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Abstract 

The large magnitude of protein-protein interaction (PPI) pairs within the human interactome 

necessitates the development of predictive models and screening tools to better understand this 

fundamental molecular communication. However, despite enormous efforts from various groups 

to develop predictive techniques in the last decade, PPI complex structures are in general still 

very challenging to predict due to the large number of degrees of freedom. In this study, we use 

the binding complex of human profilin (PFN1) and polyproline-10 (P10) as a model system to 

examine various approaches, with the aim of going beyond normal protein docking for PPI 

prediction and evaluation. The potential of mean force (PMF) was first obtained from the time-

consuming umbrella sampling, which confirmed that the most stable binding structure identified 

by the maximal PMF difference is indeed the crystallographic binding structure. Moreover, 

crucial residues previously identified in experimental studies, W3, H133 and S137 of PFN1, 

were found to form favorable hydrogen bonds with P10, suggesting a zipping process during the 

binding between PFN1 and P10. We then explored both regular molecular dynamics (MD) and 

steered molecular dynamics (SMD) simulations, seeking for better criteria of ranking the PPI 

prediction. Despite valuable information obtained from conventional MD simulations, neither the 

commonly used interaction energy between the two binding parties nor the long-term root mean 

square displacement (RMSD) correlates well with the PMF results. On the other hand, with a 

sizable collection of trajectories, we demonstrated that the average rupture work calculated from 

SMD simulations correlates fairly well with the PMFs (R2 = 0.67), making it a promising PPI 

screening method.  
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Introduction 

Polyproline recognition domains were identified in large varieties of proteins involved in 

intracellular signaling, including WW domains, SH3 domains, EVH1 domains, GYF domains, 

PFN proteins, and UEV domain.1-7 Their binding partners, polyproline or proline rich motifs, 

were found in proteins of vital importance for drug discoveries, including HIV-1 PTAP motif7, 

p53 PXXP motif8, Zinc finger proteins9, and Huntingtin protein10. So far, the omnipresence of 

polyproline is still not fully understood. For example, in Huntingtin protein, it was found that the 

polyglutamine length and polyproline length undergo a co-evolution from primitive organisms to 

human beings10, which may indicate a regulatory role of polyproline length in its biological 

functions. Yet the mechanism how Huntingtin proteins are regulated remains unknown. 

Therefore, it is critical to understand how proline enriched domains interact with polyproline 

recognition proteins, and more specifically, how the protein-protein interaction (PPI) interface 

conformations are determined. 

PPI structure prediction is a very challenging problem computationally due to the complexity 

associated with the underlying multibody interactions.11 There are a few promising methods 

developed already, mostly for protein-protein docking, including ClusPro12, HADDOCK13, 

pyDockWeb14, and GRAMM-X15. These methods have proven successful in certain systems, 

especially when proteins are rigid and/or small; however, none of them could provide reliable 

criteria to determine the most trustworthy prediction. Every year the Critical Assessment of 

PRediction of Interactions (CAPRI) contest16 is held multiple times to test and improve various 

methods and protocols. Within the CAPRI framework, the contestants can submit up to 10 

structures (with preferences), and the final scores are assessed based on how many hits are 

predicted successfully. Generally since there is no crystal structure for comparison, in past 

practices people used multiple models and compared the predictions, or used other empirical 

scoring functions to narrow down the selections.17-18 Unfortunately, conflicting and confusing 

results from different models are frequently obtained, which complicates further assessments of 

the PPI structures. To overcome this shortcoming, we explore the idea of applying free energy 

calculations, conventional molecular dynamics (MD) simulations, and steered molecular 
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dynamics (SMD) simulations to enhance the PPI protein docking scores (by the previously 

benchmarked GRAMM-X15) for better ranking of all predicted structures using state-of-the-art 

molecular modeling techniques. 

Specifically, we use human profilin (PFN1) and polyproline-10 (P10) as a model system. The 

PPI pair PFN1-P10 is picked due to its importance and simplicity: P10 is a relatively rigid 

peptide adopting a polyproline II (PPII) helix19 that binds to surface aromatic residues of PFN1. 

The crystal structure of PFN1-P10 has been determined by two independent experimental 

groups20-21, proving the benchmark for the predictive computational methods. Meanwhile a 

challenging aspect of this system is that proline has unusual solution properties, identified as an 

anomalous residue in terms of its hydrophobicity22-23. Thus, PFN1-P10 provides us with two 

possible validation tests within one system. The first is to validate if the force field guided 

simulations are able to reproduce experimental findings. We conducted free energy calculations 

to compare the crystal structure with the best structure predicted and also to investigate its 

associated binding mechanism. Along the latter line, we uncovered a zipping process during the 

binding of P10 with PFN1, highlighting the importance of W3, H133 and S137 of PFN1. The 

second is to examine MD simulations, steered molecular dynamics (SMD) simulations, and free 

energy calculations in comparison with the protein docking score (from GRAMM-X) in order to 

improve the ranking of docked structures and potentially go beyond protein-protein docking. We 

found that by following the protocol of using SMD simulation on the GRAMM-X docked 

structures, we were able to rank the relative stability of the PPI docked structures with 

reasonably high confidence. 

 

Methods 

Molecular docking and MD simulations 

The PFN1 and P10 structures were taken from the X-ray co-crystal binding complex structure 

deposited in protein data bank (PDB ID: 1AWI20). Each of the individual protein structures was 

uploaded separately to the previously benchmarked protein-protein docking web server 

GRAMM-X15 (http://vakser.compbio.ku.edu/resources/gramm/grammx/) to obtain the docked 
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complex structures (referred to as binding modes hereafter). The top 10 binding modes (ranked 

by scores, mode1 to mode10) were chosen for the latter simulations, along with the crystal 

structure (named mode11). 

MD simulations were performed with GROMACS 5.1.2 package24. The 11 PFN1-P10 binding 

modes were evaluated in simulations using the OPLS-AA force field25 with virtual sites for 

hydrogen atoms. Following similar protocols in our previous studies26-35, all systems were 

solvated in 8×8×8 nm3 TIP3P water boxes with 150 mM NaCl. Steepest descent method was 

used to minimize the solvated PFN1-P10 complexes for 10000 steps. The electrostatic 

interactions were calculated with particle mesh Ewald (PME) method, while the van der Waals 

(VDW) interactions were handled with smooth cutoffs with the cutoff distance set to 1 nm. For 

each mode, a 50 ps of isochoric-isothermic (NVT, 310K) simulation with 1 fs timestep were then 

performed to equilibrate the systems. A series of 400 ns isobaric-isothermic (NPT, 310K, 1bar) 

simulations with 4 fs timestep were performed during production runs. 

Interaction energy (IE) 

We recorded the snapshots every 40 ps from the 400-ns MD simulations mentioned above. 

Water and salt were not included in the calculations of IE. With the same cutoff scheme and 

periodic boundary conditions as the MD simulations, we calculated the total energy of PFN1-P10 

complexes (EPFN1-P10) and the energy of individual PFN1, P10 domains (EPFN1, EP10) in vacuo. 

The IE is therefore calculated as: 

 �� � ��������� � ����� � ���� (1) 

Umbrella sampling and PMF 

Umbrella sampling was performed using the minimized PFN1-P10 complexes to obtain the 

binding free energies. Harmonic restraints between alpha carbons (with force constants set to 

1000 kJ/mol/nm2) were imposed on the individual domains (PFN1 and P10) to prevent them 

from unfolding. We utilized the center of mass (COM) distance between PFN1 and P10 as the 

collective variable. The window size of umbrella sampling was set as 0.1 nm, resulting in 

roughly 20 windows for any PFN1-P10 complexes. The simulations lasted 20 ns for each 

window. PME, VDW interactions and neighbor-list settings were the same as those used in MD 
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simulations. Due to the rigidity of the system, only the translational and rotational corrections are 

needed to calculate the binding free energy of each binding mode.36 We omit this step because 

this correction is a constant offset for PFN1-P10 system, and absolute binding free energy is not 

the main interest in this study. 

Steered molecular dynamics (SMD) and rupture work 

Constant velocity SMD37 was adopted to calculate the rupture force and rupture work of PFN1-

P10 complexes. Two velocities were tested in this research (1 nm/ns and 0.1 nm/ns) along the 

COM distance collective variable. A total of 10 replicas were performed for each of the 

complexes at both velocities. Isochoric-isothermic (NVT) ensemble was used for the simulations, 

while all other conditions remain the same as those used in the MD simulations. The force 

spectra were recorded during the SMD simulations at a 0.4 ps interval. Simple maximal forces 

were extracted from the force spectra and the averages among 10 replicas were reported in Table 

S1. Integrations of the force spectra over the COM distances were calculated, where the maximal 

work in the integrated curve (see supporting information) was defined as the rupture work. 

 

Results and discussions 

GRAMM-X prefers hydrophobic binding interfaces for PFN1-P10 

We use a previously benchmarked GRAMM-X15 to obtain the initial PFN1-P10 binding 

structures to determine the binding modes. The rigid docking algorithm is suitable for PFN1-P10 

based on the root mean square displacements (RMSDs) of PFN1 and P10 during the MD 

simulations (see below). Figure 1 shows the top 10 docked protein-protein structures ranked by 

the prediction scores from mode1 to mode10 (most stable to least stable) as well as the crystal 

structure mode11 (PDB ID: 1AWI) added for completeness. Note that the co-crystal structure 

binding mode was predicted by GRAMM-X (mode9).  

We then analyzed interfacial residue binding for all 11 binding modes. By the proximity of the 

binding interfaces, we divided them into 4 categories. Category I (mode1, mode2, mode8) 

consists of a mostly hydrophobic binding interface on PFN1 (here we refer to PFN1 only 
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because P10 is homogeneous and is therefore omitted later) with residues W3, N4, I7, D8, M11, 

A12, C16, Q17, S29, V30, W31, A32, A33, V34, P35, and K115 (62.5% hydrophobic). Category 

II (mode3, mode6, mode10) utilizes a mixed hydrophobic/hydrophilic binding interface, 

consisting of Y24, K25, D26, S27, P28, D41, T43, P44, A45, E46, V47, G48, V49, V51, G52, 

K53, D54, S57, F58, N61, G62, L63, T64, and G67 (37.5% hydrophobic). Category III (mode4, 

mode5, mode7) is also featured by a mixed hydrophobic/hydrophilic binding interface, but 

consisting of a different set of residues Y59, S61, V72, I73, R74, D86, R88, A95, P96, T97, N99, 

E116, G117, V118, H119, G120, G121, N124, and K125 (31.6% hydrophobic). Finally, 

Category IV (mode9, mode11) makes the use of the binding groove from the crystal structure 

between the N-terminal α helix and C-terminal α helix, mainly contributed by G2, W3, N4, Y6, 

D26, S27, S29, W31, H133, L134, S137, and Y139 (41.7% hydrophobic). Since both the highest 

scores mode1 and mode2 are in Category I, GRAMM-X seems to prefer a more hydrophobic 

binding interface for PFN1-P10, although it also picks out mixed binding interfaces, including 

the co-crystal binding interface – mode9 in Category IV. 

These 11 binding modes are used as the starting points for the binding free energy calculations 

with umbrella sampling, as well as MD simulations and SMD simulations. In the following 

sections we will explore these different methods in an effort to go beyond the normal (rigid) 

protein-protein docking for a better ranking of the binding strengths for the 11 binding modes. 

 

PMFs from umbrella sampling predict crystal structures to be the most stable binding 

modes 

Umbrella sampling was adopted here to estimate the binding free energies of the 11 binding 

modes for the purpose of finding a practical approach of ranking binding modes from PPI 

docking programs and to explore the associated binding mechanism. The most rigorous way of 

calculating binding free energies has been discussed in multiple previous papers and is not the 

main focus in this study.36, 38 Here, we used a simplified way of finding the relative binding free 

energy to ensure specifically that the calculated PMF differences directly correlate with the 

binding mode stability, by setting the two end points to be the final binding modes (shown in 

Figure 1) and their respective unbound states (defined when the minimal distance between the 
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two proteins, with the same conformations as in the final binding mode, is larger than 1 nm). The 

structures of PFN1 and P10 are restricted based on their relatively high rigidity found in the MD 

simulations (discussed below). This also makes the prediction of the trend of binding free 

energies straightforward as only a constant translational/rotational correction is needed (which is 

therefore omitted). Additionally, because free energy is a thermodynamic state function, the 

difference between the bound state and unbound state is a constant regardless of paths. With the 

reasons stated above, we conclude that the trend found in PMF differences between the bound 

state and the unbound state is the same as the trend in binding free energies. 

The obtained PMF curves are shown in Figure 2A. The lowest binding free energies come from 

mode7 (Category III), mode9 and mode11 (Category IV). One important finding is that OPLS-

AA force field is capable of predicting the most stable binding structure of PFN1-P10, namely 

the Category IV co-crystal structures (mode9, mode11). A closer look at the binding interfaces 

reveals that hydrophobic interfaces such as mode1 leads to a roughly 6 kcal/mol penalty 

compared to the mixed binding interfaces provided by mode7, mode10 and mode11 (Figure 2B). 

Such findings further solidify the argument that polyprolines are not as hydrophobic as implied 

in some hydrophobicity scales39-40. In the next section we discuss the detailed binding 

mechanism unveiled from umbrella-sampling simulations. 

 

Binding mechanism of P10 in the crystal binding pocket of PFN1 

To examine the binding mechanism between PFN1 and P10, we analyzed the number of 

hydrogen bonds between them during the umbrella sampling simulations with Category IV 

binding modes (mode9, mode11). The time-lapse counts of hydrogen bonds paired with the 

representative snapshots are shown in Figure 3 (mode9) and Figure S1 (mode11). Residues W3, 

Y6, H133, S137 and Y139 are found to contribute significantly to the PFN1-P10 contacts, in 

which W341, H13341 and S13742 were also previously suggested to be crucial experimentally. 

The main contributions from tryptophans and tyrosines are consistent with previous experimental 

findings that prolines tend to form aromatic-proline stacking43, which is only seen in the crystal 

binding pocket (Category IV). These observations suggest that ideally, scoring functions should 

be tuned so that such interaction can be better captured.  
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Next we examined how the binding process evolves when P10 approaches PFN1. A stepwise 

view of how hydrogen bonds form and break during umbrella sampling is shown in Figure 3, 

which illustrates how P10 binds PFN1 through a “zipping” mechanism. Hydrogen bonds are first 

formed between the C-terminus of P10 (residue 9~10) and PFN1. Then the interactions gradually 

move along the chain to the N-terminal direction, up to the middle portion of the P10 (residue 

5~6). The aromatic-proline stacking was also examined during the binding process. We defined 

an aromatic-proline stacking index (S) based on the minimal distances from any proline side 

chain on P10 to the side chains of W3, Y6, Y139 from PFN1 

(min�	����
 , min�	��	

 , min�	�_	���
, respectively): 

 � � �

�
���min�	����

 � ��min�	��	


 � ��min�	�_	���

�, (2) 

where ���
 � � 0, if � � 1 nm
��


�.

, if 0.4 nm � � � 1 nm1, if � � 0.4 nm �. (3) 

The “cutoff” switching distance of 0.4 nm was used because the average equivalent VDW radius 

of a residue is roughly 0.4 nm in coarse-grained models. Therefore, the close packing between 

two residues requires the distance to be smaller than 0.4 nm. For example, S = 0.8 indicates that 

the average minimal distance between any proline in P10 to W3, Y6, Y139 from PFN1 is 0.52 

nm. Figure S2 shows that aromatic-proline stacking reaches the highest strength when P10 is 

close to PFN1 with a step function type of behavior. Combining Figure 3 and Figure S2, we 

observed a concerted formation of hydrogen bonds and aromatic-proline stacking when P10 

approaches PFN1. This “zipping” mechanism is reproducible with two different binding modes 

for the crystal binding pocket: mode9 (Figure 3) and mode11 (Figure S1). Thus, in addition to 

the conventional aromatic-proline interaction dominated mechanism, we demonstrated that 

hydrogen bonds between PFN1 residues (serines, tyrosines and tryptophans) and prolines also 

contribute significantly to the interactions, thus resulting in a “zipping” mechanism. Such 

observation also helps to explain the “anomaly” of the hydrophobicity of prolines discussed 

before22.  
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MD simulations disfavor hydrophobic binding interfaces 

The most straightforward way of testing binding interface stability is to calculate the RMSDs of 

the binding modes from MD simulations. For each of the 11 initial structures prepared above, we 

run 400 ns of unrestrained MD simulations. We first looked at the RMSDs of individual proteins 

to examine their rigidity. RMSDs of PFN1 with respect to aligned initial structures are plotted in 

Figure S3A. With values always below 0.4 nm, PFN1 stays rigid throughout all simulations for 

all 11 binding modes, agreeing with the previous experimental findings20. Not surprisingly, the 

RMSDs of P10 with respect to the aligned initial structure (Figure S3B) stay below 0.3 nm. The 

structure of P10 stays as a polyproline II (PPII) helix throughout all of the simulations. This 

agrees with the widely accepted notion that polyproline should be a rigid PPII helix when the 

repeat length is smaller than 10.19 However, the RMSDs of the PFN1-P10 complex with respect 

to the aligned initial structure (Figure S3C) indicate that the binding interfaces can change 

significantly in some of the binding modes. For example, mode3 (bright red) reaches as high as 

1.2 nm RMSD in Figure S3C, while PFN1 and P10 remains stable individually (Figure S3A and 

Figure S3B). The RMSDs of P10 with respect to the initial complex structure (not aligned, 

Figure S3D) further fortify this observation, displaying a similar trend to Figure S3C. 

To further observe what contributes to the RMSDs, we plotted the interfacial residue frequency 

in Figure S4, with the initial occurrence frequency (0-50 ns) shown in Figure S4A, and final 

frequency (200-400 ns) shown in Figure S4B. The binding modes that feature major interfacial 

residue shifts are mode2, mode3, mode6, mode7 and mode8, mainly from Category I and 

Category II binding modes. More specifically, mode2 and mode8 in Category I deviate from the 

original hydrophobic interfacial binding, with mode2 transitioning to Category III and mode8 

transitioning to Category IV, respectively. Even the relatively stable binding mode in Category I 

(mode1) shows a slight increase in the C-terminal region, which is the signature binding site of 

the co-crystal structure (Category IV). The mixed hydrophobic/hydrophilic binding interface 

Category II is also not very stable, with mode3 moving towards a hybrid Category II and 

Category III binding mode, and mode6 moving towards Category IV binding mode. Overall, all 

binding modes from Category I (mode1, mode2, mode8) and Category II (mode3, mode6, 

mode10) have tendencies to shift towards Category III and Category IV, which clearly indicates 

that MD simulations prefer the mixed hydrophobic/hydrophilic binding interfaces for P10. This 
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is also phenomenologically in agreement with the umbrella sampling which predicts mode7 

(Category III), mode9 and mode11 (Category IV) to be the most stable binding modes. 

Additionally, PFN1 C-terminus plays an important role in the final binding interfaces of mode6, 

mode7, mode8, mode9 and mode11. Without doubt, MD simulations (with the OPLS-AA force 

field) are capable to capture relevant binding features between PFN1 and P10. To further 

investigate if direct MD data are sufficient to warrant a reliable way of ranking the binding 

structures, we make several measurements discussed below. 

To differentiate the short-term stability and long-term stability of the binding interfaces, we 

calculated the average RMSDs over 0-50 ns and 200-400 ns in Table S1. Interestingly, the 

trends of the two calculated RMSDs are vastly different. We found a positive correlation 

between short-term (50 ns) RMSD and PMF differences. In contrast, no correlation was found 

between long-term (400 ns) RMSD and PMF differences (See Supporting Information and 

Figure S5 for details). 

Interaction energies (IEs) of PFN1-P10 are calculated with Equation 1 (see method for details). 

Similar to RMSDs, we summarized the average IEs from 0-50 ns and 200-400 ns in Table S1, 

respectively. As expected, the direct IEs are unable to recover the trend in binding free energies, 

regardless of short-term IEs or long-term IEs (see Supporting Information and Figure S5 for 

details), due to the lack of entropy contributions. 

 

Rank binding structures with SMD results 

Based on Jarzynski’s inequality44, the experimental atomic force microscopy (AFM) method has 

proven capable of recovering the binding free energies of complicated systems such as protein-

drug complexes.45 Concurrently, substantial efforts have been applied to adjust and optimize 

SMD to obtain accurate binding free energies computationally using the same inequlaity.46-53 

Note that even though the original Jarzynski’s inequality does not require a working threshold of 

the rupture rate, it was largely accepted the slower the rate is, the more accurate the results will 

be.47 In general, there are limitations in using SMD for free energy calculations due to 

insufficient sampling sizes; however, it is still worth comparing SMD to other PPI methods. 
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Without applying the optimization suggested for calculating binding free energies, here we test 

the applicability of using SMD as a fast method to rank the docked structures of PPI pairs such 

as PFN1-P10. We compare constant velocity SMD simulations with different pulling speeds (1 

nm/ns and 0.1 nm/ns) to the properties acquired from MD simulations (RMSDs and IEs). The 

basic protocols of SMD can be found in the Methods section. The integrated work curves are 

shown in Figure S6, Figure S7. The maximal forces and rupture works are listed in Table S1. 

With the simplest first order cumulant expansion approximation, we calculated the average 

rupture works from 10 replicas of SMD simulations for each of the PFN1-P10 binding modes. 

The rupture works calculated from two rupture speeds (1nm/ns and 0.1 nm/ns) both correlate 

well with the PMF differences (Figure 4 A, Figure 4 C), where R2 is 0.49 for 1 nm/ns SMD, and 

0.67 for 0.1 nm/ns SMD. The absolute values of rupture works from 0.1nm/ns SMD (<-15 

kcal/mol) are closer to the PMF differences (see Table S1 for details), compared to the range (-

10 ~ -30 kcal/mol) from 1 nm/ns SMD. This is in agreement with previous practice on free 

energy estimations from SMD simulations.47 For our purpose, instead of following the common 

sense of “the slower the better” in the field (0.01 or even 0.001 nm/ns), we use a relatively fast 

rupture speed (1 or 0.1 nm/ns) to rank the docked structures. For example, each simulation only 

takes ~2.5 ns or ~25 ns for SMD with 1nm/ns or 0.1nm/ns rupture speed, respectively. This 

means that from 2.5 ns×10 replicas = 25 ns of simulations in total, a trend in PMFs can be 

predicted by SMD with high confidence, as compared to the 50 ns of MD simulation sampling a 

local well on the free energy landscape, or 20×20 = 400 ns of umbrella sampling for numerous 

binding modes from one PPI pair. Moreover, the replica numbers can be reduced to 6 to reach a 

comparable R2 (see Figure S8 A, Figure S8 B) which further decreases the total simulation time 

to 15 ns (for 1 nm/ns SMD). 

A correlation between AFM maximal forces and binding constant was reported in a cell adhesion 

study54 and an antibody-antigen unbinding study54. Here we investigate how maximal forces 

from SMD (with a much faster rupture rate) correlate with the PMFs. With two rupture rates, R2 

is calculated to be 0.53 for 1 nm/ns SMD, and 0.21 for 0.1 nm/ns SMD, respectively. Dependent 

on the separation pathway selected on a free energy landscape, overall maximal forces are 

unsatisfactory for predicting the trend of binding free energies. The correlation may simply come 
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from the one between maximal forces and rupture works (R2 is 0.65 for 1 nm/ns SMD and 0.51 

for 0.1 nm/ns SMD) in this particular practice. 

In Figure S9, we compare how the 5 properties (average RMSDs from MD over the first 50ns, 

maximal forces from two sets of SMD, and rupture works from two sets of SMD) rank the 11 

binding modes as compared with PMFs. The correlation coefficients between the ranks are 

similar compared to the correlation coefficients between the absolute values (Figure S9 A-E), 

ruling out the “clustering effect” of the data (meaning the ranks may be interchangeable when 

absolute numbers are close). In Figure S9 F, we list the most stable binding modes predicted 

from the 5 metrics. Interestingly, mode7 is the most stable binding mode for 4 out of 5 metrics 

except for the rupture work (from 1 nm/ns SMD) where mode4 (in Category III along with 

mode7) is predicted to be the most stable. The ranks of mode11 are reliable except for maximal 

forces (from 0.1 nm/ns SMD). The ranks of mode9 are also high in the list but may be affected 

by its structural flexibility seen in the MD simulations. Notably, the top ranks derived from the 

rupture works from SMD correspond well to the most stable binding structures obtained from the 

umbrella sampling, indicating that this technique could provide a fast and reliable way of ranking 

the PPI binding modes from the protein docking programs such as GRAMM-X.  

 

Conclusion 

In this paper we systematically study the PPI binding structures of PFN1-P10 using the protein 

docking program GRAMM-X, regular MD simulations, free energy methods (umbrella sampling) 

and SMD simulations, with the aim of going beyond normal protein docking for PPI prediction 

and evaluation. We demonstrate that the OPLS-AA force field guided umbrella sampling is able 

to identify the crystal structure as the most stable binding structure, which also appears in the top 

10 list from GRAMM-X. Our comparative analysis shows that aromatic-proline stacking 

contributes the most to the stabilization of PFN1-P10 binding, along with the formation of 

hydrogen bonds between serines/tyrosines/tryptophans and prolines. Although regular MD 

simulations provide mixed information in terms of predicting the most stable binding structure, 

yet we find that 50 ns RMSDs might be useful with cautions for ranking the PPI prediction (see 

Supporting Information for details). On the other hand, SMD simulations provide a fast and 
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reliable way of identifying the binding mode with the lowest binding free energy, as shown by a 

correlation coefficient (R2) as high as 0.7 (from the rank order correlation). We argue that even 

though the rigidity of both PFN1 and P10 may prevent us from generalizing the conclusion, by 

applying some constraints, SMD can be used to quickly screen the stable binding modes found 

from docking programs. With a clearer understanding of the advantages and disadvantages of 

various PPI techniques tested, we hope to expand them with a fast binding-mode-screening 

method to study PPI pairs found in the human interactome network55. 

 

Supporting Information 

Ranking binding structures with MD results. Summarized data of MD simulations (RMSDs, IEs), 

umbrella sampling simulations (PMFs), and SMD simulations (maximal forces, rupture works) 

in Table S1. Binding mechanism of mode11 in Figure S1. Aromatic-proline stacking index 

measurements for umbrella sampling in Figure S2. RMSD of PFN, P10 and the whole complex 

from MD simulations in Figure S3. Initial binding interface and final binding interface from MD 

simulations in Figure S4. Correlation between MD simulation results and PMF differences in 

Figure S5. SMD work curves of PFN-P10 in Figure S6, Figure S7. Correlation coefficient 

analyses versus number of trials in Figure S8. Rank order correlations in Figure S9.  
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Figures 

 

Figure 1. Top 10 scored human profilin (PFN1)-polyproline 10 (P10) docked structures from 

docking program GRAMM-X (Mode1 to Mode10). Mode11 is taken from the crystal structure 

(PDB ID: 1AWI). 
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Figure 2. (A) PMF curves from umbrella sampling. (B) Representative binding modes where 

PFN1 is colored by molecular surface and residue types (hydrophobic: white; hydrophilic: green; 

positive: blue; and negative: red). P10 is highlighted with purple shade. The top scored mode1 

mainly utilizes a hydrophobic interface. Meanwhile, the binding modes with the lowest binding 

free energies (mode7, mode9 and mode11) utilize a mixed hydrophobic/hydrophilic interface. 
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Figure 3. Illustrations of PFN1-P10 binding mechanism (mode9). Representative structures from 

window 1.6 nm to 2.7 nm are shown from (A) to (L). Only N-terminal α helix and C-terminal α 

helix of PFN1 are shown in visible secondary structure representations. P10 is shown as a black 

string representation. Typical residues involved in the interfacial hydrogen bonds are shown in 

bead and stick models (PFN1-W3 (white), PFN1-S137 (green), PFN1-Y139 (green), P10-P7 

(red), P10-P8 (yellow) and P10-P9 (blue)). The average occurrence frequency of hydrogen bonds 
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are plotted under each of the structures. The x axis lists all dominant hydrogen bond pairs: 2 

stands for S137-P2 (the order is PFN1-P10, omitted thereafter); 3 stands for S137-P3; 5 stands 

for Y139-P5; 6 stands for Y139-P6; 6’ stands for W3-P6; 7 stands for W3-P7; 7’ stands for 

Y139-P7; 8 stands for W3-P8; 9 stands for G2-P9; 10 stands for Y139-P10; 10’ stands for S137-

P10. 

 

 

Figure 4. Correlation between SMD results (rupture work, maximal force) and PMF differences. 

(A) Rupture work calculated from 1 nm/ns SMD. (B) Maximal force recorded from 1 nm/ns 

SMD. (C) Rupture work calculated from 0.1 nm/ns SMD. (D) Maximal force recorded from 0.1 

nm/ns SMD. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 16, 2018. ; https://doi.org/10.1101/418830doi: bioRxiv preprint 

https://doi.org/10.1101/418830

