVs was normalized by the 1088 

expected number of each trinucleotide context across the hg19 genome. Trinucleotide profiles 1089 

for c SNVs only detected by SomaticSniper and d SNVs only detected by MuTect. Colors in the 1090 

covariate bar indicate the 5’, reference, alternative and 3’ nucleotides in each trinucleotide 1091 

context. Ref, reference nucleotide; Alt, alternative nucleotide of variant. Number of SNVs across 1092 

all samples in Intersect: n=453,855 independent observations; SomaticSniper Unique n=198,623; 1093 

MuTect Unique n=2,801,546. 1094 
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Figure 5 – Clonal and Subclonal SNVs 1095 

Total number of clonal and subclonal SNVs identified by pipelines using a DPClust, b 1096 

PhyloWGS, c PyClone and d SciClone. Each stacked bar represents one sample and samples are 1097 

ordered based on the total number of SNVs identified by the pipeline using SomaticSniper and 1098 

TITAN. Color of the stacked bar reflects the clonality of the SNVs it represents (clonal green, 1099 

subclonal blue). Only samples with successful executions across all four pipelines using the 1100 

subclonal reconstruction algorithm are presented. DPClust: n=281 biologically independent 1101 

samples; PhyloWGS n=274; PyClone n=200; SciClone n=86. e Jaccard index of pipeline-1102 

identified clonal and subclonal SNVs. Each marker (delineated by shape and color) represents a 1103 

pipeline pair that is compared, and the x- and y- axis show subclonal and clonal mean SNV 1104 

Jaccard indices across samples shared between the pipeline pair, respectively, with error bars 1105 

indicating one standard deviation. Dashed diagonal line represents the y = x line. ST, 1106 

SomaticSniper-TITAN; MT, MuTect-TITAN; SB, SomaticSniper-Battenberg; MB, MuTect-1107 

Battenberg. DPClust ST vs. SB: n=291 independent observations; DPClust ST vs. MT: n=283; 1108 

DPClust ST vs. MB: n=288; DPClust SB vs. MT: n=281; DPClust SB vs. MB: n=288; DPClust 1109 

MT vs. MB: n=281; PhyloWGS ST vs. SB: n=288; PhyloWGS ST vs. MT: n=290; PhyloWGS 1110 

ST vs. MB: n=283; PhyloWGS SB vs. MT: n=285; PhyloWGS SB vs. MB: n=281; PhyloWGS 1111 

MT vs. MB: n=283; PyClone ST vs. SB: n=216; PyClone ST vs. MT: n=209; PyClone ST vs. 1112 

MB: n=202; PyClone SB vs. MT: n=213; PyClone SB vs. MB: n=256; PyClone MT vs. MB: 1113 

n=212; SciClone ST vs. SB: n=88; SciClone ST vs. MT: n=96; SciClone ST vs. MB: n=92; 1114 

SciClone SB vs. MT: n=116; SciClone SB vs. MB: n=147; SciClone MT vs. MB: n=174. Source 1115 

data are provided as a Source Data file. 1116 

Figure 6 - Single- and Multi-Region Subclone Number Prediction 1117 

Number of subclones predicted for each tumour from multi-region reconstruction (brown 1118 

diamond) and reconstructions of each of the individual regions (circle), including the index 1119 

lesion (pink circle) by pipelines using a PhyloWGS and b PyClone. Missing values indicate a 1120 

failed reconstruction. Multi-region reconstruction SomaticSniper-TITAN-PhyloWGS: n=10 1121 

biologically independent samples; SomaticSniper-FACETS-PhyloWGS: n=8; SomaticSniper-1122 

Battenberg-PhyloWGS: n=9; MuTect-TITAN-PhyloWGS: n=10; MuTect-FACETS-PhyloWGS: 1123 

n=8; MuTect-Battenberg-PhyloWGS: n=10; SomaticSniper-TITAN-PyClone: n=1; 1124 

SomaticSniper-FACETS-PyClone: n=6; SomaticSniper-Battenberg-PyClone: n=5; MuTect-1125 
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TITAN-PyClone: n=5; MuTect-FACETS-PyClone: n=9; MuTect-Battenberg-PyClone: n=7. 1126 

Single-region reconstruction SomaticSniper-TITAN-PhyloWGS: n=30; SomaticSniper-1127 

FACETS-PhyloWGS: n=26; SomaticSniper-Battenberg-PhyloWGS: n=30; MuTect-TITAN-1128 

PhyloWGS: n=30; MuTect-FACETS-PhyloWGS: n=26; MuTect-Battenberg-PhyloWGS: n=28; 1129 

SomaticSniper-TITAN-PyClone: n=18; SomaticSniper-FACETS-PyClone: n=26; 1130 

SomaticSniper-Battenberg-PyClone: n=25; MuTect-TITAN-PyClone: n=25; MuTect-FACETS-1131 

PyClone: n=25; MuTect-Battenberg-PyClone: n=28. 1132 

Figure 7 - Single- and Multi-Region SNV Clonality Prediction 1133 

Comparison of the clonality of SNVs identified by single-region and multi-region 1134 

reconstructions by pipelines using a PhyloWGS and b PyClone. Each stacked bar represents a 1135 

single-region and covariate bar color indicates the identity of the sample. Missing bars indicated 1136 

failed reconstructions, either single- or multi-region. SNVs were grouped into five categories by 1137 

color of stacked bar plot: ‘Match in Multi and Single’ if the SNV was predicted to be the same 1138 

clonality in single- and multi-region reconstructions, ‘Clonal in Multi-region’ if the SNV was 1139 

clonal in multi-region reconstruction but subclonal in single-region reconstruction, and 1140 

‘Subclonal in Multi-region’ if vice versa. If a SNV was only analyzed in single-region 1141 

reconstruction, it was ‘Unique in Single-region’, while SNVs only analyzed in multi-region 1142 

reconstruction were ‘Unique in Multi-region’. SomaticSniper-TITAN-PhyloWGS: n=30 1143 

biologically independent samples; SomaticSniper-FACETS-PhyloWGS: n=24; SomaticSniper-1144 

Battenberg-PhyloWGS: n=28; MuTect-TITAN-PhyloWGS: n=30; MuTect-FACETS-1145 

PhyloWGS: n=24; MuTect-Battenberg-PhyloWGS: n=28. SomaticSniper-TITAN-PyClone: n=2; 1146 

SomaticSniper-FACETS-PyClone: n=18; SomaticSniper-Battenberg-PyClone: n=13; MuTect-1147 

TITAN-PyClone: n=15; MuTect-FACETS-PyClone: n=25; MuTect-Battenberg-PyClone: n=19. 1148 

Source data are provided as a Source Data file. 1149 
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