
Chromatin compaction states, nuclear shape
fluctuations and auxeticity: A biophysical

interpretation of the epigenetic landscape of stem
cells

Kamal Tripathi
The Institute of Mathematical Sciences,

C.I.T. Campus, Taramani, Chennai 600 013, India
and

Homi Bhabha National Institute,
Training School Complex, Anushaktinagar,

Mumbai 400 094, India

Gautam I. Menon⇤

The Institute of Mathematical Sciences,
C.I.T. Campus, Taramani, Chennai 600 013, India

and
Homi Bhabha National Institute,

Training School Complex, Anushaktinagar,
Mumbai 400 094, India

1

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 17, 2018. ; https://doi.org/10.1101/419556doi: bioRxiv preprint 

https://doi.org/10.1101/419556
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract

When embryonic stem cells differentiate, the mechanical properties of their nu-

clei evolve en route to their terminal state. Measurements of the deformability of

cell nuclei in the transitional state that intervenes between the embryonic stem cell

state and the differentiation primed state of mouse stem cells, indicate that such

nuclei are auxetic i.e. have a negative Poisson’s ratio. We show, using a theoretical

model, how this unusual mechanical behaviour results from the coupling between

chromatin compaction states and nuclear shape. Our biophysical approach, which

treats chromatin as an active polymer system whose mechanics is modulated by

nucleosome binding and unbinding, reproduces experimental results while provid-

ing new predictions. We discuss ways of testing these predictions. Our model

suggests a biophysical interpretation of the epigenetic landscape of stem cells.

Keywords: mechanical properties of stem cells, auxetic behaviour, epigenetic land-

scape, stem cell biophysics
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Highlights

• A mathematical model describes the coupling of chromatin compaction states

with fluctuations in the shape of stem cell nuclei

• It explains the observation of auxetic behaviour in mouse stem cells in the tran-

sitional state

• The results agree with experiments and the model provides several testable pre-

dictions

• These results suggest a biophysical interpretation of Waddington’s epigenetic

landscape in terms of chromatin compaction states

Introduction

Embryonic stem cells (ES cells) occupy the apex of a hierarchy of cellular states (Young,

2011). They self-renew, maintaining their “stemness”, but can differentiate into var-

ied cellular lineages when supplied appropriate biochemical or mechanical cues (Suda

et al., 1987; Heo et al., 2018). Lineage choice results from shifts in patterns of gene

expression, controlled by the rewiring of gene regulatory networks through the dif-

ferential expression of transcription factors, but also from modifications to chromatin

structure, such as through the methylation of cytosine residues in CpG dinucleotides by

DNA methyl-transferases, the incorporation of histone variants, the post-translational

modification of amino acid residues in histone sub-units and the action of structural

proteins which alter chromatin conformation (Berger, 2007; Hawkins et al., 2010).

Such epigenetic modifications modify the local structure and biophysical properties of

chromatin.
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Changes in patterns of gene expression should have biophysical correlates, since

they require actively transcribed genes to be more accessible vis a vis. silenced

genes (Rando and Chang, 2009). Regions of chromatin which see higher levels of

transcriptional activity are typically more loosely packed than gene poor and relatively

more compact heterochromatin regions, correlating to local epigenetic marks (Narlikar

et al., 2002). In differentiated cells, trimethylation at the histone location H3K4 re-

sults in an open chromatin configuration characteristic of actively transcribed euchro-

matin, whereas condensed, inactive heterochromatin is enriched in H3K9 and H3K27

trimethylation (Du et al., 2015). ES cells are known to be transcriptionally hyperactive

and to possess an open chromatin state with reduced levels of heterochromatin (Efroni

et al., 2008). Such a state may contribute to the maintenance of pluripotency (Gaspar-

Maia et al., 2011).

The distinction between locally more and less compact local chromatin configu-

rations is clearly relevant to the biophysics of chromatin. It may assume added im-

portance in the highly dynamic stem cell state (McNally, 2011). ES cell chromatin is

known to be ”hyperdynamic”, with histones binding and unbinding locally at an en-

hanced rate compared to differentiated cells (Meshorer et al., 2006). These increased

fluctuations are accompanied by enhanced fluctuations in nuclear shape and size, aris-

ing largely from the absence of A-type lamins in the nuclear lamina of ES cells (Lam-

merding et al., 2004; Talwar et al., 2013). A biophysical link between nuclear me-

chanics, chromatin packaging and lineage choice is suggested by the observation that

purely mechanical cues, such as substrate stiffness or substrate structure, are sufficient

to drive stem cell differentiation into preferred lineages (Engler et al., 2006; Yim and

Sheetz, 2012; Hwang et al., 2013).

Global chromatin remodelling occurs during differentiation, which results in a tran-

sition between an open chromatin configuration to a more compact state (Chen and

Dent, 2014; Ugarte et al., 2015). Prior to lineage commitment, ES cells exhibit de-

4

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 17, 2018. ; https://doi.org/10.1101/419556doi: bioRxiv preprint 

https://doi.org/10.1101/419556
http://creativecommons.org/licenses/by-nc-nd/4.0/


condensed chromatin and soft nuclei. A slowing down of histone dynamics and the

stiffening of the nuclear envelope accompanies differentiation (Engler et al., 2006;

Justin and Engler, 2011; Evans et al., 2009). The interplay of chromatin packaging

with fluctuations of the relatively pliable chromatin-enclosing nuclear envelope might

then reasonably be expected to underly the special biophysical properties of the stem

cell state (Bošković et al., 2014; Dado et al., 2012).

Waddington originally visualised the differentiation of stem cells in terms of a

set of branching tracks representing different cell fate choices (Waddington, 1947).

A subsequent, more pictorial version of this idea used the analogy of a ball rolling

along an “epigenetic landscape” with minima chosen to represent stable differentiated

states (Gilbert, 2000; Waddington, 2014). Stable positions in this landscape have been

argued to correspond to attractors of a high-dimensional nonlinear dynamical system

controlled by feedback (Huang, 2012). This provides a particularly appealing and pic-

torial way of understanding how stem cell differentiation into specific cell lineages can

be visualized. Such ideas connect naturally to other landscape descriptions of bio-

physical states and phenomena (Kauffman, 1992; Onuchic et al., 1997). However,

the experimental corollaries of an epigenetic landscape and how, in particular, nuclear

mechanics might enter its description, are little understood.

We ask whether biophysical measurements of the mechanical properties of stem

cell nuclei can provide insights into these questions (Miroshnikova et al., 2017; Chalut

et al., 2012; Swift and Discher, 2014). We first note that almost all materials have a

positive Poisson’s ratio, becoming fatter in the transverse direction when compressed

uniaxially along a longitudinal dimension (Landau and Lifshitz, 1986; Chaikin et al.,

1995). Materials with a negative Poisson’s ratio, among them foams, are termed aux-

etics (Evans and Alderson, 2000; Grima et al., 2006). Pagliara et al. (Pagliara et al.,

2014) report results from atomic force microscopy (AFM) measurements of the re-

duced modulus K = E/(1 � ⌫

2), with E the unaxial stiffness and ⌫ the Poisson’s
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ratio, of mouse embryonic stem cell (ESC) nuclei exiting the pluripotent state en route

to differentiation. In this transitional state of embryonic stem cells (T-ESC), monitored

through levels of the GFP-labeled pluripotency marker Rex1 and obtained when spe-

cific inhibitors preventing the transition to a differentiation primed state are removed,

the cell nuclei were noticed to become smaller by about 5-10% in cross section when

compressed to the level of about 2 µm with the AFM probe (Pagliara et al., 2014).

Similar results were obtained by observing changes in nuclear dimensions when T-ESC

cells were set in flow along a microchannel. Whereas both the naive embryonic stem

cell state (N-ESC) as well as the differentiation primed state exhibit a positive Pois-

son’s ratio, the T-ESC that intervenes between them is thus auxetic, with a negative

Poissons ratio. Pagliara et al. suggest that the auxetic phenotype might be connected to

chromatin de-condensation, since chromatin in the transitional state is less condensed

than in either the embryonic stem cell state or the differentiation primed state (Pagliara

et al., 2014). Disrupting the actin cytoskeleton through Cytochalasin D treatment did

not remove auxeticity, indicating that it might naturally originate in the biophysical

properties of the nucleus itself and not of the extranuclear environment.

A biophysical approach to understanding this experiment and its larger implica-

tions, both for chromatin biophysics and the origins of stem cell behavior, must iden-

tify relevant variables of interest, especially those that are amenable to measurement.

Fig. 1(a) shows a schematic of the experiments of Ref. (Pagliara et al., 2014) while

Fig. 1(b) illustrates how the on-off dynamics of nucleosomes in the stem cell state

might alter chromatin packaging. Fig. 1(c) illustrates the definitions of the fundamental

mechanical variables that enter our model. We use a single variable, labelled  , to de-

scribe nucleosome-induced compaction of chromatin. The variable  can be thought

of as representing the number of nucleosomes bound to chromatin at a given time,

with the biophysical interpretation that a larger number of bound nucleosomes yields

a more compact chromatin structure. The structural variables Rk = R0 + �Rk and
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Figure 1: (a) Schematic of the AFM experiment of Ref. (Pagliara et al., 2014) (b) Fluc-
tuations in chromatin compaction arising from the fast on-off dynamics of nucleosomes
in the stem cell state, where histones are hyperdynamic (c) Definitions of the variables
 , Rk, and R? in the AFM-based indentation experiment, including the applied force
f arising from the indentation (d) Illustration of normal i.e. non-auxetic behaviour in
the experiments, showing how the nucleus expands in the direction perpendicular to
the applied force f , while the nuclear dimension in the direction parallel to the force
contracts. (e) Illustration of auxetic behaviour, showing how the nucleus contracts both
in the direction perpendicular to the applied force as well as in the direction parallel to
it. The schematic plots in (f) for the non-auxetic case and (g) for the auxetic case show
how the variables  , Rk, and R? behave in both limits as f is increased from zero.
The unperturbed nucleus is taken to be spherical.

R? = R0 + �R? denote nuclear dimensions parallel and perpendicular to the direc-

tion of the applied force f , as shown. Fig. 1(d)- (e) illustrate how nuclei deform under

force in both the non-auxetic (d) and the auxetic (e) case. Finally. Figs. 1(f) and (g)

supply schematics of auxetic and non-auxetic response to a force f , in the variables

 , Rk, and R?. How to derive the schematics of Figs. 1(f) and (g), including the

behaviour of  in both the auxetic and non-auxetic cases predicted by the theoretical

formulation, is the subject of this paper.

Results

We propose that the coupling of nuclear size fluctuations with chromatin compaction

states is responsible for auxetic behaviour. These variables takes the values  0 and R0
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on average but exhibit fluctuations around these values. Crucially, these fluctuations

are not independent of each other. Large values of  should represent large local

compaction, as seen in the differentiated state, whereas small values indicate a more

loosely bound, more permissive state. By considering only the overall compaction in

 , we are implicitly averaging over spatial variations in that quantity, a reasonable

approximation when chromatin is more fluid-like than solid, as in ES cells.

Our model relies on four biophysical assumptions. These follow from the experi-

mental observations. First, chromatin in the auxetic regime is compressible, a funda-

mental property of the auxetic state. Second, mechanical response to an external force

in such a regime must be anisotropic. Such anisotropy is essential to auxetics, although

it should not be intrinsic to isolated stem cells in the absence of an applied force. Third,

a number of experiments indicating chromatin fluidity in all but terminally differenti-

ated states argue that chromatin is best described as a confined, active polymer fluid in

a semi-dilute regime (Pajerowski et al., 2007). (Indeed, the formation of heterochro-

matin foci has been discussed in analogy with active phase separation in liquid-liquid

mixtures (Larson et al., 2017; Strom et al., 2017).) An alternative view of auxeticityy

which considers the nucleoplasm to be a gel and uses ideas from phase separation is

described in Ref. (Yamamoto and Schiessel, 2017). We will treat activity as equivalent

to a (higher) effective temperature (Ganai et al., 2014; Agrawal et al., 2017).

Fourth and finally, we assume that auxetic behaviour arises from the form of the

coupling of chromatin compaction states to mechanical variables, which we choose as

nuclear dimensions parallel to, as well as perpendicular to, the applied force. These

four assumptions, all reasonable from a bio-physical standpoint, inform our mathemat-

ical model. We use them to derive a model non-linear dynamical system describing

auxetic behaviour in the transitional state of stem cells.

Model description

Our equations are formulated in terms of � , �Rk and �R? defined as in Fig. 1 and
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discussed in Methods. The equations describing how these quantities change in time

take the form

d(� )

dt

= �dV (� )

d� 
+B(

1

2
�Rk + �R?) + ⌘ , (1a)

d(�Rk)

dt

= �C�Rk �D� � fk + ⌘

R

, (1b)

d(�R?)

dt

= �C�R? �D� + f? + ⌘

0
R

. (1c)

We have used our freedom to choose units suitably to ”de-dimensionalize” the coef-

ficients that appear in these equations. The first term on the right-hand side of each

of these equations represents the independent relaxation of fluctuations away from

{ 0, R0}. We assume that the � variable relaxes subject to an effective “epigenetic”

potential V (� ). The interpretation of this term as describing an epigenetic potential

will become clearer as we proceed. The second term couples � to the mechanical

variables Rk = R0+ �Rk and R? = R0+ �R?, with coefficient B; the relative factor

of 2 accounts for the 3-d geometry. This is the simplest linear form that these equations

can take. Their biophysical content lies in the estimates of the numerical values asso-

ciated with the coefficients. More subtly, the coupling between chromatin compaction

and nuclear dimensions is to be found in the cross-terms in Eq. 1.

In the absence of a force, Rk and R? are equivalent. The symmetry between them

is broken only by fk and f?. These forces represent both external forces as well as

forces that arise from the remodelling of the extranuclear actin cytoskeleton, which can

be assumed to be uniform in if fk = 0. We can assume that fk couples primarily to �Rk

whereas f? couples to �R?. In the absence of external forces, the two equations reduce

to a single one. The quantity C represents a ratio of time-scales for the relaxation of

the and the R variables. If  0 represents a stable state, or at least a state that evolves

slowly on the time-scale of the fluctuations � , we can expand in these fluctuations.

At the simplest level then, these fluctuations are subject to a harmonic potential. The
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case where �Rk = �R? ⌘ �R, with f? = fk = 0 and the V (� ) term chosen to

be bistable, was studied in Ref. (Talwar et al., 2013), in the context of nuclear size

oscillations in the ES state of mouse stem cells. We will use this more specific form of

these equations when we identify signals of auxetic behaviour in fluctuations within the

undeformed steady state. Our results suggest that signatures of the transition between

auxetic and non-auxetic behaviour might be most easily seen in these fluctuations.

In Ref. (Talwar et al., 2013), in a description of enhanced fluctuations in mouse N-

ESCs, B > 0 was assumed. The physical interpretation there was that increasing the

size of the nucleus would expose binding sites for histones. This leads to a concomitant

increase in � which would then drive the nucleus to shrink (Talwar et al., 2013). The

coupled dynamics of the fast histone on-off rates in the hyperdynamic case with the

slower fluctuations in nuclear size leads to interesting fluctuation behaviour. Such a

choice of sign leads inevitably to non-auxetic behavior; see below.

Experiments show that chromatin is most decondensed in the transitional state,

as opposed to either the ES state or the differentiation primed states between which it

intervenes (Pagliara et al., 2014). A further expansion of nuclear dimensions might then

be expected to result in the expulsion of nucleosomes, rather than their accumulation, in

this intermediate state. Incorporating this into the modelling requires that we consider

the case where B < 0. Indeed, treating the naive pluripotent ESC state with trichostatin

A, an HDAC inhibitor that globally decondenses chromatin, made the N-ESC auxetic,

arguing for the connection our modelling proposes. We can thus view the transition

between the naive stem cell, the transitional state and the differentiation primed state

in terms of a re-entrant behaviour in the sign of B. This is an experimentally testable

prediction.

The on-off dynamics of histones is inherently noisy. Our equations account for

such stochastic effects, represented as additive noise with standard properties, with

terms represented by ⌘ , ⌘R and ⌘

0
R

. In general, the effects of the noise should be
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most significant for the fast fluctuating  variable. We thus choose to retain only the

Gaussian-distributed, delta-correlated ⌘ term in our equations, setting ⌘

R

= ⌘

0
R

= 0.

Auxetic and normal mechanical behaviour in a model description of nuclear in-

dentation

The AFM indentation experiment corresponds to taking f = fk 6= 0, setting f? = 0.

The set of model equations, Eqs. 1 have a number of parameters, which we fix using

experimental and theoretical input. The choice of parameters and the range of values

they can take are discussed in Methods. The solutions of these equations are provided

in Supplementary Information.

Fig. 2 shows plots of � , �Rk and �R? (Fig 2, panels (e) - (h)) for small f , as

obtained from our model equations. The quantities � , �Rk and �R? vary linearly

with f , a consequence of the fact that we assume that V (� ) increases quadratically

about its stable value. This is across the parameter values shown in Fig. 2, panels

(a) - (d), for the state points (B,C) marked on the figures with the filled black circle.

These plots are for a choice of parameters corresponding to non-auxetic i.e. regular

behaviour. For the normal i.e., non-auxetic state, the slope of �Rk and �R? vs. f

should have opposite signs.

Our model predicts that the slope of � vs. f is negative i.e. the compaction

decreases with the applied force in the non-auxetic state; see Fig. 2, panels (e) and (h).

In Fig. 2, panels (m) - (p), we also show results for the auxetic case, where the

slope of �Rk and �R? vs f have the same sign. Note that �Rk and �R? now both

decrease with f . This indicates auxetic behaviour. This behaviour is seen across the

parameter values shown in Fig. 2, panels (i) - (l), for the state points marked on the

figures with the filled black circle. These parameter values are chosen in the regime

where the fixed point is stable, shown in blue. (The grey region shows the regime in

which the equations have unstable solutions.) In the auxetic case, the slope of � vs.

f is positive.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 2: Parameter choices for C and D and : (a) B = 10.0, (b) B = 2.0 (c) B = 0.17
(d) B = 0.1, all in the regime of non-auxetic (regular) behavior . The behaviour of
the dynamical variable with the increase in force for the parameter values (e) C =
0.01, D = 0.02, B = 10.0. (f) C = 0.01, D = 0.02, B = 2.0. (g) C = 0.01, D =
0.02, B = 0.17. (h) C = 0.01, D = 0.02, B = 0.1. Parameter choices for C and D, in
the auxetic regime with (i) B = �0.1, (j) B = �0.17 (k) B = �2.0 (l) B = �10.0.
The line separating blue and gray regions marks the stable-unstable boundary. The
behaviour of the dynamical variable with the increase in force for the parameter values
(m) C = 0.01, D = 0.02, B = �0.1. (n) C = 0.01, D = 0.02, B = �0.17. (o)
C = 0.01, D = 0.02, B = �2.0. (p) C = 0.1, D = 0.02, B = �10.0. (Red and blue
colours in the colour plots show the regions where a stable solution is obtained (red =
normal, blue = auxetic) while the grey colour shows where solutions become unstable).

Thus, the solutions of our model equations yield both auxetic and non-auxetic be-

haviour, controlled by the sign of B in Eqs. 1. The results are consistent with the

schematics of Fig. 1 (f) and (g), which show how chromatin compaction varies upon
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the application of an external force. The additional information they provide relates to

the behaviour of the compaction variable. As shown in Methods, the parameter values

we derive are consistent with experimental measures of auxeticity in transitional stem

cell nuclei.

Describing nuclear shape changes in micro-channel flow

Nuclear indentation through the AFM method described in Ref. (Pagliara et al., 2014)

provides a direct way of accessing the auxetic mechanical behaviour of the nucleus.

Here, a fixed force is applied along the longitudinal (k) direction and a transverse (?)

deformation measured. An alternative method involves an optofluidic assay, in which

cells are passed through narrow micro-channels of controlled width. These cells are

then imaged through fluorescence microscopy of Syto13 labeled cells. When the width

of the channel is comparable to the cell size, this constrains cell dimensions. A further

complication is the role of stretching stresses caused by cytoskeletal strain acting when

cells are confined to the micro-channel. Given our model assumptions, we may model

the confined case by accounting both for fk and f? in the governing equations, Eqs. 1.

Whereas fk is primarily controlled by the size of the constriction through which these

cells pass, f? derives from the anisotropic remodelling of the actin cytoskeleton.

The geometry of the micro-channel experiments is shown in Fig. 3(a), where we

show a cell confined to a channel whose width is comparable to cell dimensions. In

the experiments the channel width is 12 µm while cell sizes range from 6 µm to 14

µm. Fig. 3(b) shows a schematic of the effects of the combination of longitudinal and

transverse forces applied to cells of different sizes, as obtained in our calculations; see

below. For small cells in the auxetic case, if they have unconfined dimensions much

smaller than the channel width, their longitudinal and transverse dimensions increase

when they are confined to the channel. For larger cells in the same limit, both dimen-

sions decrease. These are consistent with expectations from auxetic behaviour. On the

other hand, irrespective of cell sizes in the non-auxetic case, the longitudinal dimen-
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sion decreases while the transverse dimension increases. These are consistent with

the behaviour shown in Fig. 3(b). These schematic results recapitulate the results of

Ref. (Pagliara et al., 2014).

(a) (b)

(c)

(d)

(e)

(I) (II) (III)

(I) (II) (III)

(I) (II) (III)

Small
Nuclei 

Large
Nuclei

Auxetic Non-auxetic

Figure 3: (a): Schematic of a cell confined to a microchannel with width comparable
to cell dimensions, (b) schematic of the effects of the combination of longitudinal and
transverse forces applied to cells of different sizes. These follow from our calculations
and are consistent with the results of Ref. (Pagliara et al., 2014), (c) Plots of Sk and
S? extracted from experiments, for the transitional, primed and naive ES cell states.
The arrow connects the two terminal points. (d) Contour plots for � , �R? and �Rk,
against (fk, f?), with solid lines showing loci of constant strain (e) Predictions for
transitional, primed and naive ES cell states, of Sk and S?. The straight line represents
experimental predictions for intermediate cell sizes. Experimental data are digitized
from the scatter plot of Fig. S10 of Ref. (Pagliara et al., 2014) and shown on the same
figure
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To extend this to the mechanical response of stem cells of various sizes in a micro-

channel, our modelling strategy is the following. The experiments, performed on a

range of cell sizes at a fixed micro-channel width, obtain longitudinal and transverse

strains for an ensemble of cells of different sizes. At the extreme limits of cell sizes,

Fig. S10 of Ref. (Pagliara et al., 2014) shows averaged strains in the parallel and per-

pendicular directions. These are proportional to Rk and R? in our definitions in Eq.

1, and using R0 as our unit of length converts this proportionality to an equality. We

label these strains as Sk and S? and display them in Fig. 3(c) (I) - (III), for the tran-

sitional, primed and naive ES cell states. Starting with these results, we can invert the

relationship between strains and forces, finding the effective fk and f? that produce

these strains.

We can now explore the space of values of (fk, f?), constructing contour plots of

� , �R? and �Rk, as shown in Fig. 3 (d) (I) - (III). The parameters chosen are for the

smallest and the largest cells, using the data shown in Fig. 3(c) (I). The solid lines in

Fig. 3 (d) (II) - (III) represent a choice of a few lines of constant strain in each case, as

a function of fk and f?. These lines then predict the forces (fk, f?) required to create

a fixed strain across cells of different sizes.

The extremal points of Fig. 3(b) (I) - (III) are now associated to points on the

(fk, f?) surface. We can then model the data for cells of sizes intermediate from these

by supposing that fk and f? vary independently and linearly between their terminal

values. We ask if these results can fit data for intermediate cell sizes, shown in the

scatterplot illustrated in Fig. 3 of Ref. (Pagliara et al., 2014). These results are shown

in Fig. 3(e) (I) - (III), for transitional, primed and naive ES cell states. The experimental

data are shown as points while the theoretical prediction that follows from our analysis

is shown as the green line. In all three cases, there is an approximate linear relationship

between Sk and S? that our calculation captures. The magnitude of the strains at

intermediate values of cell size is correctly rendered.
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Our model thus, despite its simplicity, captures all essential features of the data of

Ref. (Pagliara et al., 2014). As we have pointed out, the model can then be used to pro-

vide specific predictions for mechanical response in cells of different sizes. Also, even

though the chromatin compaction variable � was not measured in those experiments,

our model provides specific predictions for how this quantity varies across different cell

sizes in comparison to the width of the microchannel. This prediction is experimentally

testable.

Autocorrelations and cross-correlations of chromatin compaction and nuclear di-

mensions in the auxetic regime

The previous sections explored the use of an external force, either applied directly

using an AFM tip or indirectly by confining cells to a narrow microchannel, in under-

standing auxetic and non-auxetic behaviour. However, our general model formulation

suggests how less invasive ways of probing the coupled mechanical response of chro-

matin compaction and nuclear dimensions might provide useful information. Let us

assume that we can measure both chromatin compaction as well as the dimensions

of the nucleus simultaneously as a function of time - possible ways of doing this are

discussed later. Assuming an initially spherical nucleus, Rk and R? coincide, since

now there is no externally imposed direction that leads to an anisotropic mechanical

response. The only relevant mechanical variable is then R(t), the radius of the spher-

ical nucleus as a function of time. Our equations are now simpler, since they involve

only the two variables,  and R. The solution to the full set of equations is provided

in Supplementary Information.
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(a) (b)

(c) (d)

Figure 4: Computations of autocorrelations and cross-correlations in the simpli-
fied 2-component model, in the auxetic regime, with C = 0.01, D = 0.02 and
B = �0.17. We illustrate the calculation of the following correlation functions: (a)
The autocorrelation of the � variableh� (0)� (t)i, (b) The autocorrelation of the �R
variable, h�R(0)�R(t)i, (c) The cross-correlation between � and �R, h� (0)�R(t)i,
(d) The cross-correlation of �R and � , h�R(0)� (t)i. The insets show the behaviour
close to the origin in two special cases where there is a competition between the two
time-scales for relaxation. Points represent the numerical solution of the Langevin
equations while lines represent the analytic formulae.

Given measurements of  (t) and R(t) = R0 + �R(t), we can ask whether sig-

natures of auxetic and non-auxetic behaviour might be visible in such measurements.

Since such measurements provide data in time, we can compute autocorrelations of

these variables as well as their cross-correlations. The solutions to these equations

can be computed explicitly and are provided in Supplementary Material. Fig. 4 shows

our computation (lines: exact calculations; points: numerical solutions of the Langevin

equation) of autocorrelations and cross-correlations in the model, with parameters cho-
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sen within the auxetic regime.

The autocorrelations h� (0)� (t)i and h�R(0)�R(t)i are shown in Fig. 4(a) - (b)

whereas the cross-correlations h� (0)�R(t)i and h� (0)�R(t)i are shown in Fig. 4(c)

- (d) respectively. The insets expand the behaviour of the cross-correlation functions

close to the origin, where two time-scales for relaxation compete. The time-scale for

the relaxation of autocorrelations in the  variable is substantially smaller than for the

R variable. The cross correlations h� (0)�R(t)i and h� (0)�R(t)i both relax to zero

in an interesting two-step way, with a sharp initial step reflecting the relaxation of the

fast variable  followed by a slower relaxation, primarily driven by the R variable.

We can further investigate (see Supplementary Information) model predictions for

the case in which a weak force is applied and allowed to vary in time in a sinusoidal

fashion. For our linear system of equations, this then implies that quantities such as

�, Rk and R? should also oscillate at the same frequency, but with a phase lag be-

tween them. This phase lag predicts the relative importance of what is termed reactive

and dissipative response, with the first largely located in the elastic properties of the

nuclear envelope and the second associated to dissipation connected to the flow of fluid

across the nuclear envelope as well as of the friction encountered by chromatin as its

fluctuations relax. These can be predicted from the theoretical formulation, and indeed

are the focus of standard experiments in the physics literature that studies soft materials,

but whether their experimental analogue can be probed in biophysical measurements

on stem cells is an open question.

Extracting behaviour as shown in Fig. 4 would constitute a powerful test of model

predictions.

Correlations across the auxetic-nonauxetic boundary as probes of the transition

Our model describes chromatin compaction states using a single variable , with larger

values of  representing overall more compact states of chromatin packing. We sug-

gest that  fluctuates in time about an approximately constant value, but that these
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fluctuations are constrained by an “epigenetic potential”, defined as V (� ), that con-

trols how large they can be. These fluctuations are also constrained by their coupling to

nuclear dimensions through the variables �Rk and �R?. They are influenced, as well,

by the inherent noisiness of nucleosome on-off dynamics in a hyperdynamic state. All

these effects are included in our model.

This choice of an “epigenetic potential” identifies the relevant biophysical distinc-

tion between more open, gene-rich euchromatin and more tightly bound, gene-poor

heterochromatin as broadly being one of local compaction. We project the multi-

dimensional landscape of potential chromatin states that Waddington envisaged, which

should be more generally describable through a spatially varying and sequence-dependant

compaction field, onto a single scalar compaction variable. Our equations then provide

a way of understanding how such a compaction variable couples to mechanical vari-

ables describing nuclear shape and size.

How should we think of the epigenetic landscape in operational terms? Our results

suggest a simple method for determining the location of the auxetic-to-non-auxetic

transition. We will work in the limit described in the previous section, where we infer

the transition by monitoring the system non-invasively, measuring only the variables 

and R as functions of time in steady state. From these measurements, we can calculate

their autocorrelations and cross-correlations.

In Fig. 5, we show plots of the correlation functions h�R(0)� (t)i and h� (0)�R(t)i.

These illustrate that h�R(0)� (t)i is a good indicator of the transition from auxetic to

non-auxetic behaviour, with h�R(0)� (t)i changing the sign of its slope upon ap-

proaching its asymptotic value across the auxetic to non-auxetic boundary. On the

boundary, there is no correlation at all, to this order, between fluctuations in the nuclear

dimension and fluctuations in chromatin compaction. Since the change from auxetic to

non-auxetic behaviour is marked by the parameter B changing sign, it must cross zero

at least at one point. (Since the experimental sequence encountered as ES cells differ-
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entiate is: non-auxetic ! auxetic ! non-auxetic, this suggests that B should change

sign at least twice. This is a specific prediction that can be addressed in experiments,

as we discuss below.)

Now note that at this special point, fluctuations in  decouple from fluctuations in

the nuclear size variable to linear order; fluctuations in  influence fluctuations in �R

but not vice versa. As we show below, this provides a practical way of accessing the

epigenetic potential V (� ).

10-3
10-2

10-1

100
10-2

10-1
100

10-3

D
C

B

(a) (b) (c)

Figure 5: The left columns (a) shows our choice of parameters in (B,C,D) space, with
B, shown on the vertical axis, varied so as to cross the auxetic to non-auxetic boundary.
The two columns on the right, columns (b) and (c) illustrate the correlation function
h�R(0)� (t)i and h� (0)�R(t)i. Across the auxetic to non-auxetic boundary, where
the sign of B changes, the  variable decouples, at lowest order, from the �R variable,
leading to a flat behaviour of the correlation h�R(0)� (t)i. In contrast, while  is not
influenced by �R, fluctuations in  do couple to �R, leading to a non-trivial relaxation
of the correlation function h� (0)�R(t)i. This change of sign of dh�R(0)� (t)i/dt
indicates that the auxetic to non-auxetic boundary has been crossed.
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Inferring an epigenetic potential from experimental data

We can describe the transition between ESC, T-ESC and differentiation-primed states

in terms of a trajectory in the space of the variables C,D and B. As is standard, we

can assume that the parameters controlling these variables must vary smoothly, since

they reflect continuous shifts in the transcriptome; indeed the assumption of smooth

variation is central to landscape ideas. As the stem cell transits between these states, it

encounters auxetic (B < 0) [Fig. 6 (g) - (i)] and non-auxetic (B > 0) [Fig. 6 (d) - (f)]

states, with an intervening B = 0 state, [Fig. 6 (a) - (c)].

For each of these chosen values of B, we illustrate the choice of a specific epige-

netic potential that we can model as a smooth function, shown via the solid lines in

each sub-plot. We choose these functions to be (1) a simple quadratic potential, (2) a

quartic potential with a shallow minimum at the origin and two symmetrically placed

deeper minima on either side, as well as (3), the more complex case of a quadratic po-

tential with a superposed sinusoidal modulation that provides more intricate structure.

We do not yet know what form such a potential takes in the experiments, but intend to

illustrate a method by which information from the measurement of fluctuations could

help in its extraction.

For B = 0, as shown in Fig. 6 (a) - (c), given that � (t) reflects its relaxation in the

epigenetic potential, we form a histogram of � values. Since the governing equation

for the � variable can be interpreted as a Langevin equation for a particle moving in

the specified potential, the steady-state probability distribution of � can be inferred

from this histogram in a straightforward manner, as discussed in Supplementary Ma-

terial. Figs. 6 (a) - (c) shows results from a numerical and analytic reconstruction

of the effective assumed potential V (� ) using such a method. In this way, we thus

proceed from the histogram of measured values to the epigenetic potential that controls

such fluctuations. While the data used in these figures is “synthetic”, the procedure for

extracting the potential from them is robust.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6: Reconstruction of potential landscape V (� ) in the simplified 2-
component model, assuming a quadratic potential for (a) B = 0.0 (b) B = 1.0
(c) B = �1.0, assuming a sextic potential for (d) B = 0.0 (e) B = 1.0 (f)
B = �1.0 and assuming a quadratic potential with a superimposed sinusoid: V (� ) =
a� 2 + b

2
Sin

2(c� ), for (g) B = 0.0 (h) B = 1.0 (i) B = �1.0

Provided |B| 6= 0 is not too large and for parameter values comparable to the ones

we use, this procedure reconstructs V (� ) reasonably well, a consequence of the fact

that fluctuations in �R couple relatively weakly to fluctuations in � . Figs. 6 (d) - (e),

shows V (� ), obtained from histograms of � values as in Figs. 6 (a) - (c), but for

(d) B = -1 and (e) B = 1. These suggest that one need not precisely locate the region

where B vanishes for this approach to be of use.

Discussion

An ”epigenetic landscape”, whose lowest points represent gene expression patterns en-
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coding specific differentiated states, is often pictorially represented in the following

way (Huang, 2012; Furusawa and Kaneko, 2012): Imagine projecting all possible gene

expression states onto a two-dimensional (XY) plane. This projection is constrained

by the requirement that two nearby state points represent closely related expression

patterns. (Naively, the rewiring of gene-regulatory networks required to convert ex-

pression programs from one cell type to another should be smaller the more similar

these cell types are (Huang, 2012).) The height of a surface (the landscape) above a

point on this plane can then be assigned to the relative ”energy” of the state described

by that point. The shape of the surface can then be used as a qualitative way of describ-

ing barriers to accessing different gene expression patterns starting from a given initial

state.

The plasticity required of gene-regulatory networks in the stem cell states implies,

in this pictorial analogy, that the shape of the landscape should determine which states

will become unstable - and to which other states - as biochemical and mechanical pa-

rameters are changed. Biochemical parameters here could refer to levels of protein

factors that modulate stemness while mechanical parameters could represent the stiff-

ness and anisotropy of the substrate on which these cells are cultured (Li et al., 2012).

If one imagines, as Waddington did, a ball rolling on this landscape as representing the

stem cell state choosing between terminally differentiated states, the motion of the ball

should be biased by the underlying shape of the landscape, including its peaks, ridges

and valleys. The resulting energy surface can be depicted as a geographical landscape,

along the lines of Waddington’s original picture. Such a qualitative picture also sug-

gests that this landscape might also be thought of as dynamic, tilting and deforming to

favour one set of states over others. This would then describe how an initial state might

be guided to a specific cell fate as the cell integrates external environmental signals

when driven to differentiate.

The description of the previous paragraph proceeded along conventional lines. Our
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Figure 7: Schematic of Epigenetic Landscape in a Compaction variable A pictorial
representation of the epigenetic landscape, projected onto a single variable describing
overall compaction. Points towards the back of the figure represented the ES cell state
while points in the valleys towards the foreground represent differentiated states. As
one moves from back to front, the figure describes how the effective potential governing
overall compaction can be described via a cut through the landscape as shown.

view here emphasizes biophysical aspects of this argument. Instead of projecting states

depending on their proximity in gene expression space, we imagine them to be pro-

jected according to their level of chromatin compaction; arguments concerning the

proximity of closely related cell types in such a “chromatin compaction” space should

parallel those in the case of the “gene expression” space. To motivate this, we note

that the relative ratio of heterochromatin to euchromatin varies across differentiated

cell types (Rivera and Ren, 2013). It has been suggested that chromatin density might

itself act to regulate gene expression in a stem cell population (Golkaram et al., 2017).

While the embryonic stem call state has a chromatin organization that is best described

as a highly correlated fluid, the differentiated state fluctuates far less, with condensed

heterochromatin foci forming during the differentiation of pluripotent embryonic stem
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cells (Mao et al., 2015). The formation of heterochromatin domains has recently been

argued to be mediated by phase separation (Larson et al., 2017; Strom et al., 2017).

Together with the accumulation of silencing histone marks, this results in differential

expression (Meshorer and Misteli, 2006). Classifying the epigenetic states underlying

these cell types through their levels of local chromatin compaction should provide one

approximate way of connecting the theoretical ideas presented here to experimental

data.

This idea is illustrated in Fig. 7, which shows a schematic of such a landscape. The

coloured balls towards the front of the figure represents stable, differentiated states.

The ball at the back represents the ES cell state. As the cell differentiates, one imagines

that the landscape is titled forward so as to allow the ball to fall towards these stable

states. All possible accessible intermediate states can be represented, again pictorially,

in terms of a plan that intersects this landscape. The curve that defines where these two

curves intersect provides a one-dimensional surface, to be identified with the V (� )

of our discussion.

We stress that all projections from a high-dimensional space to a low-dimensional

one, involve a loss of information. The question is whether the reduced information

that results from projecting the complexity of epigenetic control into the reduced space

of overall compaction, suffices for a biophysical description. Expanding this epigenetic

potential V (� ) about a local minimum led to the results described in this paper. How-

ever, we should ideally think of this potential as itself evolving over some time scale

and the choice of the initial point as reflecting a cell-specific initial condition, such as

cellular levels of Lamin A (Swift et al., 2013).

The fluorescence anisotropy measurements of labelled histones in the embryonic

stem cells state presented in Ref. (Talwar et al., 2013), coupled to confocal microscopy

measurements of the nuclear dimensions, should provide a non-invasive way of deter-

mining the coupling of chromatin compaction to mechanical variables describing the
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nucleus and its shape. Examining other possibilities for simultaneously characteriz-

ing chromatin compaction in addition to nuclear size and shape in a non-invasive way

would be especially valuable.

Conclusions

In this paper, we presented a theory of auxetic behaviour in the nuclei of stem cells in

the transitional state. We began by pointing out that the unusual mechanical proper-

ties of the stem cell nucleus, as well as its fluctuations, should provide a window into

the packaging and dynamic character of the chromatin states contained within it. We

argued that fluctuations in chromatin compaction should couple to fluctuations in the

dimensions of the relatively soft nucleus that characterizes stem cells. We used these

observations to argue that these coupled fluctuations, in chromatin packaging and nu-

clear shape, was most easily described in terms of a coupled, in general non-linear,

dynamical system in three variables. We exploited the experimental observation that

chromatin is least compact in the transitional state as compared to the pluripotent state

and the differentiation primed state, to argue for a specific sign of the coupling term

that connected size fluctuations to chromatin density fluctuations. We then showed how

auxeticity resulted as a consequence, providing a simple and intuitive explanation for

this puzzling observation. We then went on to suggest that we could map out the nor-

mal to auxetic transition using ideas from the model. We further suggested experiments

that could implement and test these ideas.

We proposed that projecting the complex spatial-temporal distribution of chromatin

compaction onto an overall compaction variable and interpreting the time-dependence

of this variable in terms of motion within a simplified one-dimensional potential, should

provide a particularly useful biophysical way of formalizing Waddington’s intuitive

picture of an “epigenetic landscape” (Gilbert, 2000). This way of understanding land-

scape ideas in the differentiation of stem cells appears to be novel. Implementing the

related analysis experimentally would seem to be feasible. Connecting microscopic,
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molecular-scale biochemical views of how stem cell transcriptional programs are mod-

ulated, with the averaged, larger-scale biophysical approach that we describe in this

paper, should lead to an improved understanding of the determinants of stem cell me-

chanics and their coupling to chromatin states. This improved understanding should

also help to illuminate the role of the mechanical environment in biasing lineage choice.

Methods

Derivation of model equations: R equation

Our equations are motivated in the following way, illustrated, for simplicity, in the

isotropic case: Assume first that the nuclear is a sphere of radius R, prestressed by chro-

matin polymer pressure. Given compressibility, assume that the dominant modes of

fluctuations are breathing modes, associated with an elastic energy E

el

= Ka
2a0

⇥
(a� a0)2

⇤
,

which penalises changes in area a from an unstressed or even pre-stressed state where

the area is a0. This term also accounts for the contribution of the actin cytoskele-

ton, which enters as a modified area expansion modulus K

a

. Fluid flow in and out

of the sphere, driven by a pressure imbalance, leads to volume changes and is re-

sisted by a cost for deviations in the surface area from its preferred value. Describ-

ing stem-cell chromatin as a polymer solution at an effective (active) temperature T

⇤,

the free energy of the polymer solution in units of k

B

T

⇤, is of the form f

m

(�) =

�

N

ln� + (1 � �)ln(1 � �) + ��(1 � �) + (1/(24⇡)⇠3 where ⇠ ⇠ �

�⌫/(3⌫�1) is the

correlation term arising from monomer density fluctuations (Doi, 1996; Muthukumar,

2012). Activity enters as an effective temperature T⇤. More subtly, it modifies the

effective Flory term �.

The polymer osmotic pressure follows from ⇧ = kBT

⇤

⌫c

h
�

@fm

@�

� f

m

i
, which

yields ⇧ = kBT

⇤

⌫c

h
�

N

� ln(1� �)� �� ��

2
i
, where k

B

is the Boltzmann constant,

T

⇤ is the effective temperature, ⌫
c

is the monomer volume, � is the volume fraction
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of the polymer and N is the degree of polymerization (Doi, 1996). Physically, � al-

ters the relative balance of chromatin-chromatin and chromatin-solvent interactions, as

manifest in the compaction state of chromatin. The effective Flory parameter � is then

tuned by the fraction of bound nucleosomes, which controls  : � = �( ). We then

have,

�⇧ = �k

B

T�

2
0

⌫

c

�

0
� , (2)

where �0 =
d�

d 
. Penalising fluctuations of the nuclear envelope from its preferred area

a0 yieldings a restoring net force of the form F = �16⇡K
a

�R and thus a pressure term

�P =
4K

a

R

2
0

�R. (3)

Darcy’s law provides an expression for the rate of change of volume dV

dt

= A

µL

(�⇧�

�P ), where  is the permeability (m2), A is the area of the nucleus, µ the viscosity

and L the length over which the pressure drops (Whitaker, 1986). This yields, where

we use the notation Ṙ = dR/dt,  ̇ = d /dt,

Ṙ = �
✓
4K

a

µLR

2
0

◆
�R�

✓
k

B

T�

2
0

µL⌫

c

�

0
◆
� , =) Ṙ = �C�R�D� , (4)

where C =
4K

a

µLR

2
0

and D =
k

B

T�

2
0

µL⌫

c

�

0. Note that D > 0 is required by the biophys-

ical input that the binding of histones must lead to a contraction in DNA. The larger

the polymer-solvent interaction, the smaller the Flory-Huggins � parameter implying

that we can interpret histone binding and the consequent compaction of DNA as an

effective decrease of the polymer-solvent interaction with histone binding. This then

implies that the effective Flory-Huggins parameter should increase with  , implying

that �0
> 0 . Here, �⇧ � �P provides the driving force, in this case the difference

between polymer and Laplace pressures relative to their unperturbed values. This holds

in the absence of a force f .
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This result is easily generalized to the anisotropic case.

Derivation of model equations:  equation

We now discuss the dynamics of � . First, ignoring the coupling to R? and Rk, we

model fluctuations in  as relaxing in an over-damped manner to  0. This dynamics

explores the one-dimensional landscape defined through the effective potential V (� ),

with  0 at least a local minimum. Consider N nucleosome binding sites on a piece

of DNA, in equilibrium with unbound nucleosomes at chemical potential µ, with the

energy gain from nucleosome binding to DNA being ✏. The probability of the nucle-

osome being bound is the Fermi function p = 1/(1 + e

(✏�µ)/kBT ). If the radius of

the confining sphere is changed from R0 to R = R0 + �R, the DNA will stretch in

place, altering ✏. Assuming ✏ = ✏(R), ✏(R) = ✏(R0 + �R) ⇡ ✏(R0) + ✏

0
�R where

✏

0 =
@✏

@�R

. Expanding e

�✏

0
�R/kBT ⇡ 1� ✏

0
�R/k

B

T , yields � ⇡ Nx0✏
0
�R

kBT (1+x0)2
where

e

�µ/kBT = ⇣ and ✏(R0) = ✏0, x0 = ⇣e

�✏0/kBT . Thus, changes in R also drive

changes in  , which evolves to its final value, given the change �R, through a kinetic

coefficient which multiplies the term above. Adding to this the term in � coming

from the epigenetic potential, which can be assumed to be quadratic at lowest order in

an expansion about the stable value  0:V (� ) = 1
2A(� )2, we have our final result:

 ̇ = �A� +B�R. The sign of B depends on the sign of ✏0, since all other quantities

that enter its definition (N, x0 and B) are explicitly positive, reducing to the question

of whether the nucleosome binding energy is reduced when the nucleus is expanded.

In general, as is known from in vitro single molecule experiments, extending DNA

expels bound nucleosomes, implying that their binding energy is reduced upon stretch-

ing; thus, the sign of B should be negative for the auxetic state given our interpretation

above.

Estimation of parameters

We now estimate C = 4K
a

/µLR

2
0 and D = k

B

T�

2
0/µL⌫c�

0. We take  = l

2
p

,
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relating the permeability  to the pore size l

p

. Assuming a nuclear pore complex size

of l
p

' 5nm (Davis, 1995), this yields  = 2.5 ⇥ 10�17
m

2. From plate theory, the

area modulus K
a

and the Youngs modulus E are related through K

a

⇡ Et, (Landau

and Lifshitz, 1986) where t is the thickness of the plate. Thus, C = 4A

µLR

2
0
⇡ 4l2p⇥Et

µtR

2
0

=

4l2pE

µR

2
0

. With E ⇡ 200 Pa (Caille et al., 2002; Guilak et al., 2000; Dahl et al., 2005),

the radius of the nucleus R0 = 5 ⇥ 10�6
m and µ ⇡ 2 � 3 centi-poise ⇡ 2 ⇥ 10�3

Pa-sec, (Mastro et al., 1984) C ⇡ 0.4sec�1. To calculate D, we assume that the

length over which the pressure drops is the same as the membrane thickness (65 nm

(Franke, 1970)). With ⌫

c

= (10nm)3 (Finch et al., 1977; Luger et al., 1997; Richmond

and Davey, 2003), the polymer volume fraction ⇡ 0.1 and T ' 300 K, we obtain

D ⇡ 8⇥ 10�6
�

0
m/sec.

Mapping to the experimental system

In steady state,  = Bf

(2AC�3BD) , Rk = � (2AC�2BD)
(2AC�3BD)

f

C

and R? = BD

(2AC�3BD)
f

C

.

For finiteness, we require 2C�3D 6= 0. From this, the Poisson’s ratio is ⌫ = � �R?
�Rk

=

� BD

2CA+2BD

. Choosing the experimental value of ⌫ = �0.25 and rearranging the

above expression, we find that CA

BD

= 3. Making a reasonable choice for the ratio

⌧ /⌧R ' 0.01, yields ⌧ and the value of C obtained above yields ⌧
R

= 2.5 sec and

⌧ = 2.5 ⇥ 10�2 sec, with A = 40sec�1. Fom B = CA

3D , B = 7⇥105⇥5⇥107

3�0 =

7⇥105

�

0 m

�1
sec

�1. Our final set of parameter values is then C = 0.4sec�1
, ⌧

R

=

2.5sec, D = 8⇥10�6
�

0m-sec�1
, A = 40sec�1

, ⌧ = 2.5⇥10�2sec, B = 7⇥105

�

0 m�1sec�1.

In dimensionless units, taking ⌧ = 2.5 ⇥ 10�2
sec and measuring length in units of

R0, yields: A = 1.0, C = 0.01, D = 0.04�0 and B = 0.09/�0. If we assume
d�

d | = 0 ' �

 0
, � ⇡ 0.5 and  0 = 1, this yields �0 = 0.5.

Numerical simulations

Our numerical simulations implement Langevin dynamics in solving the stochastic

Eqns. 1. We use both a simple Euler discretization as well as a fourth order Runge-
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Kutta method, checking that both gave essentially similar results.
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Luger, K., Mäder, A. W., Richmond, R. K., Sargent, D. F. and Richmond, T. J. (1997).

Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251.
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S1 Exact solution of the anisotropic case for a harmonic

epigenetic potential in the absence of noise

Our governing equations represent a three-dimensional, coupled and, in general, non-
linear dynamical system. The choice of a harmonic epigenetic potential � 2

/2 and a
constant force f yields a linear system of equations that can be written as,

˙

� = �A� +B

✓
1

2

�Rk + �R?

◆
+ ⌘ ,

˙

�Rk = �C�Rk �D� � f, (1)
˙

�R? = �C�R? �D� .

We define the Laplace transform and its inverse as,

X(s) =

Z 1

0
x(t)e

�st
dt,

x(t) =

Z 1

0
X(s)e

st
ds. (2)

Using the definition in Eq 2, we take the Laplace transform of Eqs 1,

s� (s)� � (0) = �A� (s) +

B

2

�Rk(s) +B�R?(s),

s�Rk(s)� �Rk((0) = �C�Rk(s)�D� (s)� f

s

, (3)

s�R?(s)� �R?(0) = �C�R?(s)�D� (s).

For the simplest initial condition, with � (0) = �Rk(0) = �R?(0) = 0, taking the
inverse Laplace transform yields the solution.

� (t) =

Bf

2

(a+ be

c11t
+ ce

c22t
),

�Rk(t) = �BDf

2

(a+ be

�ct
+ ce

c11t
+ de

c22t
),

�R?(t) = �BDf

2

(a+ be

�ct
+ ce

c11t
+ de

c22t
).

where the constants a, b, c, c11 and c22 are given by the following,

a =

1

c11c22
,

b =

1

c11(c11 � c22)
,

c =

1

c22(c22 � c11)
,

and

c11,22 =

�(A+ C)±
p

(C �A)

2
+ 6BD

2

.
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At long times, these solutions attain steady state values that vary linearly with the
applied force f .

S2 Correlation functions for the case of a harmonic epi-

genetic potential

For the system of equations which incorporates noise in the chromatin compaction
variable, we can compute correlation functions analytically. We define Fourier and
inverse Fourier transforms as:

X(!) =

Z 1

0
x(t)e

i!t
dt

x(t) =

Z 1

0
X(s)e

�i!t
ds (4)

Taking the Fourier transform of the system and rearranging gives,

(i! +A)� (!) = �0.5B�Rk(!)�B�R?(!) + ↵⌘(!),

(i! + C)�Rk(!) = �D� (!)� f�(!), (5)
(i! + C)�R?(!) = �D� (!).

Solving this system of equations. Eqs. 5 simultaneously, for � (!) yields the expres-
sion,

� (!) =

Bf�(!) + 2↵(i! + C)⌘(!)

[2(i! + C)(i! +A)� 3BD]

, (6)

Using the expression for � (!) and the assumption that the noise is Gaussian and delta
correlated yields

< ⌘(!) > = 0

< ⌘(!)⌘(!

0
) > = 2⇡�(! + !

0
). (7)

We thus obtain

h� (!)� (!0
)i = B

2
f

2
�(!)�(!

0
) + 8⇡↵

2
(i! + C)(i!

0
+ C)�(! + !

0
)

[2(i! + C)(i! +A)� 3BD][2(i!

0
+ C)(i!

0
+A)� 3BD]

.

(8)

The inverse Fourier transform of the expression Eq. 8 yields the correlation function
h� (t)� (t0)i,

h� (t)� (t0)i = 1

(2⇡)

2

Z Z
d!d!

0h� (!)� (!0
)ie�i!t�i!0t0

. (9)

and
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h� (t)� (t0)i = B

2
f

2

4⇡

2
(2AC � 3BD)

2
+

↵

2

2!0!1(!
2
0 � !

2
1)

⇥
(!0 + !1)(z

2
3 + c

2
)

e

�(!0�!1)�t � (!0 � !1)(z
2
4 + c

2
)e

�(!0+!1)�t
].

Now, we remove the constant part and keep the part coming from the fluctuation,

h� (t)� (t0)i = ↵

2

2!0!1(!
2
0 � !

2
1)

h
(!0 + !1)(z

2
3 + c

2
)e

�(!0�!1)�t

�(!0 � !1)(z
2
4 + c

2
)e

�(!0+!1)�t
].

where �t = t� t

0, z1,2 = i(!0 ± !1), z3,4 = i(�!0 ± !1), !0 and !1 is given by,

!0 =

C +A

2

,

!1 =

p
(C �A)

2
+ 6BD

2

.

The other correlation functions are calculated in a similar way. The expressions are as
follows,

h�Rk(0)�Rk(t)i =
↵

2
D

2

2!0!1


e

�(!0�!1)t

(!0 � !1)
� e

�(!0+!1)t

(!0 + !1)

�
, (10)

h�R?(0)�R?(t)i =
↵

2
D

2

2!0!1


e

�(!0�!1)t

(!0 � !1)
� e

�(!0+!1)t

(!0 + !1)

�
, (11)

h�Rk(0)�R?(t)i =
↵

2
D

2

2!0!1


e

�(!0�!1)t

(!0 � !1)
� e

�(!0+!1)t

(!0 + !1)

�
, (12)

h�Rk(0)� (t)i =
↵

2
D

2!0!1


C � (!0 � !1)

!0 � !1
e

�(!0�!1)t � C � (!0 + !1)

!0 + !1
e

�(!0+!1)t

�
,

(13)

h�R?(0)� (t)i =
↵

2
D

2!0!1


C � (!0 � !1)

!0 � !1
e

�(!0�!1)t � C � (!0 + !1)

!0 + !1
e

�(!0+!1)t

�
,

(14)

We display a number of autocorrelation and cross-correlation functions for the 3-
dimensional auxetic system in S1.
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(a) (b) (c)

(d) (e) (f)

Figure S1: Computations of autocorrelations and cross-correlations, in the auxetic regime,

with C = 0.01, D = 0.02 and B = �0.17 (a) the autocorrelation function for � ,
h� (0)� (t)i, (b) the autocorrelation function for �Rk, h�Rk(0)�Rk(t)i, (c) the autocorre-
lation function for �R?, h�R?(0)�R?(t)i, (d) the cross-correlation function for � and �Rk,
h� (0)�Rk(t)i, (e) he cross-correlation function for �Rk and �R?, h�Rk(0)�R?(t)i and (f)

he cross-correlation function for �R? and � , h�R?(0)� (t)i. The insets show the behaviour
close to the origin in two special cases where there is a competition between the two time-scales
for relaxation. Points represent the numerical solution of the Langevin equations while lines
represent the analytic formulae.

S3 Long time behaviour of cross-correlation functions

The expression for the cross-correlation function h�R?(0)� (t)i is,

h�R?(0)� (t)i =
↵

2
D

2!0!1


C � (!0 � !1)

!0 � !1
e

�(!0�!1)t � C � (!0 + !1)

!0 + !1
e

�(!0+!1)t

�
,

(15)

where !0 = (C +A)/2 and !1 = (

p
(C �A)

2
+ 6BD)/2.

From Eq. 15, it is evident that there are two time scales 1/(!0 � !1) and 1/(!0 +

!1). Since 1/(!0 � !1) > 1/(!0 + !1), for the long term behaviour, we keep the
e

�(!0�!1)t term and discard the e

�(!0+!1)t term. The resulting correlation function,
in the long time limit, can be written as,

h�R?(0)� (t)it>>0 =

↵

2
D

2!0!1

✓
C � (!0 � !1)

!0 � !1

◆
e

�(!0�!1)t
. (16)

We normalize by,

�R?(0)� (t)it=0 =

↵

2
D

2!0!1


C � (!0 � !1)

!0 � !1
� C � (!0 + !1)

!0 + !1

�
, (17)
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which yields,

h�R?(0)� (t)it>>0 =

⇣
C�(!0�!1)

!0�!1

⌘

⇣
C�(!0�!1)

!0�!1
� C�(!0+!1)

!0+!1

⌘
e

�(!0�!1)t
. (18)

Eq. 18 for a choice of values of B is plotted in S2. The slope of the cross-correlation
function h�R?(0)� (t)i changes sign as the parameter B changes sign indicating the
boundary of auxetic and non-auxetic regime. Similary the slope of the cross-correlation
h�Rk(0)� (t)i changes sign at the auxetic-nonauxetic boundary, while there is no such
change in the slope of cross-correlation functions h� (0)Rk(t)i and h� (0)R?(t)i
(Figure S3).

Figure S2: The figure shows the long time cross-correlation function h�R?(0)� (t)it>>0 with
the various values of B from B = �1.0 to B = 1.0 including the B = 0 case. We see that the
slope of the correlation finction changes as the sign of the parameter B changes from negative to
positive.

The correlation functions h�R?(0)� (t)i and h� (0)�R?(t)i are same as h�Rk(0)� (t)i
and h� (0)�Rk(t)i. Exchanging Rk with R? has no effect on correlation functions.

S4 Periodic Force

The three-dimensional system with a harmonic potential and a periodic force can be
written as,

˙

� = �A� +B

✓
1

2

�Rk + �R?

◆
+ ⌘ ,

˙

�Rk = �C�Rk �D� � f sin!t, (19)
˙

�R? = �C�R? �D� .
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(a) (b)

(c) (d)

Figure S3: The correlation functions (a) the cross-correlation function for �R? and � ,
h�R?(0)� (t)i (b) the cross-correlation function for � and �R?, h� (0)�R?(t)i (c) the
cross-correlation function for �Rk and � , h�Rk(0)� (t)i (d) the cross-correlation function
for � and �Rk, h� (0)�Rk(t)i with different values of parameter B. We see that the correla-
tion functions h�R?(0)� (t)i and h�Rk(0)� (t)i change the slope with the parameter B while
there is no such effect on h� (0)�R?(t)i and h� (0)�Rk(t)i.

Following the procedure of section S1,

� (t) =

Bf!

2

✓
A1e

c11t
+B1e

c22t
+ C1 cos(!t) +

D1

!

Sin(!t)

◆
(20)

�Rk(t) = �BDf!

2

⇥
A2e

�Ct
+B2e

c11t
+ C2e

c22t
+D2 cos(!t)

+

E2

!

sin(!t)

�
� f!


Ke

�Ct
+ L cos(!t) +

M

!

sin(!t)

�
(21)

�R?(t) = �BDf!

2


A2e

�Ct
+B2e

c11t
+ C2e

c22t
+D2 cos(!t) +

E2

!

sin(!t)

�

(22)
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In order to get the steady state part of the solution, we discard the exponential terms
which leads to the following expressions,

� (t) =

Bf!

2

✓
C1 cos(!t) +

D1

!

Sin(!t)

◆

�Rk(t) = �

BDD2

2

+ L

�
f! cos(!t)�


BDE2

2

+M

�
f sin(!t) (23)

�R?(t) = �BDf!

2


D2 cos(!t) +

E2

!

sin(!t)

�

(24)

where the constants A1, B1, C1, D1, A2, B2, C2, D2, E2, K, L and M are given by
the following,

A1 =

1

(c11 � c22)(c
2
11 + !

2
)

B1 = � 1

(c11 � c22)(c
2
22 + !

2
)

C1 =

c11 � c22

(c

2
11 + !

2
)(c

2
22 + !

2
)

D1 =

c11c22 � !

2

(c

2
11 + !

2
)(c

2
22 + !

2
)

A2 =

1

(C + c11)(C + c22)(C
2
+ !

2
)

B2 =

1

(C + c11)(c11 � c22)(c
2
11 + !

2
)

C2 =

1

(C + c22)(c22 � c11)(c
2
22 + !

2
)

D2 =

Cc11 + Cc22 � c11c22 + !

2

(c

2
+ !

2
)(c

2
11 + !

2
)(c

2
22 + !

2
)

E2 =

Cc11c22 + C!

2
+ c11!

2
+ c22!

2

(C

2
+ !

2
)(c

2
11 + !

2
)(c

2
22 + !

2
)

K =

1

C

2
+ !

2

L = � 1

C

2
+ !

2

M = � C

C

2
+ !

2

with c11,22 =

�(A+C)±
p

(C�A)2+6BD

2
The variables � (t), �Rk(t) and �R?(t) for auxetic and normal systems in steady

state are plotted with time t (Figure S4).
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(a) (b)

Figure S4: The behaviour of the systems under periodic force The figure (a) shows that how
an auxetic system (b) a normal system behaves under a periodic force. It can be seen that in
auxetic case, both radii �Rk and �R? simulanteously increase or decrease while in normal case,
if one increases, the other decreases and vice-versa.

S5 Reconstruction of the Potential Landscape

A simpler 2-d analog of the dynamical system (1) can be written as following,

˙

� = �@V (� )

@� 

+B�R+ ⌘ , (25)

˙

�R = �C�R�D� . (26)

Assuming that the dynamics of �R is much slower than that of � , we can consider
�R as a constant in ˙

� equation. This results in,

˙

� = � @

@� 

[V (� )�B�R� ] + ⌘(t). (27)

The corresponding Fokker-Planck equation can be written as,

@P (� , t)

@t

=

@

@� 


@Veff (� )

@� 

P (� , t)

�
+

1

2

@

2

@

2
� 

P (� , t), (28)

where Veff (� ) = V (� )�B�R� .
For the steady state solution @P/@t = 0,

@

@� 


@Veff (� )

@� 

P (� , t)

�
+

1

2

@

2

@

2
� 

P (� , t) = 0, (29)

or,

@

@� 


@Veff (� )

@� 

Ps(� ) +
1

2

@

@� 

Ps(� )

�
= 0 =

@

@� 

j(� ) (30)
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In steady state, the flux j(� ) vanishes, thus This means,


d

d� 

+ 2

dVeff (� )

d� 

�
Ps(� ) = 0. (31)

The above equation can be solved for the values of � for a constant value of �R. Once
we have those values, we can obtain the distribution P (� ). Taking the negative log
of this result yields the effective potential Veff , as

Ps(� ) ⇠ exp(�2Veff (� )),

Ps(� ) ⇠ exp(�2(V (� ))�B�R� ),

V (� ) ⇠ �0.5 ln[Ps(� )] +B�R� . (32)

For the parameter value B = 0, this expression relates the probability distribution
P (� ) to the potential landscape V (� ). This strategy is used in the reconstruction of
the potential landscape in the Figure 6 of the main text.
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