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Abstract 

Streptococcus mutans is a Gram positive bacterium that thrives under acidic 

conditions and is a primary cause of tooth decay (dental caries). To better understand 

the metabolism of S. mutans on a systematic level, we manually constructed a genome-

scale metabolic model of the S. mutans type strain UA159. The model, called iSMU, 

contains 656 reactions involving 514 metabolites and the products of 488 genes.  

We interrogated S. mutans’ nutrient requirements using model simulations and 

nutrient removal experiments in defined media. The iSMU model matched experimental 

results in greater than 90% of the conditions tested. We also simulated effects of single 

gene deletions. The model’s predictions agreed with 78.1% and 84.4% of the gene 

essentiality predictions from two experimental datasets. Our manually curated model is 

more accurate than S. mutans models generated from automated reconstruction 

pipelines. We believe the iSMU model is an important resource for understanding how 

metabolism enables the cariogenicity of S. mutans. 
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Introduction 

Streptococcus mutans is one of over 600 species of bacteria in the oral 

microbiome. This Gram-positive, lactic acid bacterium thrives in the oral environment in 

part due to its metabolic flexibility. S. mutans can feed on several carbohydrates (1) and 

has complex, interdependent amino acid auxotrophies (2). S. mutans is the primary 

cause of tooth decay (dental caries). By fermenting a wide array of dietary sugars into 

lactic acid, S. mutans creates a highly acidic microenvironment near the tooth surface 

(as low as pH 3.0). The lactic acid demineralizes the tooth structure, resulting in decay. 

Understanding the acidogenic capabilities of the S. mutans requires an unbiased, 

systems-level approach. Previous studies have shown that acid production and 

tolerance in S. mutans requires large changes in gene expression and metabolic 

pathway utilization (3). For example, decreasing pH increases glycolytic activity and 

branched-chain amino acid synthesis without increasing cell growth (4). A drop in pH is 

also accompanied by an increased expression of F-ATPases to maintain a higher 

intracellular pH (5). 

Mathematical models aid in our understanding of how an organism’s genes 

collectively give rise to a phenotype. Models translate bioinformatic features (differential 

expression, presence/absence of genes) into biological function (flux distributions, 

uptake and secretion rates, and fitness). Constraint-based reconstruction and analysis 

(COBRA) of genome-scale models is widely used to integrate genetic and metabolic 

data to produce phenotypic predictions (6, 7). Models of microbial metabolism and 

transcriptional regulation predict responses to gene deletions (8, 9), mutation (10, 11), 
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metabolic shifts (12, 13), and long-term evolution (14, 15). The models identify 

emergent properties of a metabolic network, including links between pathways and 

inter-dependencies among genes (16, 17). 

We present iSMU v1.0, a genome scale metabolic model for the S. mutans type 

strain UA159. Our model is manually curated using multiple databases, literature 

evidence, and phenotyping experiments. Our investigation of S. mutans focused our 

metabolism for two reasons: 1.) the primary metabolic products of S. mutans, lactic acid 

and biofilm matrix, are responsible for the pathogen’s cariogenicity; and 2.) metabolic 

networks are among the best characterized intracellular networks with established 

computational techniques. Given metabolism’s central role in cariogenesis, we believe 

the iSMU model will improve our understanding S. mutans’ role in oral health. 

 

Materials and Methods 

Model Construction  

The metabolic network of S. mutans UA159 was reconstructed following best 

practices in the COBRA modeling community (18). As summarized in Figure 1A, 

reconstruction began with the annotated UA159 genome (RefSeq GCA_000007465.2). 

Metabolic enzymes and the associated reactions were initially collected from KEGG 

(19) and Uniprot (20). The Metacyc (21), RHEA (22), ModelSEED (23), BiGG (24), and 

ChEBI (25) databases were used as secondary sources for metabolic reactions. 

Transport reactions were verified with TransportDB (26). When possible, KEGG 

identifiers were used for metabolites and reactions for consistency with other 
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databases. Custom identifiers (e.g. “add00001”) were added for reactions or 

metabolites without KEGG identifiers. Reactions without gene associations were only 

added when supported by experimental or literature evidence. These 11 reactions are 

explained in Table S1. All chemical species and formulas were converted to their 

protonation state at pH 7.0 using the ModelSEED database. A custom map of the iSMU 

model was constructed using Escher version 1.6.0 (Figure 2) (27). 

 

Model Simulations using Flux Balance Analysis 

 To simulate growth using iSMU, reactions were collected into a stoichiometric 

matrix 𝑆 where element 𝑆(𝑖, 𝑗) corresponds to the stoichiometric coefficient of the 

model’s 𝑖th metabolite in the 𝑗th reaction. 𝑆(𝑖, 𝑗) is negative if the metabolite is consumed 

and positive if the metabolite is produced. Two vectors of lower (𝑙) and upper (𝑢) 

bounds determine the reversibility of reactions. A vector of reaction fluxes 𝑣 was 

calculated by maximizing the flux through the biomass reactions subject to mass 

balance constraints (𝑆𝑣 = 0) and reversibility constraints (𝑙 ≤ 𝑣 ≤ 𝑢). To simulate gene 

deletions, the gene/protein/reaction rules for each reaction were evaluated to identify 

reactions that cannot carry flux in the deletion strain. The upper and lower bounds of 

these reaction were set to zero before maximizing flux through the biomass reaction. 

Genes were considered essential if their deletion allowed no biomass flux. 

 All simulations were performed with Matlab (version R2016b; MathWorks 

[https://www.mathworks.com]) using the COBRA toolbox (28). Mathematical programs 

were solved with Gurobi Optimizer (version 7.5; Gurobi Optimization 
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[http://www.gurobi.com]). Gene set enrichment for KEGG pathways was performed 

using DAVID (29, 30). 

 

Model Availability 

The final model is available as an SBML file and a spreadsheet compatible with 

the COBRA toolbox (Files S1 & S2). The model map is available as a JSON file (File 

S3) and SVG image (File S4). Future versions of the model and map will be available 

on the authors’ website [http://jensenlab.net]. 

 

Strains and Media 

 S. mutans UA159 (ATCC 700610) was cultured on Brain-Heart Infusion (Sigma) 

agar plates or in Todd Hewitt broth with 0.3% yeast extract (Sigma). Strains were grown 

overnight in 5% CO2 at 37�C unless specified.  

 

Growth Assays 

 Growth experiments were performed in a Chemically Defined Medium (CDM) 

(31) with 22 amino acids, 11 vitamins, 3 nucleobases, 8 inorganic salts, and glucose 

(Table 1). Complete CDM or leave-one-out variants were prepared fresh weekly from 

concentrated stocks (31). All components were purchased from Sigma-Aldrich USA and 

were sterilized by autoclaving or filtration. 

 Overnight cultures of S. mutans were washed three times in sterile water. The 

overnight culture was concentrated 5x (from 5 ml to 1 ml), and 1 μl of the concentrate 
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was used to inoculate wells of a 96 well plate containing 200 μl of defined media. Plates 

were incubated without agitation in 5% CO2 at 37�C. Optical density was measured by 

absorbance at 600 nm every hour for 16 h using a Tecan Infinite 200 Pro plate reader 

(Tecan, Männedorf, Switzerland). Exponential growth rates were calculated using the R 

package CellGrowth (version 3.7; Ludwig Maximilian University of Munich, 

[https://www.bioconductor.org/packages/release/bioc/html/cellGrowth.html]) with default 

settings. Growth rates were normalized to the growth rate in complete CDM. 

 

Results 

Manual curation produces an annotated metabolic model for S. mutans. 

 We manually reconstructed an in silico metabolic model for S. mutans type strain 

UA159 (Figure 1A). Our model, named iSMU for “in silico S. mutans”, includes major 

metabolic pathways for carbohydrate metabolism and synthesis of amino acids, 

nucleotides, lipids, vitamins, and cofactors. The model includes 656 reactions 

transforming 514 metabolites. The reactions are catalyzed by the products of 488 genes 

(Figure 1B).  

Our assembly of iSMU began with reaction databases and an annotated 

genome. Draft models assembled from genome annotations are often incomplete 

because of gaps in the genome annotation or spontaneous reactions that lack an 

associated enzyme. Several computational methods attempt to identify and add these 

missing reactions in a process called GapFilling (32). Rather than rely on automated 

GapFilling algorithms, we manually GapFilled iSMU by examining the reactions in each 
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pathway. We attempted to close gaps in any pathway that 1.) was complete except for a 

small number of reactions, or 2.) was blocked (unable to carry flux) due to metabolites 

that could not be produced or consumed. We also attempted to find unannotated or 

misannotated genes that could catalyze the GapFilled reactions. Compared to other 

metabolic reconstructions, our manually GapFilled model contains fewer incomplete 

pathways (Table S2 and Figure 1B). On average, published metabolic models of well-

studied organisms lack gene annotations for 53% of the models’ reactions (Table S2). 

These models also average 32.7% blocked reactions, i.e. reactions that cannot carry a 

steady state flux because they lack upsteam or downstream pathways. Our iSMU model 

has only 23.5% reactions without an associated enzyme and 2% blocked reactions. 

Metabolic models simulate growth by collecting cellular building blocks into a 

biomass reaction. The biomass reaction is used as the objective function for metabolic 

simulations. A nonzero flux through the biomass reaction indicates growth in the 

metabolic environment specified by the model’s inputs (called exchange reactions). We 

modified the biomass reaction from a model of Enterococcus faecalis V583 (33) to 

create a biomass reaction for S. mutans UA159. Both E. faecalis and S. mutans are 

lactic acid bacteria with similar metabolic capabilities. To tailor the biomass reaction to 

S. mutans, we changed the relative ratios of nucleotides and amino acids. We also 

changed the cell membrane composition to reflect membrane sugar polysaccharides 

specific to S. mutans. We replaced UDP-N-acetyl-D-galactosamine, which based on 

genetic evidence is not produced by S. mutans, with UDP-N-acetyl-D-mannosamine 

and UDP-N-acetyl-D-glucosamine. We also adjusted the cell wall fatty acids to their 
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measured proportions at pH 7.0 (34). The final biomass reaction consumes 56 

metabolites to produce a unit of biomass. 

 

The iSMU model reveals broad metabolic capabilities of S. mutans. 

 S. mutans can metabolize a wide range of carbon sources (35, 36). The ability to 

uptake and catabolize numerous carbohydrates allows S. mutans to thrive in the oral 

cavity of humans with varied diets. Besides glucose, the iSMU model can grow on 

fructose, sucrose, lactose, trehalose, ascorbate, arbutin, maltose, cellobiose, salicin, 

sorbitol, mannitol, mannose, N-acetyl glucosamine, fructan, galactose, galactinol, 

epimelibiose, melibiitol, melibiose, raffinose, maltodextrin, stachyose and malate. 

Growth on these carbohydrates is consistent with previous experimental studies (35, 

36).  

 Carbohydrate metabolism is the dominant metabolic subsystem in S. mutans 

(37). Gene set enrichment for KEGG pathways classifies 134 (27.4%) of the genes in 

iSMU as carbohydrate metabolism (Figure 1C). By comparison, carbohydrate 

metabolism involves 20.7% of the genes in an Escherichia coli genome scale metabolic 

model (iJO1366, (38)) and 21.6% of the metabolic genes in a Bacillus subtilis genome 

scale model (iYO844, (39)) (Table S3). 

 Outside of carbohydrate metabolism, the largest subsystems in iSMU are: 

transport – 113 genes (23.2%); amino acid biosynthesis – 94 genes (19.3%); nucleotide 

biosynthesis – 56 genes (11.5%); lipid biosynthesis – 26 genes (5.3%); peptidoglycan 

biosynthesis – 23 genes (4.7%). (Figure 1C) 
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S. mutans has complex nutrient requirements for growth. 

 Several studies have investigated the minimal requirements for S. mutans growth 

in vitro (2, 40–43). Like many obligate human pathogens, S. mutans requires a 

combination of carbon, nitrogen, sulfur, and phosphorous sources; inorganic minerals; 

nucleotides; and vitamins and co-factors. We used our iSMU model and phenotypic 

assays to systematically explore auxotrophies for S. mutans. 

 The S. mutans UA159 genome encodes complete biosynthetic pathways for all 

20 amino acids (37). S. mutans can grow without any exogenous amino acids using 

ammonium as the sole nitrogen source (40). The iSMU model can similarly produce 

biomass with ammonium and no amino acids. Using a series of leave-one-out 

experiments, we confirmed that the removal of individual amino acids from a defined 

media does not affect S. mutans growth in vitro (Figure 3). Simultaneous removal of 

cysteine and cystine does not significantly reduce growth, indicating that S. mutans can 

catabolize another sulfur source, possibly sulfate or methionine.  

 S. mutans can theoretically synthesize nucleotides (adenine, guanine, cytosine, 

uracil, and thymine) but only through the non-oxidative branch of the pentose phosphate 

pathway (44). S. mutans UA159 apparently lacks the more efficient oxidative branch of 

the pentose phosphate pathway (45). The non-oxidative pentose phosphate pathway is 

bidirectional and can produce or recycle ribose 5-phosphate and other pentose sugars. 

These sugars are necessary precursors for nucleotide biosynthesis. The model iSMU 

requires no nucleotides in the media for growth. However, we found that removing all 
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nucleotides from CDM prevents growth of S. mutans (Figure 3). We know that cytosine 

and thymine are not required for S. mutans growth since they are not present in CDM 

(Table 1). Consistent with model predictions, uracil and guanine can also be removed 

from CDM. Removing uracil does not significantly alter growth, but removing guanine 

causes a 30% decrease in growth rate (Figure 3). Only the removal of adenine 

completely abolished growth in CDM, which does not agree with our model predictions 

(Figure 3). 

 S. mutans is unable to synthesize thiamine, riboflavin, pyridoxal 5-phosphate, 

NAD+/NADP+, pantothenate, and folate. Anabolic pathways for these vitamins and co-

factors are incomplete and key enzymes are not encoded in the S. mutans UA159 

genome (Figure 2). All of these nutrients (or their metabolic precursors) are ingredients 

in two chemically defined media used to culture streptococci (CDM (31) and FMC (46)). 

Our model predicts aminobenzoate (an ingredient in CDM) can substitute for folate, but 

at least one of these nutrients is required for growth. Indeed, we found that S. mutans 

UA159 can grow in CDM without either folate or aminobenzoate but is unable to grow in 

media lacking both (Figure 3). 

 S. mutans cannot synthesize NAD+/NADP+ de novo. The iSMU model predicts 

that both NAD+ and NADP+ can be produced from any of NAD+, NADP+, nicotinamide, 

or nicotinate alone.  CDM includes two of these four metabolites (NADP+ and 

nicotinamide). Consistent with our model, S. mutans can grow in CDM missing either 

NADP+ or nicotinamide, but not both (Figure 3).   
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Gene deletion simulations match experimental data. 

 Metabolic models contain chemical reactions and gene associations that link 

reactions to their corresponding enzymes. Gene associations are expressed as logical 

statements describing the required gene products for a reaction to carry flux. An 

enzymatic complex of two proteins is expressed using “and” (subunit 1 and subunit 2). A 

pair of isozymes that could each independently catalyze a reaction would be written with 

an “or” (isozyme 1 or isozyme 2). Flux balance analysis and the model’s gene 

associates can be combined to simulate the effects of gene deletions on growth. The 

logical rules in the gene associations are evaluated to identify reactions that cannot 

carry flux in a deletion strain. Reactions that cannot carry flux are removed from the 

model before calculating the maximum biomass flux. Deletion of an essential gene will 

prevent any nonzero biomass flux. Comparing experimentally determined essential 

genes with the model’s predictions to validate the model’s gene associations. 

 We simulated the effects of all single deletions for the 488 genes in the iSMU 

model. We compared the in silico deletions to two experimental gene deletion studies in 

S. mutans UA159: a transposon mutagenesis sequencing (Tn-seq) experiment (47) and 

a screen of an ordered array of single gene deletion strains (48). The Tn-seq study used 

a mariner-family transposon to generate random insertions across the UA159 genome 

(47). The transposon/genomic DNA junctions were amplified and sequenced to quantify 

fitness after growth in a defined media (FMC). Genes lacking transposon insertions 

sites are predicted to be essential in FMC. Overall, 84.8% of the essentiality predictions 

from the iSMU model were consistent with the Tn-seq data (Figure 4B). A comparison 
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between iSMU’s essential gene predictions and the Tn-seq data is shown in the iSMU 

map in Figure 2. 

The gene deletion strains in Quivey, et al., (48) were constructed individually 

using homologous recombination with a selective marker. The deletion library contains 

strains for 1112 of the 1956 genes in S. mutans UA159, including 366 of the 488 genes 

in the iSMU metabolic model. The remaining 122 genes are hypothesized to be 

essential or could not be deleted due to technical limitations. Deletion strains were 

grown in Brain Heart Infusion media (BHI), a rich and undefined media. We simulated 

BHI by opening all exchange reactions in the iSMU model. As shown in Figure 4A, 

78.1% of the experimental essentiality results agreed with the model predictions. 

Agreement between iSMU’s essential gene predictions and the data from Quivey, et. al. 

is highlighted the iSMU map in Figure S1. 

 

Manual curation improves model consistency and accuracy. 

 Several software systems can generate draft metabolic models using reaction 

databases and annotated genomes. Our first attempt at reconstructing the metabolism 

of S. mutans used a draft model from the KBase system (49). Unfortunately, the draft 

model lacked many of the metabolic features of lactic acid bacteria and included several 

subsystems known to be inactive in homofermentive anaerobes. We therefore 

abandoned the KBase model and began a manual reconstruction process. We 

compared the final iSMU model to the KBase model to quantify the disagreement 

between the manual and automated reconstruction pipelines. 
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Our manually curated reconstruction differs substantially from the reconstruction 

produced automatically by KBase. Our iSMU model has 6.4% fewer reactions than the 

KBase model (656 vs. 701) but 97% more genes (488 vs. 247) (Figure 1B). Thus, the 

manually curated model has a larger proportion of gene associated reactions than the 

automated reconstruction. The dearth of gene associations in the KBase model is due 

in part to the 237 reactions added during GapFilling, since GapFilled reactions are 

added without genomic evidence for the reaction. By comparison, our iSMU model 

required only 11 GapFilled reactions to enable growth on defined media and 19 carbon 

sources. 

 The KBase model contains 41% more metabolites than our iSMU model. 

Unfortunately, 22 of the metabolites in the KBase model are “dead-end” metabolites that 

lack either a producing or consuming reaction. The dead-end metabolites block flux 

through 299 (43%) of the KBase model’s reactions. At steady-state, these blocked 

reactions cannot carry flux or be analyzed using Flux Balance Analysis. Less than 2% of 

the reactions in our iSMU model are blocked, indicating more complete reaction 

pathways than the automated reconstruction. 

 

Discussion 

 iSMU is the first whole genome metabolic model of the cariogenic pathogen S. 

mutans UA159. The model captures the entire metabolism of the organism and was 

validated by comparing model predictions to experimental evidence. Metabolism plays a 

dual role in the pathogenicity of S. mutans. First, fermenting sugars creates caries-
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causing lactic acid. A significant portion of the S. mutans genome is dedicated to 

carbohydrate metabolism, reflecting the plasticity of S. mutans’ metabolism. Second, 

multiple metabolic subsystems are required for S. mutans to tolerate acid and 

outcompete non-cariogenic streptococci. A mathematical model allows us to investigate 

connections among metabolic pathways during pathogenesis. 

 iSMU’s predictions agree with most of the nutrient depletion experiments, but 

some of S. mutans’ auxotrophies are unexplained by the model. For example, the 

UA159 genome encodes a complete pathway for adenine synthesis, but exogenous 

adenine is required for growth in vitro. The adenine synthesis pathway in iSMU may not 

be expressed or functional in UA159 when grown aerobically in CDM. Other 

experiments agree qualitatively, but not quantitatively with the model. When guanine, 

aminobenzoate, nicotinamide, or sodium acetate are removed from CDM, S. mutans 

grows slower predicted by the model. The model also underpredicts growth rates when 

pyridoxal and pyridoxamine, riboflavin, and thamine are removed. Differences like these 

are expected with constraint-based models that lack kinetic details for nutrient uptake 

and enzymatic turnover. 

S. mutans UA159 can grow on minimal media with ammonium as the sole 

nitrogen source (40), and the iSMU model can produce biomass in these conditions. 

Experimentally, growth on ammonium requires an anaerobic environment, but the 

model can produce biomass with or without oxygen. Oxygen may repress expression of 

enzymes required for scavenging nitrogen from ammonium, and the lack of regulation in 

our model would explain why iSMU can grow aerobically using ammonium.  
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Several factors could explain the disagreements between the model’s essentiality 

prediction and experimental results. First, we note that both methods for identifying 

essential genes have technical strengths and limitations. In the ordered gene deletion 

library, any gene for which a deletion mutant cannot be constructed is labeled essential. 

A nonessential gene located in a region of the chromosome refractory to homologous 

recombination would be incorrectly labeled as essential. The Tn-seq libraries in Shields, 

et al. were constructed using in vitro transposon mutagenesis followed by homologous 

recombination, so the same limitation applies. The Tn-seq libraries were grown for ~30 

generations before sequencing. Such a large expansion can bias the library against 

mutants with large fitness defects. Although these mutants may be viable, they appear 

at such low frequency in the final pool that they are missed during sequencing. The 

corresponding genes would be incorrectly labeled as essential. The disagreement 

between the Tn-seq and defined deletion library suggest the “essential genome” of S. 

mutans UA159 has not been fully elucidated. 

 Inaccuracies in the iSMU model also contribute to disagreements over essential 

genes. After decades of curation, metabolic models for the model organisms E. coli and 

S. cerevisiae still miss some essential gene predictions (38, 50). Unannotated genes 

could catalyze redundant routes to synthesize essential metabolites in vivo, creating 

false positive essentiality predictions in iSMU. Regulation, loss of function mutations, 

and missing cofactors can also restrict the metabolic capabilities of S. mutans, making 

the pathogen less metabolically flexible than the iSMU model.  
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Overall, believe the model’s predictions could be improved by either 1.) 

incorporating regulatory rules during simulations, or 2.) using gene expression or other 

high-throughput data to tailor the model to anaerobic, aerobic, acidic, or other 

conditions. S. mutans’ metabolic requirements change as the bacterium encounters 

different niches in the mouth. Before forming thick biofilms and deep dental caries, 

growth conditions are likely aerobic with abundant nutrients from saliva and food 

consumed by the host. Deep dental caries may create anaerobic conditions with limited 

nutrient availability. In this environment, S. mutans would need to synthesize many 

biomass components de novo.  

 S. mutans is a model organism in oral microbiology (51). Our iSMU model draws 

from hundreds of studies to form an accurate, genome-wide picture of S. mutans 

metabolism. The model also highlights the value added by manual curation. The 

metabolism of S. mutans is well characterized on the molecular and pathway levels. 

Incorporating manually curated models of S. mutans and other lactic acid bacteria may 

improve the accuracy of automatic reconstruction pipelines. 
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Figure 1: A. Reconstruction of the S. mutans metabolic network began with an 
annotated UA159 genome. The draft model was refined with bioinformatics databases 
and experimental results. B. The manually reconstructed model (iSMU) has fewer 
GapFilled (non-gene associated) and blocked reactions than a model generated 
automatically by the KBase systems. C. The iSMU model contains reactions across 
multiple KEGG pathways, especially carbohydrate catabolism and transport. 
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Figure 2: A custom pathway map shows all reactions in the iSMU model. (A high-
resolution image is available as File S4.) S. mutans UA159 appears to lack complete 
pathways for synthesizing thiamine (A), riboflavin (B), pyridoxine (C), pantothenate (D), 
and biotin (E). Reactions are colored by agreement between the essentiality predictions 
of the associated genes and Tn-seq data from Shields et al. [ref]. Blue reactions agree 
with the Tn-seq essentiality results; red reactions disagree. Overall agreement between 
the datasets is 84.8% (see Figure 4). 
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Figure 3: Model predictions (blue) match growth experiments for S. mutans UA159 in 
defined media (orange). Growth rate was measured for CDM lacking the specified 
component(s). Blue labels indicate removal of all components listed below. 
Experimental data are means of three independent trials with error bars representing 
the standard deviation. Growth rates are normalized to S. mutans UA159 grown in 
complete CDM. 
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Figure 4: iSMU essentiality predictions align with two experimental studies. Shields et 
al. (47) (top) used transposon mutagenesis sequencing (Tn-seq) to identify essential 
genes in the defined media FMC. Quivey, et al. (48) (bottom) screened a library of 
single gene knockout strains for growth in rich media. Blue boxes indicate the number 
(percentage) of genes in the model and dataset that are both essential or nonessential. 
Red boxes indicated disagreements between the model and experiments.  
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Table 1: CDM is composed of 22 amino acids, 11 vitamins, 3 nucleobases, 8 inorganic 
salts, and glucose. 
 

Component Concentration [g/L] 
deionized H2O - 

iron 0.006 
phosphate 18.3 

MgSO4·7H2O 0.7 
MnSO4·H2O 0.005 

NaC2H3O2·3H2O 4.5 
DL-alanine 0.1 
L-arginine 0.1 

L-aspartic acid 0.1 
L-asparagine 0.1 

L-cysteine HCl 0.65 
L-cystine 0.05 

L-glutamic acid 0.1 
L-glutamine 0.2 

glycine 0.1 
L-histidine 0.1 

L-isoleucine 0.1 
L-leucine 0.1 
L-lysine 0.1 

L-methionine 0.1 
L-phenylalanine 0.1 

L-proline 0.1 
hydroxy-L-proline 0.1 

L-serine 0.1 
L-threonine 0.2 
L-tryptophan 0.1 

L-tyrosine 0.1 
L-valine 0.1 

P-aminobenzoic acid 0.0002 
biotin 0.0002 

folic acid 0.0008 
nicotinamide 0.001 

B-nicotinamide adenine dinucleotide phosphate 0.0025 
pantothenate calcium salt 0.002 

pyridoxal 0.001 
pyridoxamine dihydrochloride 0.001 

riboflavin 0.002 
thiamine hydrochloride 0.001 

vitamin B12 0.0001 
adenine 0.02 

guanine hydrochloride 0.02 
uracil 0.02 
CaCl2 0.00676 

NaHCO3 2.5 
glucose 10 
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Supplemental Material 

Table S1: GapFilled reactions in iSMU and evidence for inclusion. 
 
Table S2: Curated genome-scale metabolic models used to compare number of 
reactions without a gene association and blocked reactions.  
 
Table S3: Model comparisons between iSMU, iJO1366, and iYO844. 
 
File S1: iSMU genome-scale metabolic model in SBML file format. 
 
File S2: iSMU genome-scale metabolic model in spreadsheet file format. 
 
File S3: iSMU’s entire model map in JSON file format. 
 
File S4: iSMU’s entire model map in SVG file format. 
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