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Abstract

Pairs of nucleotides within functional nucleic acid secondary structures often display evidence of

coevolution that is consistent with the maintenance of base-pairing. Here we introduce a sequence

evolution model, MESSI, that infers coevolution associated with base-paired sites in DNA or RNA

sequence alignments. MESSI can estimate coevolution whilst accounting for an unknown secondary

structure. MESSI can also use GPU parallelism to increase computational speed. We used MESSI

to infer coevolution associated with GC, AU (AT in DNA), GU (GT in DNA) pairs in non-coding

RNA alignments, and in single-stranded RNA and DNA virus alignments. Estimates of GU pair

coevolution were found to be higher at base-paired sites in single-stranded RNA viruses and non-

coding RNAs than estimates of GT pair coevolution in single-stranded DNA viruses, suggesting

that GT pairs do not stabilise DNA secondary structures to the same extent that GU pairs do in

RNA. Additionally, MESSI estimates the degrees of coevolution at individual base-paired sites in

an alignment. These estimates were computed for a SHAPE-MaP-determined HIV-1 NL4-3 RNA

secondary structure and two corresponding alignments. We found that estimates of coevolution

were more strongly correlated with experimentally-determined SHAPE-MaP pairing scores than

three non-evolutionary measures of base-pairing covariation. To assist researchers in prioritising

substructures with potential functionality, MESSI automatically ranks substructures by degrees of

coevolution at base-paired sites within them. Such a ranking was created for an HIV-1 subtype

B alignment, revealing an excess of top-ranking substructures that have been previously identified

as having structure-related functional importance, amongst several uncharacterised top-ranking

substructures.
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1 Introduction

The primary role of nucleic acid molecules, such as

DNA (deoxyribonucleic acid) and RNA (ribonucleic

acid), is to encode genetic information for storage and

transfer. However, both types of molecules can form

structures with additional functions (Mattick, 2003).

DNA is ordinarily thought of as a double-stranded

molecule forming the now iconic double helical con-

figuration (Watson and Crick, 1953), although many

viral genomes consist entirely of single-stranded DNA

(ssDNA) or single-stranded RNA (ssRNA) molecules.

Such single-stranded nucleic acid molecules are far

less constrained than double-stranded ones in the va-

riety of functional structures that they can form. For

example, the Rev response element (RRE) within the

single-stranded HIV RNA genome plays a crucial role

in the regulation of HIV replication by binding the

HIV Rev protein to facilitate the transfer of HIV

genomes from the nucleus to the cytoplasm where

translation and virion packaging occur (Heaphy et al.,

1990; Daugherty et al., 2010).

The structures that nucleic acid molecules form

are commonly referred to as their secondary or ter-

tiary structures. Secondary structure is defined as

the set of hydrogen bonding interactions between the

constituent bases of a nucleic acid molecule; tertiary

structure is defined as the arrangement of the con-

stituent atoms of a nucleic acid molecule in three-

dimensional space. This study focuses exclusively on

RNA and DNA secondary structures.

Both computational (Markham and Zuker, 2008;

Sükösd et al., 2012; Bernhart et al., 2006) and hy-

brid experimental-computational techniques (Wilkin-

son et al., 2006) for secondary structure prediction

exist. However, even if the secondary structure of

an RNA sequence can be accurately determined, this

does not immediately say anything about the poten-

tial functional or biological importance of the identi-

fied structure. Many RNA secondary structures are

known to have specific biological functions, and it

is expected that evolutionary conservation or adap-

tation of these structures might detectably impact

patterns of sequence diversity and evolution.

One evolutionary signal that can be used to iden-

tify selectively maintained secondary structures is

nucleotide coevolution. Nucleotide coevolution is

expected at base-paired nucleotide positions within

RNA and DNA secondary structures (Eddy and

Durbin, 1994; Tuplin et al., 2002; Cheng et al., 2012).

Many pairs of nucleotides within RNA molecules ex-

hibit evidence of coevolution, such that whenever a

substitution occurs in one partner of the pair, com-

plementary substitutions are selected for in the other

partner in a manner that is consistent with the se-

lective maintenance of canonical base-pairing (Cheng

et al., 2012). The restricted nature of base-pairing

interactions in nucleic acid structures (compared to

amino acid interactions in protein structures) permits

both nucleic acid structural conformations and nu-

cleotide coevolution to predicted with relative ease.

In this study we consider the canonical RNA base-

pairs to be the two Watson-Crick base-pairs, GC and

AU, and the weaker GU wobble base-pair (GC, AT,

and GT base-pairs in DNA, respectively).

Methods for detecting coevolution, such as mu-

tual information (Eddy and Durbin, 1994; Lindgreen

et al., 2006), can be used to aid the computational

inference of secondary structures. Accordingly, some

RNA comparative secondary structure prediction ap-

proaches, such as PPfold (Sükösd et al., 2012), use in-

formation about coevolving nucleotides inferred from

sequence alignments to more accurately predict sec-

ondary structures. Conversely, within a given sec-

ondary structural element, evidence that paired bases

are coevolving is evidence of the functional impor-

tance of that element (Tuplin et al., 2002; Cheng

et al., 2012; Muhire et al., 2014).

Standard approaches for measuring coevolution (or

more accurately: covariation), such as mutual infor-

mation, are non-evolutionary in that they do not take

into account the phylogenetic relationships of the se-

quences being analysed. Founder substitutions can,

by chance, induce correlations between bases in a

large number of observed variants or species (for an

example see: Bhattacharya et al. (2007)), which may

be mistaken for strong evidence of coevolution if the
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phylogeny is not accounted for. Substitution mod-

els provide a probabilistic framework for modelling of

both phylogenetic relationships and underlying sub-

stitution processes.

In this article, we introduce MESSI (Modelling

the Evolution of Secondary Structure Interactions),

a probabilistic model that generalises upon the pi-

oneering Muse (1995) (M95) model of base-pairing

evolution. The first way in we extend the M95 model

is the addition of parameters that allow us to differ-

entiate between rates of evolution affecting the three

canonical base-pairs. We used this to compare the

role of GU base-pairs in single-stranded RNA viruses

with GT base-pairs in single-stranded DNA viruses.

It is well-established that GU pairs can hydro-

gen bond in RNA to form base-pairs, although

they are chemically weaker than GC and AU base-

pairings (Rousset et al., 1991). The relative chem-

ical strengths of GC, AU, and GU base-pairs are

partially due to the number of hydrogen bonds that

form between their constituent bases: three for GC

base-pairs, two for AU base-pairs, and two for GU

base-pairs. Although GU pairs form the same num-

ber of hydrogen bonds as in AU pairs, the geometry of

the bases leads to the GU pairing being substantially

weaker than the AU pairing (Varani and McClain,

2000). Despite the weaker chemical interaction, GU

base-pairings are known to be involved in functional

RNA structures (Gautheret et al., 1995). Less well

understood is the role of GT base-pairings in DNA.

There are few reports of GT base-pairings in double-

stranded DNA helices (Early et al., 1978; Ho et al.,

1985). Whilst, we were unable to directly measure

the chemical strength of these base-pairing interac-

tions in the present study, we used MESSI to analyse

alignments for evidence of evolutionary forces favour-

ing GT pairs at base-paired positions.

The second way in which we extended the M95

model was to allow substitution rates across to

vary across sites (Yang, 1993, 1994), including al-

lowing the two positions involved in a base-pairing

to each to have a potentially different substitution

rate. This was done to account for site-specific sub-

stitution rates, such as those expected within cod-

ing sequences. This is particularly important for

virus genomes, where the majority of nucleotides are

in protein coding regions, where some of these nu-

cleotides additionally participate in functionally im-

portant base-pairing interactions.

The third extension was permit the strength of co-

evolution to vary across base-paired sites. This pro-

vides a measure of base-pairing coevolution between

every pair of sites in alignment, allowing us to test

whether a particular pair of sites is coevolving in a

manner favouring canonical base-pairing, or whether

the two sites are evolving independently of one an-

other. The use of an evolutionary model addresses

the problem of founder effects potentially inflating

signals of covariation. We used this extension to es-

timate rates of coevolution at individual base-paired

sites within two HIV alignments, allowing us to iden-

tify and rank substructures within the larger HIV ge-

nomic secondary structure that have potential biolog-

ical functionality. This is a feature of our model that

we expect will assist researchers in focusing their ex-

perimental analyses on those portions of large RNA

or DNA secondary structures that are most likely to

be biologically relevant.

Compared to non-evolutionary methods, the com-

putational cost of applying evolutionary models, such

as MESSI, can severely limit their utility. We used

GPU (graphics processing unit) parallelism and a

Metropolis-within-Gibbs procedure when performing

Bayesian inference to reduce these computational

bottlenecks. This provided large speed-ups. Fur-

thermore, this allowed us to account for a potentially

unknown secondary structure configuration, whilst si-

multaneously estimating parameters of interest. This

implies that the user need not provide a secondary

structure as input. Relying on a potentially incor-

rect input secondary structure may bias parameter

estimates, and may also undermine the conclusions

of hypothesis tests based on those estimates. A fur-

ther benefit of accounting for an unknown secondary

structure is that this enables MESSI to output a pre-

diction of the secondary structure and a base-pairing
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probability matrix.

2 Methods

2.1 The Muse 1995 model

Muse (1995) developed a paired site model, hence-

forth referred to as the M95 model. M95 accounts

for RNA base-pairing constraints by modelling pairs

of nucleotide positions using a 16 × 16 matrix. The

model generalises upon standard 4×4 nucleotide sub-

stitution models, such as the GTR model, by intro-

ducing a coevolution parameter, λ, that is intended

to capture substitutions at paired positions that are

consistent with the maintenance of canonical RNA

base-pairing. We define the set of canonical base-

pairs as follows:

C = {GC, CG, AU, UA, GU, UG} (1)

Equation 2 presents a version of the original M95

paired model based on a GTR model Q and a set

of canonical base-pairs C:

Mab =



qab∗λ pairing gained

a /∈ C and b ∈ C, e.g. a=AC → b=AU

qab∗ pairing unchanged

a, b /∈ C or a, b ∈ C, e.g. a=AU → b=GU

qab∗/λ pairing lost

a ∈ C and b /∈ C, e.g. a=AU → b=AC

0 2 differences

e.g. a=AU → b=GC

(2)

Where a and b are nucleotide pairs, qab∗ is the en-

try of the GTR matrix Q corresponding to the nu-

cleotide position within the nucleotide pair that un-

derwent a substitution, and λ is a parameter captur-

ing the degree of RNA coevolution; i.e. the degree

to which canonical RNA base-pairing is evolutionary

maintained (λ > 1) or disrupted (λ < 1). Note that

λ = 1 represents the neutral case, in which each of

the two nucleotide positions in a pair are treated as

evolving independently under the GTR model speci-

fied by Q.

Furthermore, let πdinuc denote a length 16 vector

of paired frequencies. πdinuc is the union of two mu-

tually exclusive cases: πdinuc = πunpaired
⋃
πpaired,

πunpaired represents the cases where the target pair

dij is not in the set of canonical base-pairs (dij /∈ C),
and πpaired represents the cases where the target pair

dij is in the set of canonical base-pairs (dij ∈ C),
respectively:

πunpaired
dij

= κ−11 πiπj and πpaired
dij

= κ−11 πiπjλ
2,

Note that i and j correspond to the first and second

positions of the target pair, respectively. Where πi

is the equilibrium frequency under the GTR model,

Q, of the nucleotide in the first position of the tar-

get pair dij , and similarly πj is the equilibrium fre-

quency of the nucleotide in the second position. κ1 =

1 + 2(πGπC +πAπU +πGπU)(λ2− 1) is a normalising

constant that ensures the entries of πd sum to one.

Note that within the set of canonical base-pairs,

C (defined in Equation 1), there are three pairs of

symmetrical base-pairs: {GC, CG}, {AU, UA}, and

{GU, UG}. It is assumed that each base-pair within

a symmetrical pair has the same fitness. This is a

reasonable assumption as it treats the evolution of

nucleotides towards the 5’ end of the sequence the

same as nucleotides towards the 3’ end. From this

point forward we assume this symmetry and refer to

the three pairs of symmetrical base-pairs as the three

canonical base-pairs.

In the formulation of the original M95 model in

Equation 2 all three canonical base-pairs in the set C
are treated as having equal fitness. However, there

is good evidence that GU base-pairings in RNA, for

example, are deleterious evolutionary intermediates

relative to GC and AU (Rousset et al., 1991). In light

of this, in the next section we extend the M95 model

such that substitutions affecting the three canonical

base-pairs are not constrained to have the same rate

of coevolution.
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2.2 Differentiating between types of

base-pairing substitutions

We extend the M95 model to differentiate between

the three different canonical base-pairs, by introduc-

ing potentially distinct coevolution rates (λGC, λAU,

and λGU) for each of three different base-pairs (GC,

AU, and GU, respectively). Using similar notation as

in Equation 2, the extended rate matrix is given as

follows:

Mab =



qab∗λGC GC pairing gained

e.g. a=AC → b=GC

qab∗λAU AU pairing gained

e.g. a=AC → b=AU

qab∗λGU GU pairing gained

e.g. a=GA → b=GU

qab∗/λGC GC pairing lost

e.g. a=GC → b=GA

qab∗/λAU AU pairing lost

e.g. a=AU → b=AG

qab∗/λGU GU pairing lost

e.g. a=GU → b=GA

qab∗λGU/λGC GC to GU

qab∗λGC/λGU GU to GC

qab∗λGU/λAU AU to GU

qab∗λAU/λGU GU to AU

qab∗ pairing unchanged

e.g. a=AC → b=UC

0 2 differences

e.g. a=AU → b=GC

(3)

and the corresponding paired frequencies are:

πunpaired
dij

= κ−12 πiπj

πGC = κ−12 πGπCλ
2
GC

πAU = κ−12 πAπUλ
2
AU

πGU = κ−12 πGπUλ
2
GU (4)

Where κ2 = 1 + 2[πGπC(λ2GC−1) +πAπU(λ2AU−1) +

πGπU(λ2GU − 1)]

2.3 Stationarity and time-reversibility

We are able show for the extended model that the

paired frequencies, π, given in (4) correspond to the

stationary distribution of M by verifying that:

πM = 0, (5)

and that time-reversibility of M holds:

πaMab = πbMba ∀ab (6)

where a and b represent nucleotide pairs. The condi-

tions in (5) and (6) were verified using the symbolic

math package, SymPy (Joyner et al., 2012), as im-

plemented in the musesymbolic.py script (see Sup-

plementary Material).

2.4 Modelling variable degrees of co-

evolution

In the M95 model (2) the rate of coevolution was as-

sumed to be the same for each base-paired site within

a secondary structure S. However, it is expected that

the strength of the selective forces maintaining canon-

ical base-pairing will vary amongst base-paired sites

in S. In this section, we extend the M95 model such

that the degree of coevolution, denoted by ηq,r, is able

to vary from base-paired site to base-paired site. ηq,r

is drawn independently for each base-paired site (de-

scribed in the next section), and acts to scale the

three coevolution rates as follows:

λq,rGC = (λGC − 1)ηq,r + 1

λq,rAU = (λAU − 1)ηq,r + 1

λq,rGU = (λGU − 1)ηq,r + 1 (7)

where λGC ≥ 1, λAU ≥ 1, and λGU ≥ 1 are

the base-pairing substitution rates shared across all

paired sites. This parametrisation was chosen so that

λq,rGC = λq,rAU = λq,rGU = 1 when ηq,r = 0.

In addition to allowing the rate of coevolution, η,

to vary across base-paired sites, we also allow sub-

stitution rates to vary from site to site following

the gamma distributed sites rate approach of (Yang,
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1993, 1994). For unpaired sites, sequence evolution

is modelled using a standard GTR+Γ model. For

base-paired sites slightly more care needs to be taken

(see Supplementary Section 1.2 for details). We call

the version of our generalised M95 model that differ-

entiates between the three canonical base-pairs and

takes into account site-to-site rate variation, the ‘un-

constrained M95 model’.

2.5 Testing neutrality of coevolution

To test the hypothesis that two nucleotide positions

within a particular base-paired site are evolving neu-

trally, i.e. the substitutions at each of the two

sites are occuring independently rather than actively

favouring the maintenance canonical base-pairing, we

assume that the degree of coevolution, ηq,r, at each

base-paired site is distributed as follows: ηq,r = 0

with probability wη (the neutral, independent case),

otherwise with probability 1−wη, ηq,r is drawn from

a discretised gamma distribution with M categories

(the dependent case). Note that ηq,r ≥ 0 and there-

fore the case where substitutions are acting to disrupt

canonical RNA base-pairing is not considered, i.e. the

case where the coevolution parameters are between 0

and 1. For all analyses a discretisation of M = 4

was used, resulting in five rate categories: one neu-

tral category with probability wη, and four positive

categories each with probability
1−wη

4 .

2.6 Parameters

Table 1 lists the parameters and their distributions

used in the most general version of the implemented

model (the unconstrained model). Note that for some

analyses we perform Bayesian inference, whereas for

others we perform maximum likelihood (ML) infer-

ence. The distributions over the parameters speci-

fied here are those used for Bayesian inference, how-

ever, we also indicate how the parameters are treated

during ML inference. Parameters are either esti-

mated whilst ignoring the prior distribution, or fully

marginalised under the prior distribution. Note that

the phylogenetic tree, T̂ , relating the alignment of
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D. Extended dot bracket notation

Figure 1: Examples of secondary structure repre-
sentations. Above (A) is a dot bracket representa-
tion of a secondary structure, and the correspond-
ing VARNA and circular visualisations (B and C, re-
spectively) produced by VARNA Darty et al. (2009).
Below (D) is an extended dot bracket notation for-
mat with an additional bracket type, <>, that allows
a pseudoknotted structure to be represented unam-
biguously. E and F are the corresponding VARNA
visualisations for D. Note how the overlapping bonds
in the circular visualisation (F) demonstrate that the
secondary structure is pseudoknotted.

sequences, D, for both Bayesian and ML inference is

estimated in advance and fixed a priori using Fast-

Tree (Price et al., 2010) under a GTR+CAT model.

2.7 Computer representations of sec-

ondary structure

To model nucleic acid secondary structure a suitable

definition of secondary structure is required. We use

the definition outlined in Moulton et al. (2000): a sec-

ondary structure, S, for a nucleic acid molecule con-

sisting of N nucleotides is a simple graph specified by

the vertex set [N ] := {1, · · · , N} and an edge set BS .

Where each vertex in [N ] corresponds to a nucleotide

and each edge in the edge set BS corresponds to a
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Table 1: Parameters of the unconstrained model and their distributions.

Parameter and distribution Marginalised Description
or estimated

wη ∼ Beta(2,2) Estimated Probability of neutral coevolution.
Xq,r ∼ Bernoulli(wη) Marginalised Indicates neutral coevolution at position q, r when Xq,r = 1.
c ∼ Exponential( 1

10
) Estimated Shape and rate parameter of prior over coevolution rates ηq,r.

ηq,r = 0 if Xq,r = 1, otherwise: Marginalised The rate of coevolution at each paired position q, r.
ηq,r ∼ DiscretisedGammaM (c, c)
d ∼ Exponential( 1

10
) Estimated Shape and rate parameter of prior over substitutions rates ρq.

ρq ∼ DiscretisedGammaK(d, d) Marginalised Substitution rate at each unpaired position q.
(πA, πC, πG, πT ) ∼ Dir(1, 1, 1, 1) Estimated GTR equilibrium frequencies of the four nucleotides.
qAC ∼ Exponential( 1

10
) Estimated GTR rate matrix entry AC.

qAG ∼ Exponential( 1
10

) Estimated GTR rate matrix entry AG.
qAT ∼ Exponential( 1

10
) Estimated GTR rate matrix entry AT.

qCG ∼ Exponential( 1
10

) Estimated GTR rate matrix entry CG.
qCT ∼ Exponential( 1

10
) Estimated GTR rate matrix entry CT.

qGT ∼ Exponential( 1
10

) Estimated GTR rate matrix entry GT.
λGC ∼ Exponential( 1

10
) + 1 Estimated GC coevolution rate.

λAT ∼ Exponential( 1
10

) + 1 Estimated AT coevolution rate.
λGT ∼ Exponential( 1

10
) + 1 Estimated GT coevolution rate.

S ∼ KH99 Marginalised The secondary structure is drawn from the KH99 SCFG prior.

base-pair. S is such that if {i, j}, {k, l} ∈ BS with

i < j and k < l then:

i. i = k if and only if j = l, and

ii. k ≤ j implies that i < k < l < j

Vertices that are not contained within the edge set

BS are termed unpaired. Condition (i) implies that

each vertex (nucleotide) belongs to at most one base-

pair. Condition (ii) prevents pseudoknotting, i.e.

non-nested base-pairs.

Note that pseudoknotting is physically possible in

both real RNA and DNA structures, but is excluded

in many definitions of secondary structures as effi-

cient algorithms exist for marginalising or maximis-

ing over secondary structures when assuming (ii).

Our method permits a canonical secondary struc-

ture with pseudoknots to be specified a priori, how-

ever, if the user instead treats the structure as un-

known, MESSI will strictly marginalise over non-

pseudoknotted structures only.

Figure 1 gives a computational format for repre-

senting secondary structures. The dot-bracket for-

mat (Figure 1A) is a natural and compact way

of representing non-pseudoknotted secondary struc-

tures. Matching brackets represent base-paired

nucleotide positions and dots represent unpaired

(singled-stranded) nucleotide positions. To repre-

sent pseudoknotted structures (structures that vio-

late condition (ii)) additional bracket types are re-

quired (Figure 1D).

2.8 Likelihood

Conditioned on a secondary structure, S, unpaired

nucleotide positions within S, denoted by
·
q, and base-

paired nucleotide positions within S, denoted by q̂, r,

are assumed to be independent. The likelihood of

an alignment, D, is given by a simple product of un-

paired and paired site likelihoods:

p(D|S, T̂ ,θ) =

unpaired︷ ︸︸ ︷∏
·
q∈S

p(Dq|
·
q, T̂ ,θ)

paired︷ ︸︸ ︷∏
q̂,r∈S

p(Dq,r|q̂, r, T̂ ,θ)

(8)

where T̂ is a phylogenetic tree. Felsenstein’s pruning

algorithm (Felsenstein, 1981) was used to calculate

both the unpaired site likelihoods, p(Dq|
·
q, T̂ ,θ), and

the paired site likelihoods, p(Dq,r|q̂, r, T̂ ,θ). Paired
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sites were modelled using the unconstrained M95

model, whereas unpaired sites were modelled using

the GTR + Γ model that is nested within the uncon-

strained M95 model.

2.9 Prior over RNA secondary struc-

tures

Equation 8 assumes that the secondary structure S is

known a priori, either through experimental or com-

putational methods of structure prediction. However,

it also possible to treat the secondary structure as

unknown, by placing a prior probability distribution,

p(S), over secondary structures and marginalising S.

One way of introducing a prior over secondary

structures is by using a Stochastic Context Free

Grammar (SCFG). A SCFG is probabilistic extension

of a context-free grammar (CFG). A CFG is a type

of grammar that defines a set of rules for generat-

ing all possible strings in a given formal language. A

SCFG extends this notion by assigning probabilities

to each possible string in the given language. RNA

SCFGs are SCFGs that give probability distributions

over strings of base-paired and unpaired nucleotides

representing RNA secondary structures (Anderson,

2014).

2.9.1 The KH99 grammar

We chose the KH99 SCFG (Knudsen and Hein, 1999)

as a prior over secondary structures. The rules and

associated probabilities for this SCFG are given as

follows:

GKH99 =

S → • or LS or (F )

0.118 0.869 0.014

L → • or (F )

0.895 0.105

F → (F ) or LS

0.788 0.212

(9)

Note that S is the start symbol.

The KH99 assigns probabilities to all strings of a

specified length that can be written in dot-bracket

notation, with at least two unpaired nucleotides sep-

arating every base-pair.

2.9.2 Structure-integrated likelihood

Using Bayes’ rule, the probability of a secondary

structure, S, conditional on the data, D, and phy-

logenetic parameters, θ, is given by:

p(S|D,θ) =
p(D|S,θ)pG(S)

pS(D|θ)
=

p(D|S,θ)pG(S)∑
S p(D|S,θ)pG(S)

(10)

We take particular note of the structure-integrated

likelihood term in the denominator of (10):

pS(D|θ) =
∑
S
p(D|S,θ)pG(S). (11)

This term requires summing over all possible sec-

ondary structures and is not a constant that can be

ignored due it’s dependence on θ. This number grows

exponentially with the length of the alignment L.

Fortunately, there exists an O(L3) polynomial-time

algorithm, the inside algorithm (Lari and Young,

1991), for summing the probabilities of all derivations

of an SCFG (all valid secondary structures in the case

of RNA SCFG). By analogy to the forward algorithm

for HMMs, the inside algorithm allows the structure-

integrated likelihood, pS(D|θ) (the analogue of the

forward likelihood for HMMs), to be efficiently com-

puted. The structure-integrated likelihood is given

by element I(S, 1, L) of the inside probability matrix,

where S is the start symbol of the KH99 grammar.

Likewise, by analogy to the backward algorithm for

HMMs, there exists an ‘outside algorithm’, which to-

gether with the inside probabilities allows the poste-

rior marginals of the hidden variables to be computed

(in the case of an RNA SCFG, these are the positional

emission probabilities of base-pair and unpaired ter-

minal symbols – see Supplementary Section 1.5).
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2.9.3 Parallelisation of the inside and outside

algorithms

Algorithm’s S1 and S2 in the Supplementary Material

provide pseudocode for iterative implementations of

the inside and outside algorithms for SCFGs in dou-

ble emission normal form, respectively.

Figure 2 illustrates the calculation of the inside

probability matrix, showing the order in which ele-

ments are computed and the data dependencies re-

quired to compute a particular element. Using these

patterns, Sükösd et al. (2011) developed a strategy

for CPU parallelism, whereby blocks of elements run-

ning diagonally along the inside matrix can be com-

puted in parallel, as they do not have data depen-

dencies. We implemented a similar scheme for the

CUDA GPU architecture, whereby instead of blocks,

each element along a diagonal is computed in parallel.

This can be done because each element along a diag-

onal is independent of all other elements on the same

diagonal. For large alignments (L > 1000) this im-

plies thousands of computational threads executing

the same set of instructions in parallel, but on differ-

ent data (different elements of a particular diagonal),

this is known as SIMD (Single Instruction Multiple

Data) parallelism and is the regime of parallelism for

which GPU architectures are tailored. As far as we

are aware this is the first GPU implementation of the

inside and outside algorithms.

2.10 Paired site likelihoods

Because the inside and outside algorithms consider

every possible base-pairing they require a matrix B of

paired site likelihoods. Each element Bqr of B corre-

sponds to a paired site likelihood p(Dq,r|q̂, r, T̂ , θ) for

a pair of sites, q and r, in the alignment D, which can

be calculated using Felsenstein’s peeling algorithm.

Since the diagonal of B is ignored and Bqr = Brq

(i.e. B is symmetric),
(
L
2

)
paired site likelihoods need

to be calculated. Whilst, the number of computa-

tional steps is only O(L2) in the alignment length L,

compared to O(L3) for the inside and outside algo-

rithms, the amount of time per computational step

for computing the paired site likelihoods is substan-

tially higher due the use of Felsenstein’s algorithm.

To ameliorate this bottleneck, we use the partial site

caching strategy of Pond and Muse (2004) to reduce

the number of likelihood calculations required and

developed a CUDA GPU implementation.

Note that the inside and outside algorithms also re-

quire a vector, S, of length of L single site likelihoods,

where each element corresponds to p(Dq|
·
q, T̂ ,θ).

However, this is fast to compute compared to the

matrix B.

2.11 Sampling secondary structure

configurations

The inside probability matrix can be used to sample

secondary structure configurations from the distribu-

tion

S̃ ∼ p(S|D,θ) (12)

Sampling terminal strings (secondary structures in

our case) using an SCFG is analogous to sampling

hidden state sequences using the forward-filtering

backward-sampling algorithm for HMMs (Frühwirth-

Schnatter, 1994). An algorithmic description for sam-

pling secondary structures from an RNA SCFG is

given in the Supplementary Methods Section 1.4.

2.12 Bayesian posterior inference

The posterior distribution of the continuous-

parameters, θ, conditional on the data D and a

secondary structure S can be sampled using the

Metropolis-Hastings algorithm and the relationship

given by Bayes’ formula:

p(θ|D,S) ∝ p(D|S,θ)p(θ), (13)

where the likelihood term, p(D|S,θ), is given by (8)

and p(θ) is the prior.

We can also treat the secondary structure as un-

known and assume a RNA SCFG prior, pG(S), over

secondary structures. This can be achieved by using

the structure-integrated likelihood, pS(D|θ), when

9
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Figure 2: Illustrations of the inside algorithm show-
ing CPU and GPU parallelism schemes. The light
to dark blue gradient starting at the central diago-
nal and finishing in the top right-hand corner indi-
cates the order in which each diagonal is computed.
The light red elements indicate the data dependen-
cies required to compute the single bright red entry
of the inside matrix. The lower half of each ma-
trix with each cell crossed out is not computed and
can be ignored. Note that the top-right element cor-
responds to the structure-integrated likelihood term
and is therefore always the last element to be calcu-
lated, as it depends on all other elements having been
computed first.

inferring θ:

p(θ|D) ∝ pS(D|θ)p(θ). (14)

However, note that the structure-integrated likeli-

hood term is computed every time a new set of pa-

rameters is proposed. As mentioned previously, this

requires computing a matrix B of paired site likeli-

hoods (requiringO(L2) computational steps) and cal-

culating the final structure-integrated likelihood term

using the inside algorithm (requiring O(L3) compu-

tational steps). Therefore gathering enough samples

to ensure an adequate sample size will be relatively

slow. However, given that we can sample the con-

ditional distribution, p(S|D,θ), using the sampling

procedure outlined in Section 2.11 this leads to a po-

tentially more efficient Metropolis-within-Gibbs ap-

proach. This approach works by alternatively sam-

pling from the full conditional distribution:

S(k) ∼ p(S|D,θ(k)) (15)

using the sampling procedure outlined in Section 2.11

and

θ(k+1) ∼ p(θ|D,S(k)) (16)

using the Metropolis-Hastings algorithm. Whilst the

Gibbs sampling step (15) still requires computing a

matrix B of paired site likelihoods and running the

inside algorithm, the Metropolis-Hastings step (16)

only requiresO(L) operations and can be repeated for

multiple iterations following the Gibbs sampling step.

In our implementation we repeat the Metropolis-

Hastings step 50 times following the Gibbs sam-

pling step. Together these give a Markov Chain

Monte Carlo algorithm whose stationary distribu-

tion, p(S,θ|D), and associated marginals, p(S|D) and

p(θ|D), are the distributions of interest.

2.13 Maximum likelihood inference

The COBYLA optimization algorithm (Powell, 1994)

in the NLOpt library (Johnson, 2014) was used to

find the maximum likelihood (ML) parameters via
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the structure-integrated likelihood (11). Note that

when doing so the priors over the continuous param-

eters were either ignored and estimated using ML, or

the priors were used and the parameters were fully

marginalised (as specified in the Priors section).

2.14 Site permutations

To test whether secondary structure dependencies

present in real datasets influence model fit, each

alignment was taken and its sites randomly per-

muted. Two such nucleotide column permuted

datasets (p1 and p2) were generated for each

real dataset. ML estimation using the structure-

integrated likelihood was used to fit the parameters

of each permuted dataset under the unconstrained

model and the secondary structure information en-

tropy was calculated.

3 Results

3.1 Site permutation benchmarks

To assess the degree to which secondary structure

dependencies present in real datasets influence model

fit, ML inference was performed on real and permuted

datasets, and their structure-integrated likelihoods

and structure information entropies were compared

(Section 2.14 in Methods). The structure-integrated

likelihoods for the permuted datasets were expected

to be lower than those of the real datasets. Note that

comparing these likelihoods is valid given they are

in effect marginal likelihoods. Conversely, the struc-

ture information entropies were expected to be higher

for the permuted datasets than for the real datasets.

Unlike the real datasets, the patterns of coevolution

in the permuted datasets were not expected to coin-

cide with stable secondary structure configurations,

thereby spreading the probability mass over a larger

number of secondary structure configurations.

The maximum likelihood estimates of the

structure-integrated likelihoods were indeed lower

for the permuted datasets in every instance (Sup-

plementary Table S1). This partially validates our

model and is consistent with the presence of real

secondary structure dependencies in the original

datasets. As expected, the structure information

entropies were higher for the permuted datasets, with

the exception of RF00003, which had marginally

lower structure information entropies for both of

the permuted datasets. This result is surprising as

RF00003 corresponds to the U1 spliceosomal RNA, a

component of a spliceosome (Burge et al., 2012) with

a thermodynamically stable structure. Since MESSI

uses evolutionary and not thermodynamic informa-

tion to infer secondary structure, one explanation

may be that the patterns of nucleotides within the

RF00003 dataset are only weakly informative of the

underlying secondary structure.

3.2 Benchmarks of RNA structure

prediction

Whilst, our model was not designed to predict RNA

secondary structure, the expected base-pairing and

unpairing probabilities can be calculated (see Sup-

plementary Section 1.5) and a Maximum Expected

Accuracy consensus secondary structure determined

(see Supplementary Section 1.6). Our method was

compared to two comparative methods of RNA sec-

ondary structure prediction: RNAalifold (Bernhart

et al., 2006) and PPfold (Sükösd et al., 2012).

The three methods were benchmarked on 22 align-

ments each having a corresponding experimentally-

determined canonical RNA secondary structure from

the RFAM database (Burge et al., 2012). Five differ-

ent measures were used to compute predictive accu-

racy (see Supplementary Section 1.8 for definitions of

these measures).

MESSI has lower precision but higher recall than

the other two methods, implying that it predicts more

base-pairs (higher recall), but with a higher number

of false-positives (lower precision; Figure 3). For the

F1-score and MCC measures, both of which combine

precision and recall, MESSI performs slightly better

than RNAalifold and PPfold. MESSI also performs

marginally better with respect to the mountain sim-

ilarity measure – a measure that takes into account
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Figure 3: Summary of secondary structure prediction
benchmarks. Structure predictions were performed
on 22 RFAM datasets using three different compar-
ative structure prediction methods (MESSI, RNAal-
ifold, and PPFold).

the overall ‘shape’ of the secondary structures being

compared, rather than the exact matching of base-

pairs.

Overall, our method performs on a par with two

well-established methods of comparative RNA struc-

ture prediction. This was surprising given that the

model was not developed for the purpose of sec-

ondary structure prediction. Maximum likelihood in-

ference was used to estimate the model parameters.

Where the coevolution parameters (λGC, λAU, and

λGU) were free to vary with the only restriction be-

ing: λGC ≥ 1, λAU ≥ 1, and λGU ≥ 1. Although

not tested here, it might be possible to improve the

predictive accuracy of MESSI’s structure predictions

by performing Bayesian or MAP inference of the pa-

rameters using a set of priors whose hyperparameters

are learnt from a training dataset of alignments and

corresponding structures.

3.3 CPU and GPU timing bench-

marks

The two computational bottlenecks in performing

both maximum likelihood and Bayesian inference are

computing paired site likelihood matrices (computed

using an iterative version of Felsenstein’s algorithm)

Number of unique paired site patterns

Paired site matrix calculation times

Figure 4: Paired site likelihoods calculation timings
in seconds (log10 axis) as a function of the number
unique paired partial site patterns (log10 axis). Num-
bers above the GPU timings indicate the fold speed-
up over the CPU version.

Figure 5: Inside algorithm timings in seconds (log10
axis) as a function of the number of alignment sites.
Numbers above the GPU timings indicate the fold
speed-up over the CPU version.
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and computing inside probability matrices (using an

iterative version of the inside algorithm); both of

these steps are required repeatedly. Although op-

timised CPU implementations written in Julia were

created for both of these steps, these were still rela-

tively slow. Therefore GPU implementations written

in CUDA were implemented for both.

The number of computational steps is expected to

grow linearly with the number of unique paired site

patterns and hence this was chosen as a predictor

of the computational time required (Figure 4). Com-

pared to the single-threaded CPU implementation we

achieve a ∼ 50× speed-up with the GPU implemen-

tation across most datasets.

The number of computational steps for the inside

algorithm is expected to grow O(L3) where L is the

number of alignment sites in a particular dataset

(Figure 5). A 50 to 200 fold speed-up for the paired

site likelihood calculations was achieved for moder-

ate dataset sizes, with the fold speed-ups for larger

datasets being bigger, due to larger datasets better

saturating the GPU.

The speed-ups seen here are significant, enabling

us to analyse datasets which would typically be con-

sidered intractable. Note that CPU and GPU imple-

mentations were also developed for the outside algo-

rithm with similar speed-ups obtained (Figure S3 in

the appendix).

3.4 The role of GU and GT base-pairs

in single-stranded RNA and DNA

For all five non-coding RNA datasets (RF00001,

RF00003, RF00010, RF00379, and RF01846) like-

lihood ratio tests (LRTs) rejected the GU neutral

model in favour of the unconstrained model (p <

0.0005. See Table 2), with ML estimates for λ̂GU

in the range 2.25− 3.57. This is evidence that many

GU pairs are under selective maintenance in the five

non-coding RNA datasets tested.

For four of the five RNA virus datasets tested (Rhi-

novirus A, Tobamovirus, human poliovirus 1, and

foot-and-mouth disease virus. See Table 2) LRTs re-

jected the GU neutral model in favour of the uncon-

strained model (p < 0.0005 in all four cases), with

ML estimates for λ̂GU in the range 5.21− 21.92. Cu-

riously, the GU neutral model could not be rejected

in favour of the unconstrained model for the hepatitis

A virus dataset (Table 2), with the ML estimate for

λ̂GU = 1

Three of the five DNA virus genome datasets tested

(Human bocavirus, beet curly top virus, and tomato

yellow leaf curl virus in Table 2) showed no signifi-

cant difference between the unconstrained model and

a GU (GT) neutral model (λGU := 1). In contrast,

the Wheat Dwarf Virus dataset rejected the GT neu-

tral model (p < 0.05), and the Maise Streak Virus

dataset rejected the GT neutral model (p < 0.005).

ML estimates for λ̂GT were in the range 1.0−1.57 for

the five ssDNA virus datasets, which was low com-

pared to those determined for the non-coding RNA

and RNA virus datasets.

The LRT results and the ML estimates for λ̂GU

(λ̂GT) suggest that GT pairs are under weak selective

maintenance in DNA virus genomes, and strong se-

lective maintenance in RNA virus genomes and non-

coding RNAs. This may indicate that GT base-

pairings in DNA are chemically weaker relative to

GU base-pairings in RNA and hence do not stabilise

DNA secondary structures to the same extent as GU

base-pairings in RNA.

3.5 Relative coevolution rates

The relative selective strengths of the coevolution

rates associated with GC, AU and GU pairs were

compared across both DNA and RNA virus genomes.

The original M95 model assumed that λGC := λAU

and λGC := 1. However, experimental evidence shows

that GC base-pairings are chemically stronger than

AU base-pairings in RNA (Mathews et al., 1999),

with both being substantially stronger than GU base-

pairings.

To assess whether λGC := λAU is a reasonable as-

sumption, we performed LRTs comparing the uncon-

strained model to a λGC := λAU constrained model.

For 14 of the 15 datasets, LRTs rejected the GC-

AU constrained model in favour of the unconstrained
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Table 2: Tests of the GU/GT neutral hypothesis across 15 datasets: five non-coding RNA alignments from
the RFAM database (denoted by the prefix ’RF’), five ssRNA virus alignments (Foot-and-mouth-disease,
Human poliovirus 1, Tobamovirus, Rhinovirus A, and Hepatitis A virus), and five ssDNA virus alignments
(Maise Streak virus, Tomato Yellow Leaf Curl virus, Beet Curly Top virus, and Wheat Dwarf virus).

Dataset Type Number GU (GT) neutral Unconstrained Delta M1-M0 LRT λ̂GU

of sites log-likelihood (M0) log-likelihood (M1) log-likelihood p-value (λ̂GT)

RF01846 ncRNA 624 -11101.49 -11043.98 57.51 *** 2.64
RF00379 ncRNA 335 -10523.44 -10470.32 53.12 *** 3.57
RF00010 ncRNA 996 -85067.98 -84007.62 1060.36 *** 3.01
RF00003 ncRNA 203 -4711.20 -4653.04 58.16 *** 2.97
RF00001 ncRNA 230 -28077.49 -27897.66 179.83 *** 2.25

FMDV ssRNA 8349 -114986.98 -114610.85 376.12 *** 5.21
H. poliovirus 1 ssRNA 7668 -65013.50 -64966.32 47.19 *** 5.60
Tobamovirus ssRNA 6849 -88906.32 -88767.09 139.23 *** 7.53
Rhinovirus A ssRNA 7308 -219614.83 -217136.20 2478.62 *** 21.92
Hepatitis A ssRNA 7572 -63755.35 -63755.31 0.04 n.s. 1.00

MSV ssDNA 2755 -15345.85 -15341.48 4.37 ** 1.57
TYLCV ssDNA 2925 -40743.07 -40743.03 0.04 n.s. 1.00
BCTV ssDNA 3215 -32094.09 -32093.56 0.53 n.s. 1.18
Bocavirus ssDNA 5577 -31987.81 -31985.98 1.84 n.s. 1.25
WDV ssDNA 2755 -10733.63 -10731.59 2.04 * 1.57

* p < 0.05; ** p < 0.005; *** p < 0.0005; n.s. = not significant

Figure 6: Estimated posterior probabilities for all six orderings of the three base coevolution rates across 15
datasets.

model (results not shown). The only exception was

the human poliovirus 1 dataset, where the GC-AU

constrained model could not be rejected.

This was explored further by comparing the in-

ferred relative magnitudes of the rates associated

with GC, AU (AT) and GU (GT) dinculeotides. If

the fitness value of a RNA secondary structure ele-

ment is positively correlated with its chemical stabil-

ity, it is expected that the relative chemical stabilities

associated with the three canonical base-pairs would

be reflected in the relative magnitudes of the coevo-

lution rates inferred by MESSI.
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We applied MESSI’s Bayesian posterior inference

mode to 15 datasets, five from each of three dataset

types. Posterior probabilities associated with all six

possible orderings of the three base coevolution rates

were estimated for each dataset (Figure 6). Given the

relative chemical base-pairing stabilities, the domi-

nant ordering for the base coevolution rates was ex-

pected to be λGC > λAU > λGU. For all five ncRNA

datasets, all five ssDNA virus datasets, and two of

the five ssRNA virus datasets the posterior probabil-

ity associated with the λGC > λAU > λGU ordering

was indeed 1.0.

Interestingly, an unexpected ordering, λGC >

λGU > λAU, emerged for three of the ssRNA with

a posterior probability of 1.0 for the Rhinovirus

A dataset and posterior probabilities of 0.81 and

0.55 for the Human poliovirus 1 and Tobamovirus

datasets, respectively. Possible explanations for this

result include: (i) for many datasets it is not valid

to assume a canonical secondary structure that is

shared across the entire phylogeny, particularly in

the presence of genome-scale ordered RNA struc-

ture (Simmonds et al., 2004) which is not expected

to be conserved. Two or more parts of the phy-

logeny may have different mutually exclusive sec-

ondary structures, giving rise to misleading pat-

terns of pair evolution, and (ii) datasets with coding

regions have additional constraints on synonymous

and non-synonymous substitutions, and these protein

coding constraints might mislead MESSI.

3.6 Degrees of coevolution are corre-

lated with experimental SHAPE-

MaP quantities

A notable example of a large RNA structure that has

been partially experimentally-determined is that of

the HIV-1M subtype B NL4-3 isolate (Watts et al.,

2009; Siegfried et al., 2014). Rather than relying

solely on computational techniques for the deter-

mination of RNA secondary structure of the 9173

nucleotide NL4-3 genome, the hybrid experimental-

computational SHAPE-MaP (Selective 2’-hydroxyl

acylation analysed by primer extension and muta-

tional profiling; Siegfried et al. (2014)) approach was

used to model the structure. The SHAPE-MaP ap-

proach preferentially mutates unpaired nucleotides,

allowing the mutated nucleotides to be identified us-

ing DNA sequencing following reverse transcription.

The SHAPE-MaP reactivity information is then used

to constrain a thermodynamic RNA folding algo-

rithm, enabling the construction of a secondary struc-

ture model which is reflective of the experimental

data.

We compared three non-evolutionary computa-

tional measures of covariation (A. Mutual informa-

tion, B. RNAalifold mutual information, and C.

Mutual information with stacking; Lindgreen et al.

(2006) and two evolutionary measures of coevolution

inferred by MESSI (D. Posterior probability η 6= 1,

and E. Posterior mean η) with experimental SHAPE-

MaP reactivities and SHAPE-MaP pairing probabil-

ities at base-paired sites corresponding to three dif-

ferent datasets: an HIV 1b dataset, an HIV group

1M dataset, and a Simian Immunodeficiency Virus

(SIV) dataset. When analysing the HIV datasets

the SHAPE-MaP reactivities, SHAPE-MaP pairing

probabilities and base-pairings were derived from a

SHAPE-MaP analysis of the HIV NL4-3 sequence

(Watts et al., 2009). When analysing the SIV dataset

a SHAPE-MaP analysis of the SIVmac239 sequence

(Pollom et al., 2013) was used. Given that high

SHAPE-MaP reactivities indicate unpairing, we ex-

pected that degrees of coevolution (or covariation)

would be negatively correlated with SHAPE-MaP re-

activities. Conversely, given that some paired nu-

cleotides are expected to be selectively maintained

due to structure-related functional importance, we

expected a positive correlation between degrees of co-

evolution (or covariation) and SHAPE-MaP pairing

probabilities.

For all three datasets the two measures of coevolu-

tion (D and E) were significantly correlated with both

the SHAPE-MaP reactivities and SHAPE-MaP pair-

ing probabilities using Spearman’s rank correlation

test. The correlations were in the expected direc-
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Table 3: Spearman’s correlations (ρ) and 95% confidence intervals (ρ 95% CI) between five different measures
of covariation/coevolution and base-pair averaged SHAPE-MaP reactivities and the same five measures
and base-pair averaged SHAPE-MaP pairing probabilities. Underlined values indicate correlations that are
statistically significant and in the expected direction.

Dataset Measure SHAPE-MaP reactivities SHAPE-MaP pairing probabilities
ρ ρ 95% CI p-val ρ ρ 95% CI p-val

A. Mutual information (MI) -0.01 [-0.051, 0.035] n.s. 0.11 [0.069, 0.154] ***
B. RNAAlifold MI 0.01 [-0.033, 0.053] n.s. 0.01 [-0.030, 0.056] n.s.

HIV-1 C. MI with stacking -0.02 [-0.060, 0.026] n.s. 0.10 [0.059, 0.144] ***
subtype B D. p(η 6= 0) -0.16 [-0.202, -0.118] *** 0.19 [0.147, 0.230] ***

E. Posterior mean η -0.14 [-0.180, -0.095] *** 0.20 [0.162, 0.244] ***

A. Mutual information (MI) 0.03 [-0.016, 0.070] n.s. 0.09 [0.047, 0.132] ***
B. RNAAlifold MI 0.03 [-0.013, 0.073] n.s. 0.08 [0.033, 0.119] ***

HIV-1 C. MI with stacking 0.00 [-0.043, 0.043] n.s. 0.12 [0.081, 0.166] ***
group 1M D. p(η 6= 0) -0.18 [-0.225, -0.142] *** 0.27 [0.227, 0.307] ***

E. Posterior mean η -0.16 [-0.197, -0.113] *** 0.29 [0.251, 0.330] ***

A. Mutual information (MI) 0.09 [0.053, 0.132] *** -0.04 [-0.084, -0.005] *
B. RNAAlifold MI 0.12 [0.086, 0.164] *** -0.07 [-0.114, -0.035] ***

SIVmac239 C. MI with stacking 0.10 [0.057, 0.135] *** -0.01 [-0.046, 0.033] n.s.
D. p(η 6= 0) -0.12 [-0.160, -0.082] *** 0.19 [0.153, 0.229] ***
E. Posterior mean η -0.10 [-0.137, -0.058] *** 0.20 [0.164, 0.240] ***

* p < 0.05; ** p < 0.005; *** p < 0.0005; n.s. = not significant

tion (negatively correlated for SHAPE-MaP reactiv-

ities and positively correlated for SHAPE-MaP pair-

ing probabilities; Table 3). For all three datasets the

correlation coefficients were significantly stronger in

the expected direction for the two coevolution mea-

sures (D and E) than the the three covariation mea-

sures (A,B, and C; see the 95% confidences intervals

for Spearman’s rho). We note that whilst many of the

correlations were statistically significant, the magni-

tudes of the correlations were weak.

Curiously, for the SIV dataset, SHAPE-MaP re-

activities were significantly positively correlated with

the three measures of covariation (A, B, and C) rather

than negatively correlated as expected. There is

broad evidence to suggest that base-paired sites in

a functionally important RNA structure tend to be

be more conserved (less variable) due to being under

selective constraint (Muhire et al., 2014; Tuplin et al.,

2004) and that double-stranded RNA (i.e. base-

paired positions) is less susceptible to mutational pro-

cesses (Lindahl and Nyberg, 1974). Conversely, un-

paired sites are expected to undergo relatively higher

rates of mutation. These higher rates of mutation

may cause the three non-evolutionary measures of co-

variation to be erroneously inflated, given that they

do not fully account for site-to-site rate variation (see

Supplementary Section 1.2) unlike the coevolution

measures inferred under our model, which do. It

should also be noted that the SIV dataset is highly di-

verse compared to the two HIV datasets. Given these

factors, it is anticipated that weakly base-paired sites

will have inflated degrees of covariation using mea-

sures A, B and C, which may explain the unexpected

positive correlation.

Overall, these results provide some reassurance

that our method is performing as expected and that

the evolutionary measures of coevolution are more

reliable than the three measures of covariation that

do not take into account evolutionary dependencies

amongst the sequences being analysed. The detected

degrees of coevolution suggest that a large proportion

of the predicted base-pairings in the SHAPE-MaP

structures have been selectively maintained since the

common ancestors of the sequences being analysed in

each of the three datasets.
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Table 4: SHAPE structure ranking. The top 10 of 86 non-overlapping HIV NL4-3 substructures ranked
from highest to lowest z-score based on the estimated degrees of coevolution within an alignment of HIV-1
subtype B sequences. Where the HIV NL4-3 SHAPE-MaP secondary structure was used as the canonical

structure.

Rank Alignment NL4-3 Length Name Median degree z-score
position position of coevolution

1 8233 - 8582 7249 - 7595 350 Rev Response element (RRE) 5.38 5.02
2 2608 - 2943 1991 - 2326 336 Longest continuous helix 5.17 2.92
3 10155 - 10383 8982 - 9170 229 3’ Untranslated region (3’UTR) 5.27 2.69
4 588 - 838 105 - 344 251 5’ Untranslated region (5’UTR) 5.65 2.61
5 9570 - 9584 8440 - 8454 15 5.91 2.29
6 860 - 979 366 - 485 120 5’ Untranslated region (5’UTR) 5.54 2.28
7 1710 - 1845 1177 - 1312 136 5.17 2.28
8 2115 - 2301 1561 - 1711 187 Gag-pol frameshift 5.31 2.21
9 1479 - 1490 946 - 957 12 5.85 2.04
10 3886 - 3907 3269 - 3290 22 5.80 2.01

Table 5: Consensus structure ranking. The top 10 of 118 non-overlapping HIV consensus substructures
ranked from highest to lowest z-score based on their degrees of coevolution within an alignment of HIV-1
subtype B sequences. Where the canonical structure was treated as unknown and a consensus structure

predicted by MESSI.

Rank Alignment NL4-3 Length Name Median degree z-score
position position of coevolution

1 8240 - 8577 7256 - 7590 338 Rev Response element (RRE) 5.64 6.53
2 2202 - 2229 1645 - 1672 28 Gag-pol frameshift 8.17 4.56
3 1710 - 1845 1177 - 1312 136 6.44 4.50
4 4751 - 4833 4134 - 4216 83 6.47 3.97
5 4505 - 4709 3888 - 4092 205 5.22 3.21
6 591 - 939 108 - 445 349 5’ Untranslated region (5’UTR) 5.38 3.16
7 133 - 151 NA 19 6.85 2.94
8 2564 - 2890 1947 - 2273 327 Longest continuous helix 4.44 2.62
9 9782 - 9800 8645 - 8663 19 6.92 2.55
10 3612 - 3623 2995 - 3006 12 6.74 2.50
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3.7 Ranking and visualisation of sub-

structures

Rather than considering the entire secondary struc-

ture of a large sequence, it is often useful to consider

individual substructures. There are two primary rea-

sons for considering substructures: (i) smaller regions

are more easily conceptualised, and (ii) if functional

components of a secondary structure are present,

they tend to correspond to small regions (20-350 nu-

cleotides long) of that secondary structure.

MESSI automatically ranks substructures by de-

grees of coevolution between their constituent nu-

cleotides (see Supplementary Methods Section 1.9).

We produced two rankings based on an HIV-1 sub-

type B alignment. The first ranking treated the HIV-

1 NL4-3 SHAPE-MaP secondary structure as the

canonical structure when inferring coevolution and

identifying substructures (denoted the SHAPE struc-

ture ranking; Table 4 and Supplementary Table S3).

The second ranking used a consensus structure esti-

mated by MESSI based on base-pairing probabilities

(denoted the consensus structure ranking; Table 5

and Supplementary Table S4).

The highest ranked substructure in both the

SHAPE and consensus rankings was the RRE

(SHAPE RRE visualised in Figure 7). The RRE oc-

curs in the genomes of all known HIV groups and

plays a crucial role in the regulation of HIV virion ex-

pression (Heaphy et al., 1990; Daugherty et al., 2010).

The longest continuous helix identified in both the

SHAPE-MaP and MESSI structures was ranked 2nd

in the SHAPE ranking and 8th in the consensus rank-

ing, respectively. The SHAPE-MaP analysis revealed

that this helix is highly stable, although its function

is unknown. The significant degrees of coevolution

detected at base-paired sites within this substruc-

ture and the fact that MESSI detects it as conserved

across all HIV-1 subtype sequences provides further

evidence of its likely functional importance.

Portions of the 3’ and 5’ untranslated regions

(UTRs) were ranked 3rd and 4th in the SHAPE rank-

ing, respectively. This was not surprising given that

these are both non-coding regions. The 5’ UTR is in-

volved in regulation of translation (Damgaard et al.,

2004), whereas the 3’ UTR is believed to be involved

in regulation of transcription (Watts et al., 2009). A

5’ UTR substructure at a similar position is ranked

6th in the consensus ranking, whereas a 3’ UTR sub-

structure at a similar position was not detected in the

consensus structure. This may be explained by the

large number of UTR missing sequences and high de-

grees of alignment uncertainty in the HIV-1 subtype

B alignment in the UTR regions; factors which would

both reduce support for the predicted base-pairings

in the consensus structure.

An uncharacterised substructure (alignment posi-

tion: 1710-1845) ranked 7th in the SHAPE struc-

ture ranking and 3rd in the consensus structure rank-

ing (Figure 7). This substructure warrants further

study, given the supporting evidence from experi-

mental SHAPE-MaP reactivities, MESSI’s coevolu-

tion estimates, and MESSI’s evidence of conservation

across HIV-1 subtype B sequences. Despite MESSI

predicting the same helix as SHAPE-MaP at the base

of this substructure, the remainder of the substruc-

ture is different in the SHAPE-MaP model. It is likely

that the SHAPE-MaP model of this substructure is

more accurate in this instance.

Interestingly, an additional uncharacterised sub-

structure (alignment position: 4751-4833) ranked 4th

in consensus ranking, but was not present in the HIV-

1 NL4-3 SHAPE structure and hence was not present

in the SHAPE structure ranking (Figure 7). Over-

laid SHAPE-MaP reactivities from the HIV N4L-3

SHAPE model provide some support for MESSI’s

prediction; particularly at unpaired positions which

are supported by high SHAPE-MaP reactivities (indi-

cating single-strandedness). It is possible that either

MESSI’s or SHAPE-MaP’s prediction is wrong, or

that the particular conformation predicted by MESSI

is conserved amongst a subset of HIV-1 subtype B se-

quences that excludes NL4-3. It is also possible that

this substructure exists in alternative conformations

depending on in vivo or in vitro conditions.

Finally, the gag-pol frameshift-associated substruc-

ture was ranked 8th in the SHAPE ranking and 2nd in
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SHAPE rank 7
1710 - 1845

Consensus rank 3
1710 - 1845

Consensus rank 4
4751 - 4833

Rev Response Element
SHAPE rank 1
8233 - 8582

SHAPE
reactivity
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Figure 7: Visualisation of several top ranking substructures in the SHAPE-MaP structure and consensus
structure rankings. NL4-3 SHAPE-MaP experimental reactivities are mapped and visually overlaid using the
same colour scheme as in Watts et al. (2009). Depicted within each nucleotide is a sequence logo summarising
the nucleotide composition at the corresponding alignment position. Mean degrees of coevolution inferred
using MESSI are depicted for each base-pair using coloured links (blue-green-yellow gradient).
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the consensus rankings. This substructure regulates

the ratio of HIV gag/gag-pol that is expressed. Ri-

bosomal synthesis of the gag-pol polyprotein requires

a -1 ribosomal frameshift, without which translation

ends in synthesis of the gag protein alone.

Overall, there is an excess of top-ranking substruc-

tures that have been identified previously in the lit-

erature as having structure-related importance. This

is particularly evident in the SHAPE-MaP structure

ranking. The use of the experimentally-determined

SHAPE-MaP structure as the canonical structure

strongly informs the SHAPE structure ranking, but

has the disadvantage that it is based only on the

HIV NL4-3 sequence rather than being representa-

tive of base-pairings conserved across all sequences

within the HIV-1 subtype B alignment. By con-

trast, the consensus ranking canonical structure is

predicted by MESSI and is based solely on evolution-

ary information, rather than experimental or thermo-

dynamic information. In the future, we hope to ex-

tend MESSI by adding both experimental constraints

from experiments such as SHAPE-MaP and thermo-

dynamic constraints from folding software such as

Vienna RNAfold. We expected this to improve esti-

mates of coevolution and the overall ranking provided

by MESSI.

4 Concluding remarks

MESSI was developed for modelling substitutions

that are consistent with the maintenance of canon-

ical base-pairing at paired sites within alignments

of DNA and RNA sequences. To achieve this, we

extended an existing model, M95 (Muse, 1995), in

four major ways: (i) differentiating between the three

canonical base-pairs (GC, AU and GU), (ii) allowing

substitution rates to vary across sites, (iii) permitting

the strength of coevolution to vary across base-paired

sites, to measure the strength of selection operating

on particualr base-pairs, and (iv) accounting for a

potentially unknown secondary structure.

Amongst these extensions, extending the model to

permit an unknown secondary structure posed the

greatest computational challenges. The first chal-

lenge was the need to compute likelihoods using

Felsenstein’s peeling algorithm for all
(
L
2

)
paired sites.

Fortunately, a large number of redundant calculations

could be avoided due to a large proportion of paired

sites sharing the same partial site patterns (Pond and

Muse, 2004), resulting in at least a 5× speed-up. Ad-

ditionally, a further 50× speed-up was achieved us-

ing a GPU implementation of Felsenstein’s peeling

algorithm. The second challenge was the need to

marginalise an unknown secondary structure using

the inside algorithm. Computational speed-ups of

50× - 200× were achieved using a GPU implementa-

tion of the inside algorithm. For Bayesian inference a

Metropolis-within-Gibbs procedure was implemented

to further avoid calculating the paired matrix likeli-

hoods and inside probabilities at every iteration.

ML and Bayesian inference were used for different

analyses. ML inference allowed us to perform like-

lihood ratio tests of various hypotheses, for which

Bayesian model comparison was computationally in-

tractable. Bayesian inference was used to obtain pos-

terior distributions over various parameters, includ-

ing the rates of coevolution associated with the three

canonical base-pairs, and posterior probabilities and

degrees of coevolution at base-pair sites.

To perform an initial validation of our model,

site permutations of nucleotide alignments were per-

formed to disrupt the secondary structure dependen-

cies expected in real datasets. Consistent with the

model behaving desirably, the structure-integrated

maximum likelihood values were lower, and the struc-

ture information entropy values higher for the per-

muted datasets overall.

The ability to marginalise an unknown secondary

structure shared amongst an alignment of sequences,

implies that MESSI is also capable of secondary

structure prediction. Although MESSI was not de-

signed with structure prediction in mind, we found

that it performed similarly to two popular compara-

tive secondary structure prediction methods: RNAal-

ifold (Hofacker, 2009) and PPfold (Sükösd et al.,

2012). This result further validates our approach.
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We found strong evidence that GU pairs are selec-

tively favoured at base-paired sites in five non-coding

RNA datasets and four of five RNA virus genome

datasets. Strong evidence for selection of GT pairs

at base-paired sites was found for only one out of five

of the DNA virus datasets tested. The notion that

GU pairs play a role in stabilizing RNA secondary

structures is consistent with numerous phylogenetic,

and experimental analyses of RNA molecules (Woese

et al., 1980; Eddy and Durbin, 1994; Deigan et al.,

2009). The role of GT base-pairings in stabilizing

DNA genomic secondary structures remains unclear.

We applied our model to the HIV-1 NL4-3 sec-

ondary structure and two corresponding alignment

datasets containing large numbers of HIV-1 se-

quences, and an SIVmac239 secondary structure and

a corresponding alignment of SIV sequences. We

found that correlations between the SHAPE-MaP-

determined quantities and degrees of coevolution as

detected using MESSI were stronger than correla-

tions between the same quantities and three non-

evolutionary measures of covariation.

Interactive visualisations of the HIV-1 NL4-3

SHAPE-MaP and consensus secondary structures

with the inferred degrees of coevolution overlaid were

automatically generated by MESSI. Two rankings of

substructures based on inferred degrees of coevolu-

tion within an alignment of HIV-1 subtype B se-

quences demonstrated an excess of high ranking sub-

structures that have been commonly cited in the lit-

erature as having structure-related importance. This

ranking procedure is expected to aid researchers in

characterising the secondary structures of less well-

studied viruses.

A feature that was not fully accounted for in

our model and that is especially important for viral

genomes, such as HIV, is that their genomes simul-

taneously encode for proteins. This implies a dual

evolutionary constraint, whereby selection may be

acting on the amino acid sequence, whilst simulta-

neously acting to maintain base-pairing interactions

in biologically functional RNA secondary structures.

In the future we would like to consider a model that

explicitly accounts for both protein-coding and RNA

base-pairing constraints.

A second limitation of our model is the assumption

of a canonical RNA secondary structure shared across

the entire evolutionary history of the sequences being

analysed. This is considered a reasonable approxi-

mation for low and moderately diverged alignments,

where many of the sequences are expected share a

high proportion of the same base-pairs. Notwith-

standing, it is also likely that different parts of the

tree relating the sequences will have at least some

parts of those sequence adopting alternative sec-

ondary structure conformations. These regions are

interesting from a functional perspective. The abil-

ity to identify these alternative evolutionary confor-

mations and the mutations responsible for them may

lead to significant insights into viral adaptations, such

as structural changes following zoonotic transmission

of viruses from non-human hosts to humans or the

development of drug resistance.

5 Software availability

Julia code (compatible with Win-

dows and Linux) is available at:

https://github.com/michaelgoldendev/MESSI
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