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Abstract 

 Gene-annotation enrichment is a common method for utilizing ontology-based 

annotations in these gene and gene-product centric knowledgebases. Effective 

utilization of these annotations requires inferring semantic linkages by tracing paths 

through the ontology through edges in the ontological graph, referred to as relations. 

However, some relations are semantically problematic with respect to scope, 

necessitating their omission lest erroneous term mappings occur.  To address these 

issues, we present GOcats, a novel tool that organizes the Gene Ontology (GO) into 

subgraphs representing user-defined concepts, while ensuring that all appropriate 

relations are congruent with respect to scoping semantics. Here, we demonstrate the 

improvements in annotation enrichment by re-interpreting edges that would otherwise 

be omitted by traditional ancestor path-tracing methods. 

We demonstrate that GOcats’ unique handling of relations improves enrichment 

over conventional methods in the analysis of two different gene-expression datasets: a 

breast cancer microarray dataset and several horse cartilage development RNAseq 

datasets. With the breast cancer microarray dataset, we observed significant 

improvement (one-sided binomial test p-value=1.86E-25) in 182 of 217 significantly 

enriched GO terms identified from the conventional path traversal method when GOcats’ 

path traversal was used. We also found new significantly enriched terms using GOcats, 

whose biological relevancy has been experimentally demonstrated elsewhere. Likewise, 

on the horse RNAseq datasets, we observed a significant improvement in GO term 

enrichment when using GOcat’s path traversal: one-sided binomial test p-values range 

from 1.32E-03 to 2.58E-44.  
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Introduction 

Ontologies and gene set enrichment analyses 

Biological and biomedical ontologies such as Gene Ontology (GO) [1] are 

indispensable tools for systematically annotating genes and gene products using a 

consistent set of annotation terms. Ontologies are used to document new knowledge 

gleaned from nearly every facet of biological and biomedical research today, from 

classic biochemical experiments elucidating specific molecular players in disease 

processes to omics-level experiments providing systemic information on tissue-specific 

gene regulation.  These ontologies are created, maintained, and extended by experts 

with the goal of providing a unified annotation scheme that is readable by humans and 

machines [2]. With the advent of transcriptomics technologies, high-throughput 

investigation of the functional impact of gene expression in biological and disease 

processes in the form of gene set enrichment analyses represents one important use of 

GO [3]. Many different tools exist to utilize GO annotations in enrichment analyses [4–6]. 

However, all current methods fail to utilize all the semantic information available in this 

ontology due to inconvenient features in the anatomy of GO.  

Anatomy of the Gene Ontology  

 The GO database represents a controlled vocabulary (CV) of biological and 

biochemical terms that are each assigned a unique alphanumeric code, which is used to 

annotate genes and gene products in many other databases, including UniProt [7] and 

Ensembl [8]. The ontology is divided into three sub-ontologies: Cellular Component 

(CC), Molecular Function (MF), and Biological Process (BP). Each can be envisioned as 
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a graph or network where terms are nodes connected by edges, referred to as relations, 

that describe how each term relates to one another. For example, the term “DNA 

methylation” (GO:0006306) is connected to the term “macromolecule methylation” 

(GO:0043414) by the is_a relation. In this case, ontological terminology defines the term 

“macromolecule methylation” as a “parent” of the term “DNA methylation.” The three 

sub-ontologies mentioned are “is_a disjoint” meaning that there are no is_a relations 

connecting any node among the three ontologies. However, other relations, such as 

“regulates,” connect nodes of separate sub-ontologies.  Relations of interest to this 

study are part_of and has_part. These are like is_a in that they describe scope, i.e. 

relative generality or encompassment, but are separate in that is_a represents true sub-

classing of terminology while part_of and has_part describe part-whole (mereological) 

correspondence. Therefore, we consider scoping relations to be comprised of is_a, 

part_of, and has_part, and mereological relations to be comprised of part_of and 

has_part. 

 There are three versions of the GO database, each containing aspects of the CV 

with varying complexity: go-basic is filtered to exclude relations that span across 

multiple sub-ontologies and to include only relations that point toward the root of the 

ontology; go or go-core contains additional relations, such as has_part that may span 

sub-ontologies and which point both toward and away from the root of the ontology; and 

go-plus contains yet more relations in addition to cross-references to entries in external 

databases like the Chemical Entities of Biological Interest (ChEBI) ontology [9]. The first 

and second versions are available in the Open Biomedical Ontology (OBO) flat text file 

formatting, while the third is available only in the Web Ontology Language (OWL) 
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RDF/XML format. 

Path traversal issues in GO 

Ontological graphs are typically designed as directed graphs, meaning that every 

edge has directionality, or directed acyclic graphs (DAGs), meaning that no path exists 

that leads back to a node already visited if one were to traverse the graph stepwise. 

This allows the graph to form a complex semantic model of biology containing both 

general concepts and more-specific (fine-grained) concepts. The “parent-child” relation 

hierarchy allows biological entities to be annotated at any level of specificity (granularity) 

with a single term code, as fine-grained terms intrinsically capture the meaning of every 

one of its parent and ancestor terms through the linking of relation-defining is_a edges 

in the graph. However, it is deceptively non-trivial to reverse the logic and organize 

similar fine-grained terms into general categories—such as those describing whole 

organelles or concepts like “DNA repair” and “kinase activity”—without significant 

manual intervention. This is due, in part, to the lack of explicit scoping, scaling, and 

other semantic correspondence classifiers in relations; it is not readily clear how to 

classify terms connected by non-is_a relation edges. Although edges are directional, the 

semantic correspondence between terms connected by a scoping relation is 

computationally ambiguous, e.g. assessing whether term 1 is more/less general or 

equal in semantic scope with respect to term 2 is currently not possible without explicitly 

defining rules for such situations.  

Ambiguity in assessing which term is more general in a pair of terms connected 

by a relation edge is confounded by the fact that edges describing mereological 

relations, such as part_of and has_part, are not strictly and universally inverse of one 
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another. For instance, while every “nucleus” is part_of “cell,” not every “cell” has_part 

“nucleus.” Similarly, while every “nucleus” has_part “chromosome”, not every 

“chromosome” is part_of “nucleus” under all biological situations. Therefore, 

mereological edges are not necessarily reciprocal. Ontological logic rules, called axioms, 

ensure that this logic is maintained in the graph representation by allowing edges of the 

appropriate type to connect terms only if the inferred relation is universal [10,11]. This 

axiomatic representation is crucial to avoid making incorrect logical inferences regarding 

universality but does nothing to facilitate categorization of terms into parent concepts, 

especially since some mereological edges point away from the root of the ontology, 

toward a narrower scope. If these edges are followed, terms of more broad scope may 

be grouped into terms of more narrow scope, or worse, cycles may emerge which would 

abolish term hierarchy and make both categorization and semantic inference impossible. 

To circumvent this problem, some ontologies release versions that do not contain these 

types of edges. For GO, this is accomplished by go-basic. However, information is lost 

when these edges are removed from the graph. If attempting to organize fine-grained 

terms into common concepts using the hierarchical structure, this information loss can 

be significant because many specific-to-generic term mappings can utilize the same 

edge in many paths. 

Axiomatic versus semantic scoping interpretation of mereological relations in GO  

While ensuring mereological universality in relation associations using current 

axioms is important within the purview of ontology development, for those interested in 

organizing datasets of gene annotations into relevant concepts for better 

interpretation—such is the case in annotation enrichment—it is important to utilize the 
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full extent of the information within an ontology.  

Current axiomatic representation of mereological relations requires the use of 

ontology versions which lack certain relations [12], resulting in a loss of retrievable 

information. If has_part edges—which point toward terms of narrower scope—were to 

be inversed to resemble part_of edges—ensuring that all edges point toward terms of a 

broader scope—terms could be effectively categorized with respect to semantic scope 

using the native graph hierarchy without losing any information in the process. However, 

this isn’t logically possible because of issues dealing with universality. 

Therefore, we acknowledge the importance of existing axioms which prohibit 

reversing mereological edges in ontologies under the context of drawing direct semantic 

inferences. However, we maintain that in the context of detecting enriched broad 

concepts based on “summarizing” annotated fine-grained terms contained within 

differential annotation datasets, it is appropriate to evaluate mereological relations from 

a scoping perspective, which requires that all mereological edges point to their whole. 

This conundrum preventing the comprehensive categorization of GO terms can be dealt 

with by adding a single new relation to the ontology: part_of_some. Semantically, this 

relation deals with both the issue of universality and with the issue of the direction of 

granularity.  

GO Categorization Suite (GOcats) 

For the issues stated above, we have developed a new tool called the GO 

Categorization Suite (GOcats). Fundamental to GOcats’ categorization algorithm is the 

re-evaluation of the has_part edge as part_of_some—correcting semantic 

correspondence inferences while ensuring ubiquitous use of all categorization-relevant 
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relations in GO.  

In comparing GOcats’ inclusion of re-evaluated has_part relations to the 

traditional method of ignoring has_part relations altogether and to the erroneous method 

of misinterpreting native has_part directionality, we illuminate the theoretical extent of 

information loss or potential for misinterpretation of has_part relations, respectively. 

Furthermore, in two independent enrichment analyses of real data—from a publicly 

available breast cancer dataset [13] and 

from preliminary data investigating horse 

cartilage development [14], we 

demonstrate that GOcats’ 

reinterpretation of has_part can retain all 

information from GO while drawing 

appropriate categorical inferences in the 

context of annotation enrichment. Finally, 

we show that this reinterpretation has the 

added benefit of improving the statistical 

power of annotation enrichment analyses. 

Design and Implementation 

Figure 1. GOcats data flow diagram for creating categories of GO.  
A) GOcats enables the user to extract subgraphs of GO 
representing concepts as defined by keywords, each with a root 
(category-defining) node.  B) Subgraphs extracted by GOcats are 
used to create a mapping from all sub-nodes in a set of subgraphs 
to their category-defining root node(s). This allows the user to 
map gene annotations in GAFs to any number of customized 
categories. 
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 The go-core version of the GO 

database was chosen in favor of the 

go-basic version, because it contains 

the has_part edge relation which 

points away from the root of the 

ontology and because it contains other 

edges which connect the separate 

subontologies. Since one of our goals 

is to reinterpret mereological relations 

with respect to semantic scope, it is 

necessary that these relations be 

evaluated. Similarly, we excluded the 

go-plus version from this investigation, because we are not yet concerned with the 

reevaluation of the additional relations or database cross-references provided by go-

plus.  

While go-basic is a true DAG, go-core is not strictly acyclic due to the additional 

has_part relations. However, when we inversed traversal of has_part into the 

part_of_some interpretation, acyclicity was maintained. Therefore, we refer to our 

modified go-core graph as a DAG. GOcats is a Python package written in version 3.4.2 

of the Python program language [15].  GOcats parses go-core and represents it as a 

DAG hierarchal structure. GOcats extracts subgraphs of the GO DAG (sub-DAGs) and 

identifies a representative node for each category in question (Figure 1). While GOcats’ 

categorization algorithms are a major feature of the software, it is not a focus of this 

Figure 2. The has_part relation creates incongruent paths with 
respect to semantic scoping. Some tools may create questionable 
GO term mappings, i.e. “nuclear envelope” to “plasma 
membrane,” since the has_part relation edges point in from 
super-concepts to sub-concepts. GOCats avoids this by re-
interpreting the has_part edges into part_of_some edges. 
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study. Full API documentation for GOcats is available online 

(https://gocats.readthedocs.io). 

 To overcome issues regarding scoping ambiguity among mereological relations, 

we hard-coded assigned properties indicating which term was broader in scope and 

which term was narrower in scope to each edge object created from each of the scope-

relevant relations in GO. For example, in the node pair connected by a part_of or is_a 

edge, node 1 is narrower in scope than node 2. Conversely, node 1 is broader in scope 

than node 2 when connected by a has_part edge (Table 1, Figure 2). This edge is 

therefore reinterpreted by GOcats as part_of_some. While the default scoping relations 

in GOcats are is_a, part_of, and has_part, the user has the option to define the scoping 

relation set. For instance, one can create go-basic-like subgraphs from a go-core 

version ontology by limiting to only those relations contained in go-basic. For 

convenience, we have added a command line option, “go-basic-scoping,” which allows 

only nodes with is_a and part_of relations to be extracted from the graph. 

Results 

GOcats’ reinterpretation of the has_part relation increases the information retrieval from 

GO and avoids potential misinterpretations of ambiguous relationship inferences 

GOcats reevaluates path tracing for the has_part edge to make it congruent with 

other relations that delineate scope. With path tracing unchanged, has_part edges lead 

to erroneous term mappings unless they are completely excluded from the ontology. To 

evaluate the extent of incorrect semantic interpretation conferred by has_part relations, 

we calculated all potential false mappings (pMF) between nodes for a given GO sub-
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ontology by counting the number of mappings from all children of a has_part edge to all 

parents of a has_part edge assuming the original GO has_part edge directionality.  Next, 

we compared the pMF to the total number of true mappings (MT) for a given GO sub-

ontology to evaluate the possible magnitude of their impact (Supplementary Data 1, 

Equations 1-5, Scripts Repository 1,2). As shown in Table 2, there are 23,640 pMFs in 

Cellular Component, 8,328 pMFs in Molecular Function, and 89,815 pMFs in Biological 

Process.  Comparatively, the amount of pMFs is 42%, 13%, and 16% the size of the MT, 

in Cellular Component, Molecular Function, and Biological Process, respectively.  

 The conventional solution to avoid these errors is to use versions of ontologies 

that remove edges like has_part. [16]. Considering the number of possible mappings 

between terms as a measure of information content, we quantified the loss of 

information acquired when has_part is omitted during mapping by subtracting the 

number of MT in graphs containing is_a, part_of, and has_part edges from those with 

only is_a and part_of edges. As shown in Table 2, Cellular Component lost 6,346 

mappings, Molecular Function lost 6,242 mappings, and Biological Process lost 27,674 

mappings, which equates to 11%, 10%, and 5% loss of information in these sub-

ontologies, respectively. It is important to note here that the mapping combinations were 

limited to those nodes containing is_a, part_of, and has_part relations only. Because 

paths in GO are heterogeneous with respect to relation edges, this loss of information is 

a lower-bound estimate since other relations exist that connect additional nodes 

erroneously. This is especially true for Biological Process, which has many regulatory 

relations that were not evaluated here.  

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 18, 2018. ; https://doi.org/10.1101/419085doi: bioRxiv preprint 

https://doi.org/10.1101/419085
http://creativecommons.org/licenses/by/4.0/


 While the potential for false mappings are high considering the has_part relation 

alone, this statistic does not illuminate the scale of the issue facing users of current 

ontology mapping software. Importantly, it does not address a fundamental limitation 

and danger facing software like map2slim (M2S) [5], which non-discriminately evaluates 

relation edges. For example, terms linked by an active relation like regulates, or by the 

has_part edge are categorized as if they are related by a scoping relation like is_a. 

Therefore, we calculated the total number of possible mappings produced by M2S and 

enumerated the intersection of these mappings against those made by GOcats which 

were constrained to paths that contained only scoping relations, is_a, part_of, and 

has_part (Supplementary Data 2, Equations 6 and 7). Overall, M2S made 325,180 GO 

term mappings, i.e. categorizations, which did not intersect GOcats’ full set of corrected 

scoping relation mappings. We consider these false mapping pairs (Mpair,M2S), since they 

represent a problematic evaluation of scoping semantics. This contrasted with 710,961 

correct mappings that intersected the GOcats mapping pairs (Mpair,GOcats) giving a 

percent error of 31.4%. Cellular Component, Molecular Function, and Biological 

Process contained 22,059, 29,955 and 273,166 erroneous mappings, which accounted 

for respective percent errors of 30.7%, 34.8%, and 31.1% (Table 3).  

GOcats’ reinterpretation of has_part relations provides improved annotation enrichment 

statistical power. 

 We incorporated GOcats-derived ontology ancestor paths (paths from fine-

grained terms to more general, categorical terms) into the categoryCompare version 

1.99.158 [17] annotation enrichment analysis pipeline and performed annotation 

enrichment on an Affymetrix microarray dataset of ER+ breast cancer cells with and 
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without estrogen exposure [13]. We compared these enrichment results to those 

produced when unaltered ancestor paths from GO—excluding the has_part relation—

were incorporated into the same categoryCompare pipeline (Supplementary Data 3, 

Scripts Repository 3).  

 We also performed enrichment analyses comparing the ancestor traversals of 

DEseq2 differential gene expression datasets across time points during the fetal 

development of two cartilage tissue types in Equus caballus (Supplementary Data 4-5, 

Scripts Repository 4). 

 Assessment of adjusted p-values 

from significantly enriched terms using 

GOcats’ paths versus the traditional 

method that omits has_part edges 

shows that GOcats reliably improves 

the statistical significance of term 

enrichment results through its improved re-interpretation of relation semantics (Figure 3, 

Supplementary Data 6). In the breast cancer dataset, of the 217 significantly enriched 

terms found using the traditional enrichment method at an alpha of 0.01 for FDR-

adjusted p-values, 182 had adjusted p-values that were improved when GOcats 

part_of_some paths were used.  This number of improved p-values is statistically 

significant as indicated by a one-sided binomial test p-value of 1.86E-25.  

Additionally, GOcats was able to identify 15 unique significantly-enriched terms 

at an alpha of 0.01 for adjusted p-values that would otherwise be omitted due to the loss 

of has_part edges (Supplementary Data 7). Four of these terms involve purinergic 

Figure 3. Comparison of adjusted p-values for significantly-
enriched annotations using GOcats paths vs excluding has_part 
edges. Most significantly-enriched GO terms had an improved p-
value when GOcats re-evaluated has_part edges for the 
enrichment of the breast cancer data set in this investigation. 
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nucleotide receptor activity, which has been implicated elsewhere in other investigations 

related to breast cancer [18].  

GOcats’ path tracing showed similar improvements when comparing p-values from GO 

annotation enrichment derived from the differential gene expression analyses between 

horse cartilage development time points (Table 4). In this analysis (see Supplementary 

Data 4), neighboring time point analyses (early and late) were compared to extreme 

time point analyses (extreme).  The traditional enrichment method yielded between 82 

to 233 total enriched terms, with 67% to 92% of these terms’ adjusted p-values being 

improved when GOcats ancestor path tracing was used.  Quantifying the improvements 

in the p-values via a binomial test generates p-values ranging from 1.32E-03 to 2.58E-

44. All but one of the binomial test p-values was below 6.22E-21; however, the 

comparison of the fetal interzone tissue fetal at 45 days to neonatal epiphyseal cartilage 

had drastically fewer total enriched terms.  Furthermore, GOcats was able to identify 

additional significantly-enriched terms from the first and second neighboring time point 

analyses as compared to the traditional method applied to the extreme analysis. As 

Table 4 summarizes, GOcats extracts a notable number of uniquely enriched terms 

from the individual time point comparisons (UniqueEnrichedTermsGOcats). A few of these 

enriched terms (SupportedEnrichedTerms) are directly supported by the traditional 

method enrichment of the extreme time point comparisons. 

Discussion 

Issues with semantic correspondence  
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As early as the late 1980s, explicit definitions of semantic correspondence for a 

relation between ontological terms have been stressed in the context of relational 

database design [19]. This includes concepts of part-whole (mereology), general-

specific (hyponymy), feature-event, time-space (i.e spaciotemporal relations), and 

others. OBO’s and GO’s ontological edges are directional insofar as their relations 

accurately describe how the first node relates to the second node empirically, providing 

axioms for deriving direct semantic inferences. However, the directionality of these 

edges is ambiguous in that they do not explicitly describe how the terms relate to one 

another semantically in terms of scope, and this is due largely to the lack of explicit 

semantic correspondence qualifiers.  

A simple way to avoid mapping problems associated with non-scoping relation 

direction is to omit those relations from analysis. This strategy avoids incorrect scoping 

interpretation at the expense of losing information. As an example, EMBL-EBI’s 

QuickGO term mapping service omits has_part type under its “filter annotations” by GO 

identifier options [16]. Furthermore, Bioconductor’s GO.db [20] also avoids mapping 

issues by indirectly omitting this relation; it uses a legacy MySQL dump version of GO 

which does not contain relation tables for has_part. We argue that while avoiding 

problematic relations altogether does avoid scope-specific mapping errors, it also limits 

the amount of information that can be gleaned from the ontology. By eliminating 

has_part from graphs created by GOcats, we see a ~11% decrease in information 

content (as indicated by a decrease in the number possible mappings) in Cellular 

Component. Likewise, there is a 10% and 5% decrease of information content in 

Molecular Function and Biological Process, respectively (Table 2). Thus, omitting these 
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relations from analyses removes a non-trivial amount of information that could be 

available for better interpretation of functional enrichment. However, the total impact is 

not completely appreciable here, because not all relations were evaluated in this study; 

only the scoping relations of is_a, part_of, and has_part. The potential for additional 

information loss is very high in Biological Process, for example, when considering the 

large number of unaccounted relations: regulates, positively_regulates, and 

negatively_regulates (Table 1). These relations add critical additional regulatory 

information to ontological graph paths, which would also be lost when ignoring the 

has_part relation, if they occurred along a path that also contained has_part. The same 

is also true for Molecular Function, although the prevalence of additional, non-scoping 

relations are lower. 

Furthermore, automated summarization of annotations enriched in gene sets 

requires a more sophisticated evaluation of the scoping semantics contained in 

ontologies, which prior tools are not fully equipped to provide. M2S is one widely-utilized 

GO term categorization method that is available as part of the OWLTools Java 

application [21]. The Perl version of M2S has been integrated into the Blast2GO suite 

since 2008 [5,22] and this gene function annotation tool has been cited in over 1500 

peer-reviewed research articles (Google Scholar as of Nov. 28, 2017). We verified that 

the Perl and Java versions of M2S produced identical GO term mappings for a given 

dataset and GO slim, and therefore have the same mapping errors (Supplementary 

Data 2). Although the number of pMFs reported in the results represent the upper limit of 

the possible erroneous mappings, the fact that at least 120,000 of these exist in GO for 

the has_part relation alone or that the removal of this edge type results in up to an 11% 
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reduction of information content provide bounds on the scope of the issue. To be clear, 

tools like M2S can be safe and not produce flawed mappings if they are used alongside 

ontologies that contain only those relations that are appropriate for evaluation, such as 

go-basic. However, we intentionally utilized go-core to illustrate the danger in using 

tools that do not provide explicit semantic control on how ontologies are utilized.  

GOcats represents a step toward a more thorough evaluation of the semantics 

contained within ontologies by handling relations differently according to the linguistic 

correspondences that they represent. In the case of relations such as has_part, this 

involves augmenting the correspondence directionality when it is appropriate for the 

task at hand, which is to organize terms into categories. As a proof-of-concept, we 

classified the is_a, has_part, and part_of relations into a common “scoping” 

correspondence type and hard-coded assigned graph path tracing heuristics to ensure 

that they are all followed from the narrower-scope term to the broader-scope term.  One 

caveat of this approach is that because of previously mentioned issues in universality 

logic, the inverse of has_part is not strictly part_of, but rather part_of_some. We argue 

that the unlikely misinterpretation of universality in this strategy is preferable to the loss 

of information experienced when using trimmed versions of ontologies for term 

categorization. To elaborate, most current situations calling for term categorization 

involve gene enrichment analyses. Spurious incorrect mappings through part_of_some 

edges would not enrich to statistical significance, unless a systematic error or bias is 

present in the annotations. Even if a hypothetical term categorization resulted in 

enrichment of a general concept that was not relevant to the system in question (i.e. 

“nucleus” enriched in a prokaryotic system), it would be relatively simple to reject such 
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an assignment by manual curation and find the next most relevant term. Conversely, it 

is not reasonable to manually curate all possible missed term mappings resulting from 

the absence of an edge type in the ontology.  

 Another potential complication in semantic correspondence of relations is that 

some relations are inherently ambiguous. The clearest example of this again can be 

found in the well-utilized part_of relation. This relation is used to describe relations 

between physical entities and concepts (e.g. “nuclear envelope” part_of 

“endomembrane system”) and between two concepts (e.g. “exit from mitosis” part_of 

“mitotic nuclear division”) with no explicit distinction. To address the former issue, future 

work will augment our use of hard-coded categorization of semantic correspondences 

through the development of heuristic methods that identify and categorize these among 

the hundreds of relations in the Relations Ontology [2,23]. As a good starting point, we 

suggest using five general categories of relational correspondence for reducing 

ambiguity (Table 1): scope (hyponym-hypernym), mereological, a subclass of scope 

(meronym-holonym), spatiotemporal (process-process, process-entity, entity-entity), 

active (actor-subject), and other. 

Using GOcats for annotation enrichment 

 While we reported the loss of information available for annotation enrichment 

with has_part excluded from GO and quantified the effect of incorrect inferences that 

can be made if has_part is included in GO during enrichment, these results only 

represent hypothetical effects that might be overcome when GOcats reinterprets this 

relation.  One of GOcats’ original intended purposes was to improve the interpretation of 

results from annotation enrichment analyses. However, in the process of designing 
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heuristics to appropriately categorize GO terminology, we also sought to overcome the 

limitations that come with following the traditional methods of path tracing along 

relations in GO. Here we focused on overcoming the loss of information encountered 

when ignoring has_part relations. Our solution was to re-evaluate these relations under 

the logic of part_of_some and invert the direction of has_part. While this re-

interpretation is limited in usage, we believe that in the scope of annotation enrichment 

it is valid for reasons previously explained.  

In our evaluation of enrichment results comparing GOcats ancestor paths to 

traditional GO ancestor paths in the enrichment analysis of a publicly-available breast 

cancer dataset, we demonstrate a highly statistically significant improvement (p=1.86E-

25) in the statistical power of annotation enrichment analysis.  Specifically, 182 out of 

217 significantly enriched GO terms from the traditional analysis had improved p-values 

in the GOcats-enhance enrichment analysis. Moreover, we detect significantly enriched 

GO terms in the GOcats’ results that were not detected using the traditional analysis. 

The inclusion of the re-interpretation of has_part edges allowed for the significant 

enrichment (adjusted-p < 0.002 with FDR set to 0.01) of four terms related to purinergic 

nucleotide receptor signaling which has been implicated in predicting breast cancer 

metastasis in other studies [18]. We again confirmed this effect in our evaluation of GO 

annotation enrichment results of the horse cartilage development datasets. Here we 

saw an improvement in 67% to 92% of enriched terms across the six time point 

enrichment analyses. Fundamentally, the addition of part_of_some interpretation of 

has_part relations improves the statistical power of the annotation enrichment analysis, 

allowing the detection of additional enriched annotations with statistical significance 
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from the same dataset.  In addition, the GOcats annotation enrichment analysis extracts 

a notable number of uniquely enriched annotations from the neighboring, individual time 

point differential gene expression analyses.  Some of these uniquely enriched terms are 

directly supported by the traditional annotation enrichment analysis of the extreme time 

point differential gene expression analyses (Table 4). These results on multiple datasets 

involving two separate experimental designs demonstrate the ability of utilizing GOcats-

augmented ontology paths to derive additional information from annotation enrichment 

analyses. 

 To conclude, GOcats enables the simultaneous extraction and categorization of 

gene and gene product annotations from GO-utilizing knowledgebases in a manner that 

respects the semantic scope of relations between GO terms. It also allows the end-user 

to organize ontologies into user-defined biologically-meaningful concepts—a feature 

that we explore in-depth elsewhere [sister publication to cite]. This categorization lowers 

the bar for extracting useful information from exponentially growing scientific 

knowledgebases and repositories in a semantically safer manner.  In summary, GOcats 

is a versatile software tool applicable to data mining, annotation enrichment analyses, 

ontology quality control, and knowledgebase-level evaluation and curation. 

Materials and Methods 

 Materials and methods are provided in Supplementary Data 1-5.  

Availability and Future Directions 

The Python software package GOcats is an open-source project under the BSD-

3 License and available from the GitHub repository 
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https://github.com/MoseleyBioinformaticsLab/GOcats.  Documentation can be found at 

http://gocats.readthedocs.io/en/latest/.  All figures and supplementary data are available 

on the FigShare repository: https://figshare.com/s/952a4d001cc8850d6d5e  along the 

code used to generate these results: https://figshare.com/s/9d55b2e5932992e6a068.   

  We are actively developing the codebase and appreciate any contributions and 

feedback provided by the community.  We are extending the API and adding additional 

capabilities to handle more advanced annotation enrichment analysis use-cases.  
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Tables 

Table 1. Prevalence of relations in the Gene Ontology and suggested semantic 
correspondence classes to reduce ambiguity. 

Relationship 
Prevalence in GO 

(CC+BP+MF) 
Prevalence 

in GO CC 
Prevalence 

in GO BP 
Prevalence 
in GO MF 

Correspondence  
Class 

Correspondence  
Members 

is_a 72455 5591 54689 12175 Scoping (hyponymy)  hyponym "is_a" hypernym 

part_of 8613 1702 5751 1160 Scaling (meronymy) meronym "part_of" holonym 

has_part 736 156 339 241 Scaling (meronymy) holonym "has_part" meronym 

happens_during 24 0 24 0 
Spatiotemporal  

(process-process) 
process "happens_during" 

process 

ends_during 1 0 1 0 
Spatiotemporal  

(process-process) process "ends_during" process 

occurs_in 181 0 180 1 
Spatiotemporal (process-
entity or process-process) 

process "occurs_in" entity  
OR 

process "occurs_in" process 

regulates 3368 0 3322 46 Active (actor-subject) actor "regulates" subject 

positively_regulates 2916 0 2880 36 Active (actor-subject) 
actor "positively_regulates" 

subject 

negatively_regulates 2937 0 2285 52 Active (actor-subject) 
actor "negatively_regulates" 

subject 

regulated_by‡ 0 0 0 0 Active (actor-subject) subject "regulated_by" actor 

before‡ 0 0 0 0 
Spatiotemporal  

(prior-latter) prior "before" latter 

‡ These relationships are not found in GO but are part of the Relations Ontology 
 

Table 2. Prevalence of potential has_part relation mapping errors in GO. 
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Sub-Ontology 

Estimated Potential 
False Mappings  

(epMF) 

True 
Mappings 

(MT) MT ∩ epMF 
Potential False Mappings  
pMF = epMF - (MT ∩ epMF) 

True Mappings 
without HP 
(IA_POMT)* 

Lost Mappings 
(MT - IA_POMT)* 

Cellular Component 30036 56025 6396 23640 49679 6346 

Molecular Function 10074 62436 1746 8328 56194 6242 

Biological Process 93092 555543 3277 89815 527869 27674 

* IA_PO refers to a graph created with only is_a and part_of relationship edges. 
 

Table 3. Summary of GO term mapping errors resulting from misevaluation of 
relations with respect to semantic scoping.   

(Sub) 
Ontology 

Map2Slim 
Mappings 

(Mpair,M2S_ont)* 

GOcats Scoping 
Mappings 

(Mpair,Gocats_ont)* 
Potentially false Map2Slim Mappings  

pMF,M2S = Mpair,M2S - (Mpair,M2S ∩ Mpair,Gocats_all)* 

Map2Slim Correct Mappings 
MT,M2S = Mpair,M2S ∩ 

Mpair,Gocats_all* 

Possible Map2Slim 
Error Fraction 

pMF,M2S / Mpair,M2S_ont 

All GO 1036141 820467 325180 710961 0.314 

Cellular 
Component 71835 56025 22059 49776 0.307 

Molecular 
Function 86163 62436 29955 56208 0.348 

Biological 
Process 878143 555543 273166 604977 0.311 

* GOcats_all refers to GOcats-derived mapping pairs across all of GO, while GOcats_ont refers to GOcats-derived 
mapping pairs for the indicated ontology in each row. 
 
Table 4 – Binomial test results for GOcats vs no_hp enrichment for horse 
cartilage development time point comparisons. 

Tissue Type Time Series Comparison 
Total  

Enriched Terms 
Enriched Terms with Lower  

P-value with GOcats*  
One-sided 

Binomial Test 

Anlagen 
45-day fetal to 60-day fetal (early) 228 183 6.22E-21 
60-day fetal to neonatal (late)  140 129 5.31E-27 
45-day fetal to neonatal (extreme) 158 139 5.01E-24 

Interzone 
45-day fetal to 60-day fetal (early) 82 55 1.32E-03 
60 day fetal to neonatal (late) 233 196 1.23E-27 
45-day fetal to neonatal (extreme) 233 215 2.58E-44 

*The enriched terms with improved adjusted p-values from GOcats traversal.  
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