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Abstract

Tracking algorithms used in conjunction with fluorescent time-lapse microscopy data
typically assume a continuous signal where (a) background and keypoints are
permanently visible and (b) independently moving objects of interest are permanently
visible when not occluded. These conditions allow for registration and identity
management algorithms to track independently-moving objects of interest over time. In
contrast to such conditions, we consider the case of (a) transient fluorescent events and
(b) objects embedded in a possibly imperceptible, almost rigid structure, which acts to
constrain independent object movement. In a biological context, such events could for
example represent cell divisions in a growing tissue. Such conditions motivate the
merging of registration and tracking tasks into a fuzzy registration algorithm to solve
the identity management problem. We describe the design and application of such an
algorithm, illustrated in the domain of plant biology and made available as an open
source software implementation.

Introduction 1

It is now generally acknowledged that automated computer vision and tracking methods 2

can match or exceed manual human-led tracking of objects in large image datasets and 3

that due to the rate at which such data are being produced, these methods are of 4

growing importance [1, 2]. 5

Fluorescence time-lapse microscopy exploits markers that emit light continuously for 6

a period of time allowing for objects of interest to be tracked [1, 3–6] notwithstanding 7

occlusions or objects leaving and entering scenes. Here we consider transient fluorescent 8

events where objects in the field of view fluoresce for a relatively short time to mark 9

events of interest. While our model is general, the case-study considered here uses 10

transient fluorescent markers to detect mitotic events in growing Arabidopsis roots. To 11

count distinct mitotic events using transient fluorescent markers we effectively exchange 12

the more common segmentation with morphological analysis problem [6] for a fuzzy 13

registration-tracking problem. 14

Point-set registration [7–10] involves identifying keypoint correspondences in two 15

frames. Keypoints may correspond for example to distinctive edges or blobs that exist 16

in both frames. If points appear in only one frame they are treated as outliers in the 17

registration problem. Given a keypoint correspondence (pairs of inliers), an affine 18

transformation (i.e. a generalised transformation including translations, rotations, 19

scalings) that takes one set of points to the other can be determined. Our data typically 20

September 17, 2018 1/17

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 18, 2018. ; https://doi.org/10.1101/419572doi: bioRxiv preprint 

https://doi.org/10.1101/419572
http://creativecommons.org/licenses/by/4.0/


contain few guaranteed inliers as fluorescence events typically have short life-times 21

(several frames) and tissue structures may be difficult to identify. This is the key 22

problem that we have tried to address. The problem should be understood as sitting 23

between a single particle tracking problem and a registration problem. Single particle 24

tracking solutions may or may not require pre-registration. In the case that they do 25

require pre-registration, keypoint registration solutions may not be robust against lack 26

of guaranteed inliners. In the case where single particle tracking methods are robust in 27

the absence of pre-registration, they typically emphasise individual object motion 28

models, which may not be optimal under certain data conditions i.e. transient events in 29

rigid structures and low signal to noise ratio across extended images sequences. 30

Object tracking in time-lapse image data involves detection of objects in individual 31

frames and solving the data association or identity management problem between 32

frames. The goal of identity management is to link an object observed at one time point 33

to what is found to be the same object observed at a later time point. Unique 34

identifiers are propagated between married objects, i.e. objects determined to be the 35

same object in each frame. The set of observations of a given object through time is 36

referred to as it’s lineage. One early example of a tracking algorithm, multiple 37

hypothesis tracking [11, 12] takes an exhaustive, deterministic approach to consider 38

possible lineage trees. Other examples may take a stochastic approach [13] which can be 39

more efficient and robust in the context of noisy data. Tracking approaches are greatly 40

influenced by the nature of the data. For tracking real-life scenes, objects may be 41

complex and may be distinguished on high-level image features, which can enhance 42

tracking [14]. In fluorescence time-lapse cell microscopy [5] objects may be virtually 43

indistinguishable such that tracking relies more strongly on motion models alone. 44

Myriad and diverse examples of tracking applications are discussed in the literature as 45

seen for example in review articles such as [2, 15]. 46

The core of the article can be found in Section 2 where we describe the general 47

problem and our solution to tracking fluorescent events in noisy point cloud data. We 48

discuss some of the data preprocessing steps specific to our data in the next section. 49

The algorithm is further evaluated and discussed in Section 3. The fully automated 50

Python software has been made available on GitHub via the provided link [16]. It can 51

be easily installed over a Python scientific library distribution such as Anaconda. It 52

includes interactive notebooks and can be run from a terminal window to process a 53

folder containing 3D image sequence data in fully automated fashion. 54

1 Methods 55

1.1 Data acquisition 56

A single Arabidopsis primary root is grown and imaged on a custom-made light-sheet 57

microscope setup, as previously described [17, 18]. In essence, the root is hydroponically 58

grown in a perfusion chamber maintained under constant light and constant 59

temperature, with its liquid medium fully exchanged every 2 minutes. A full 3D scan in 60

fluorescence of the root tip is composed of 60 optical sections 4µm apart, captured every 61

15 minutes for up to 7 days. To visualize mitotic events, we use an established transgenic 62

line expressing a fusion between the cyclin protein CYCB1;1 and the fluorescent protein 63

GFP [19]. In these plants, the fluorescent reporter CYCB1;1::GFP accumulates in a cell 64

transitioning between G2 and M phases of the cell cycle, and is quickly degraded after 65

entering mitosis. It is widely adopted as a reliable live marker for cell events. 66

In our study, we accurately track and count such division events in a temporal series 67

of 3D images. 68
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Fig 1. Variation in frame properties: The tiles left(a) show four sample frames. Frame A is a
“good” image. Frame B is a noisy image. Frame C is a noisy image with a low number of
objects and some noise. Frame D is over-saturated and will be marked as degenerate. On the
right(b), the same story is told quantitatively over 100 consecutive sample frames from one
imaging session. The signal and noise levels are plotted with threshold values. The
narrow-band plot shows the region between the 95th and 99th percentile ranges of the image
histogram. Notably, these values fluctuate dramatically.

1.2 Preprocessing 69

1.2.1 Noise analysis 70

Noise and histogram levels are used on normalised grey-scale images taking pixel values 71

in [0, 1]. The noise shown in the top panel of Fig. 1B is estimated using a wavelet-based 72

estimator of the Gaussian noise standard deviation [20,21]. The middle panel in Fig. 1B 73

describes the signal. This is a simple quasi-signal metric defined as a ratio between the 74

99th and 95th histogram percentile boundary values. If this value approaches 0 we find 75

there is low signal/information. For values of this measure above a calibrated threshold, 76

we find the data are more concentrated outside the 99th percentile of the data, 77

corresponding to bright singularities in the image. A noise range is used to guide 78

downstream strategies in the image processing pipeline. A normal noise band 79

[0.01, 0.045] is used in the sample parameters discussed here. If the noise is very low e.g 80

below 0.01, no denoising is required otherwise wavelet denoising will be applied. 81

Excessive noise, exceeding 0.045, suggests light saturation and/or low signal-to-noise 82

ratio typically due to a low number of biological events. In such instances additional 83

thresholding is applied to the data before wavelet denoising. If the noise exceeds 0.1, 84

the signal-to-noise ratio is so low that the frame is marked as degenerate. Fig. 1A 85

contrasts different noise levels in sample images and Fig. 1B plots image properties over 86

time for a given experiment. 87

1.2.2 Region of interest 88

Bright blobs are scattered across the full image and may correspond to mitotic events 89

within the root or debris floating beyond the root. For tracking accuracy and tracking 90

speed, it is advisable to select a region of interest (ROI), drawing a box around the 91

identified root. 92

A 2D projection of the data is obtained by summing the 3D tensor along the z-axis. 93

An adaptive threshold based on image histogram percentile ranges is used to construct a 94

narrow-band filter for the 2D data. This range can vary erratically between frames as 95

shown in the bottom time series in Fig. 1B. A thin slice of the image data range 96
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(shaded band) is selected and an aggressive “Gaussian smoothing” (averaging 97

neighbouring pixel values using a Gaussian kernel) with a large sigma value is used to 98

find a mesh-like connected component corresponding to the region of activity in the root 99

tip. The 2D mask of this largest component is extended to a 3D mask by projecting the 100

2D region back into the z-plane. The largest connected component in the thresholded 101

image is identified as the root tip. These stages are illustrated in Fig. 2. The image 102

processing pipeline continues to process data only within the ROI. 103

For cases where the region of activity is well-isolated (smaller region of interest), the 104

processing is more efficient as the amount of volumetric data is reduced and debris 105

beyond the root are filtered from the downstream pipeline. For our sample data, a ROI 106

with area ≈ 105 pixels corresponds to a well-isolated root tip. Noise and light saturation 107

can affect this part of the process making the ROI area a proxy for image quality. 108

While the actual area will depend on the data, it should vary smoothly and be relatively 109

small unless root activity genuinely extends to the entire field of view. 110

Fig 2. Isolating the Region of Interest (ROI): A narrow-band filter (B) and aggressive
Gaussian smoothing (C) is used to find the largest connected component in the narrow band of
the data corresponding to the region of activity in the root tip (D).

1.2.3 Object detection 111

We perform a “pre-segmentation” procedure to detect blob centroids. Segmentation 112

plays a central role in many image processing pipelines and typically involves (i) 113

thresholding and identifying background, (ii) using distance/gradient transformations 114

with peak detection to identify markers and (iii) routines such as watershed [22] to 115

segment blob labels. For our data, we have found it appropriate to not carry out the 116

final segmentation. Instead we carry out the pre-segmentation steps from thresholding 117

to peak detection in detecting object centroids. 118

Given the variability in the data over a large frame sequence we have found a simple 119

“annealing thresholding” to be effective. This simply increases a threshold iteratively so 120

as to remove large connected components beyond a maximum perimeter length thus 121

removing the background from the image. Being iterative, this is not as efficient as 122

simpler linear filters but it is simple and robust to noise and variability. In extreme 123

cases where it is not possible to find a threshold level in this manner, we treat the 99th 124

percentile as image background and remove it. Having applied the threshold filter, we 125
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identify centroids by (i) performing a difference of Gaussians to emphasise blob-like 126

objects, (ii) applying a maximum filter and (iii) returning the coordinates of the local 127

maxima (peaks) in the image. To allow for a fully automated routine that can cope 128

with arbitrary datasets (in the scope of our light-sheet microscopy datasets) the 129

emphasis in the centroid detection stage has been to avoid spurious centroid detections 130

at the risk of under-sampling, while optimising for objects to be identified for at least 131

two frames somewhere during the peak of their light intensity arc. 132

2 Tracking Algorithm 133

The position, appearance and disappearance of transient objects will be treated as a 134

random spatial process. The frame-to-frame displacement of objects will be described as 135

a sum of three random variables: (1) the global movement of the tissue within the field 136

of view, (2) the global movement due the growth of the tissue and (3) small fluctuations 137

of the object (cell) within the tissue. The main purpose of the algorithm is to filter the 138

global movement. 139

The strategy of the algorithm is to find point set correspondences between the 140

random process at time t and the random process at time t− τ where τ is a lag variable. 141

Objects that appear in both frames are inliers and those that do not appear in both 142

frames are outliers. Outliers can be either debris i.e. any object which is determined not 143

to be an object of interest or could be an object of interest that has “exited” or 144

“entered” the new frame. From the image processing stage, any object outside the 145

bounding box will be an outlier. More generally, an outlier is an object that cannot be 146

explained by a global frame-frame transformation. 147

There are two conceptual phases of the algorithm which may be mixed during 148

optimisation; (i) proposal transformations are generated from the data using one or 149

more strategies and (ii) the optimal transformation with respect to some objective is 150

chosen as the global transformation. Inliers are those objects which can be mapped to 151

each other by the global transformation. Identifiers are propagated between the inliers 152

in each frame in the linkage phase. New identifiers are generated for outliers within the 153

region of interest. These algorithm stages are discussed in more detail in the following 154

subsections. Algorithm listing 1 provides a terse, high-level overview of the stages that 155

will be discussed. 156

2.1 Proposing transformations 157

Generally, a RANSAC strategy iteratively extracts a random sample from all data and 158

partitions inliers from outliers in the data sample [23]. Consider sets of points 159

U(t), V (t− τ) at times offset by a lag τ . A subset of these points corresponds to true 160

cells (i.e. excluding noise and debris) and a subset of these true cells will exist in both 161

frames (due to short-lived events). There are N points at time t and M points at time 162

t− τ . A number of permutations P(N, k) are sampled from U and a number of 163

permutations P(M,k) are sampled from V . In our method k ∈ {1, 3}, thus sampling 164

either single points or triangular constellations from each frame. Points take a natural 165

order and the same points can only appear in one constellation, as illustrated in Fig. 3 166

and Fig. 4. 167

Let n be the number of k-constellations ci(t) sampled from U(t) and m be the 168

number of k-constellations cj(t
′) sampled from V (t− τ). In general, for two tensors M1 169

and M2 related by M1 = AM2, the affine transformation A can be uniquely 170

determined through a least squares method. The transformation γij is the affine 171

transformation, taking the point set ci(t) to the point set cj(t
′). 172
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Algorithm 1 Transient point cloud tracking algorithm

*High-level description of algorithm using 1-indexing*
*Standard geometry or data structure functions are lower camel case*
*Other functions are explained in the main text*
*Key tensor sets in bold font shorthand are understood from function calls*

1: results := {}
2: for i← lag + 1, frameCount do
3: U := frames(i)
4: V := frames(i− lag)
5: uv := cartesianPointProduct(U, V )
6: tr1 := translationsFor(uv) . For points, k=1
7: ranked := Rank(tr1, U, V, epsilon)
8: linkages := Apply(ranked, U, V, epsilon)
9: kuv := Constellations(U, V, linkages, k) . constellation pairs

10: trk := transformsFor(kuv)
11: other := Priors(linkages, U, V )
12: transforms := concatenate(tr1, trk, other)

13: ranked := Rank(transforms, U, V, epsilon)
14: result := Apply(ranked, U, V, epsilon)
15: results := concatenate(results, result)

16: results←MinFrameDetectionFiltering(result,minFrames)
17: results← ROIBeliefFiltering(result)
18: results← AnisotropicCatchmentFiltering(result)

Translation sampling Referring to Algorithm listing 1, on lines 5 and 6 173

constellations are sampled from the data in frames U and V and translations are 174

computed. Sampling returns pairs of points. For comparison with other stages, we think 175

of points as k-constellations with k = 1. As seen in Fig. 3A, translations are generated 176

for each pair of points. The translation taking a point in v ∈ V to a point u ∈ U is 177

added to a list of candidate transformations. 178

Preliminary linkages While translations and all general affine transformations 179

could be generated in a single phase, it is more efficient to evaluate the linkages found 180

from translations before sampling constellations for k > 1. Translations for k = 1 can be 181

considered as a subset of transformations of k = 3 which should in general fit the data 182

better. On lines 7 and 8 of Algorithm listing 1 translations are sampled and evaluated 183

before full constellation sampling. The routines Rank and Apply are discussed in 184

Subsection 2.2. While stochastic sub-sampling could be used, for our data sizes it is 185

efficient to simply consider all possible point pairings when k = 1. 186

Constellation sampling Constellation sampling is preferably seeded with linkages 187

found by translations so that likely outliers are excluded from consideration. It is worth 188

emphasising that this not only reduces the candidate points to likely inlier points but 189

constellation congruences can be identified i.e. the same set of points in one frame, can 190

be paired to the same set of points in the other frame when proposing transformations. 191

By first finding possible object linkages using translations only, constellation pairs 192

P(NL, 3),P(ML, 3) can then be sampled from the L inlier objects that appear to be in 193

both frames. These can then be used to generate proposal transformations. 194
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Fig 3. Translation sampling with k = 1: Panel (a) shows an arbitrary translation between a
sample point in V and a sample point in U . Panel (b) shows the displacement of many such
translations from the origin and includes a “consensus” translation i.e. the average of the top
ranked translations. Panel (c) illustrates that in this case, the consensus translation is better
than the one in panel (a) making better matches between circles and green dots. In this case,
while not discernible from the image, the consensus translation turns out to be better than any
of the other sampled translations.

2.2 Ranking transformations 195

Transformation ranking is carried out using a modified least squares loss function. The 196

least squares loss objective is generally described as the minimization of
∑
|y − ŷ|2, 197

where y is a proposal vector and ŷ is the target vector. In the registration problem, the 198

proposal vectors correspond to the points in U(t) under transformations from the set Γ. 199

The target vectors are points in V (t− τ). The least squares loss objective is modified 200

based on the following prior: (i) we expect a global rigid transformation to explain the 201

movement of object centroids up to small fluctuations due to individual object movement 202

which are deemed negligible. (ii) A distance between objects’ centroids > ε is assumed. 203

The value of ε in the context of the sample data corresponds to a value slightly larger 204

than the average blob’s radius. Further details about the role of this parameter in 205

calibrating the tracker are discussed in Subsection 3.2.1. When considering distances 206

between proposal points and target points, only distances to the first nearest neighbour 207

within a radial distance ε are considered. Each candidate transformation γ will be 208

applied to all points ui(t) ∈ U(t), i ∈ {1, 2, ..., N}. Let ũi = γ(ui) then we use a cost 209

function 210

Cγ =

N∑
i=1

min(ε, |ũi − nnV (ũi)|2) (1)

where nnV (Ũi) is the nearest neighbour position in V (t− τ) to the projected point Ũi. 211

If the projected point has no nearest neighbour within a ball of radius ε, the capped 212

distance ε+ 1 is attributed. This is illustrated in Fig. 5. 213

Binning Depending on the data, the cost function Cγ may be sufficient to rank 214

transformations in certain scenarios. Raw transformation scores are real numbers, which 215

are then approximated with integers, binned into discrete classes and ranked using 216

further criteria. Ranking can sort first on the binned score and then sub-sort on the 217

translation displacement magnitude of transformations to distinguish similarly 218

performing transformations. Integer binning is a simple example of a linear binning 219

function that is easy to implement and test. More adaptive approaches to binned 220

ranking such as density-based clustering are potentially more robust but more difficult 221

to test in non-trivial pipelines. 222
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Fig 4. Constellation sampling: Random permutations P(M,k) with k = 3 produce triangular
constellations in each frame. Affine transformations in 3 dimensions projecting point triplets in
one frame to point triplets in another frame will be added to a proposal set Γ for evaluation.
While constellations can be sampled randomly and arbitrarily from U and V , seeding with
linkages found by translation is more efficient as explained in the main text.

2.3 Some modelling assumptions 223

A number of assumptions are discussed in this section corresponding to some of the 224

method calls in the algorithm listing. In the PRIORS routine additional 225

transformations beyond the transformations generated from the data can be chosen 226

based on modelling assumptions. Additionally, the filter routines on lines 16-18 can 227

filter data from the final result rather than during the tracking process based on 228

modelling assumptions. 229

2.3.1 Catchment region 230

Objects in the point cloud are expected to be separated by a minim distance ε such that 231

under global transformation single objects are matched. The parameter ε can be chosen 232

based on the data. For sparse point cloud data there will typically be only one match 233

within the ball of radius ε. An ε value can be chosen such that it is possible to find 234

multiple objects matched to one object. The interpretation in this case is that all 235

matched points in the catchment region correspond to the same object and that 236

multiple points are the result of e.g. image processing anomalies. Merging lineages can 237

be useful to avoid generating superfluous new identifiers. This adds robustness in the 238

event of noisy data or image processing anomalies. Alternatives to using a ball of radius 239

ε consider anisotropic catchment regions that factor in the direction of the global 240

transformation. This is discussed in Section 3. 241

2.3.2 Consensus translation 242

Transformations explain the global translation up to small Gaussian fluctuations in
individual object movement due to true events or observation error. Fig. 3B gives an
example of taking the “consensus” i.e. displacement mean of the best translations. This
can often be better than any single translation given that each object undergoes a small
random fluctuation such that translations between any point-pair cannot explain all
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Fig 5. Evaluating transformations: Red crosses correspond to the set V (t− τ) while the blue
dots correspond to objects at the current time U(t). The blue circles with radius ε correspond
to the transformation of the set U(t) under the proposal transformation. The transformation
score is the average capped distance to nearest neighbours.

object movements. If the position of an object is given as

pi(t) = γ
(
pi(t− τ

)
+ ξi

where ξi ∼ N (0, σ0) is the random fluctuation for one object, taking the “consensus” 243

effectively filters out the noise to reveal the global movement. 244

2.3.3 Minimum allowed frame detections 245

Transient events are expected to persist for a minimum number of frames greater than or 246

equal to 1. For our data the minimum number of frames is 2. Objects that have been 247

identified for less than 2 frames are excluded from the tracking result. Such object 248

detections are termed single-frame detections. 249

2.3.4 Gaussian region of interest likelihood 250

Objects of interest in the xy-plane are expected to be found in the center of the field of 251

view. Objects may be detected near the original frame boundaries depending on the size 252

of the ROI. Objects can be treated as inliers/outliers based on standard outlier 253

detection methods under the assumption of normality. 254

2.4 Software implementation notes 255

CPU usage is dominated by the image processing stage. For the light-sheet microscopy 256

experiments used in our evaluation, 3D images are approximately 90, 000KB on disk 257

with dimensions (1392, 1040, 60), in (x, y, z) order. The software was developed and 258

tested on a personal laptop computer with 16GB RAM and a 2.9-GHz Intel Core 259

i7-3520M CPU. While times vary between different pipeline modes, on average 260

individual frame processing takes around 40 seconds. More than half of the time spent 261

on image processing is spent on de-noising and smoothing images. A negligible fraction 262

of CPU time corresponds to the tracking stage of the pipeline. The tracking stage alone 263

processes 450 data frames in about 1.5 minutes. The current implementation contains 264

significant “meta analysis” overhead. 265
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3 Results and Discussion 266

3.1 Output 267

The life matrix shown in Fig. 6 is a binary matrix taking a value 1 if an object is 268

detected and 0 otherwise, where each row contains the lifetime of a single detected 269

object, or event. The data in the life matrix are conditioned (filtered) on individuals 270

surviving for at least 2 frames. The tracker requires the frame-frame movement of 271

objects of interest to follow the global transformation. Debris movement is not 272

correlated with that of objects of interest and should not be identified over consecutive 273

frames. These objects appear in the tracking output as single-frame detections and are 274

discarded. 275

Fig 6. Life matrix: Rows (y-axis) correspond to detected individuals with time on the x-axis.
The life matrix shows a generally consistent trend in the appearance and persistence of objects.
At the beginning of the sequence, objects persist for an abnormally long time for
biological/experimental reasons.

The number of objects observed as a function of time and the average duration of 276

events as a function of time are alternative representations of the data shown in the life 277

matrix. These time series are shown in Fig. 7
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Fig 7. The population time series reflect the information shown in the life matrix. The high
spike in the mean age is a result of one object surviving for a long time while others disappear.
After this point we observe more typical fluctuations in object activity.
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3.2 Output evaluation 279

In this section we discuss a number of evaluation metrics. Calibration of the 280

characteristic parameter ε at the beginning of an experiment is discussed in 3.2.1. In 281

3.2.2 we take a closer look at choosing between transformations. In 3.2.3, 282

post-processing is discussed. This stage allows for refinements that can filter out 283

possible false-positives without otherwise affecting the overall tracking result. 284

3.2.1 Calibration 285

In our dataset, we use the same value of ε for the image processing stages (e.g. peak 286

detection) and the tracking stage to determine the catchment region. The value of ε in 287

the context of the sample data corresponds to a value slightly larger than the average 288

object radius. The parameter value for the tracker should consider fluctuations around 289

the object size due to processing anomalies or genuine small individual object 290

fluctuations away from the global transformation. In image-space, from inspection of 291

the image data where typical object sizes can be measured, a value of ≈ 20 voxels is 292

expected. The value ε is chosen to minimise the number of single-frame detections 293

where there is ambiguity over the choice of parameters. Fig. 8 illustrates that as we 294

approach this value from below, the number of single-frame detections reduces and then 295

begins to level out. An upper bound on the value of ε, ≈ 20 might be chosen in this 296

case. The goal is not to completely eliminate single-frame detections as indeed objects 297

that persist for only one frame occur either as debris or general image processing 298

anomalies. But in situations where a small change in ε value can increase the number of 299

pairings that the tracker can accurately make, this is preferred. There is a trade-off for 300

ε > 20 where erroneous identity linkages may occur (depending on the characteristic 301

object separation for the data). Some of these linkages may be between objects of 302

interest and debris and some may be debris-debris. In the later case, a large epsilon 303

value allows debris that is visible for multiple frames but moving against the global 304

transformation to be identified over multiple frames. This leads to false positives which 305

should be minimized. A smaller epsilon value will, in contrast, penalise objects that are 306

consistently moving against the global transformation. Values ε� 20 lead to failed 307

linkages, generation of new identifiers for outliers and over-counting of objects.
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Fig 8. Choosing an ε value: The region 20± 5, which is shaded in the plot, shows when the
reduction in single-frame detections begins to decrease before levelling out. This region can
also be interpreted as the range of observed object radii. There is a trade-off in choosing an ε
value. A value of ε� 20 results in excessive single frame detections as the tracker cannot
accommodate small fluctuations in cell movement because the catchment region is too small,
while values for ε > 25 merge lineages erroneously because the catchment region is too large.
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3.2.2 Evaluating transformations chosen by tracker 309

Constellation sampling with k = 3 is the default mode for finding a general affine 310

transformation between constellations. This assumes there are at least k = 3 objects in 311

each frame and to find a congruent constellation in each frame typically a higher 312

number e.g. 2k is required. In addition to affine transformations between constellations, 313

translations between single points are always added to transformation proposals. In 314

some cases these may be better than any general affine transformation sampled by the 315

tracker. In situations where there are too few points in either frame to find viable 316

general affine transformations via constellation sampling, the tracker “falls back” to 317

using translations between points as the sampling strategy. Additional transformations 318

can be added to the proposal set using other strategies such as inclusion of an optimal 319

transformation found in the previous time step. Tracking is most accurate when there 320

are many objects in point clouds from which to generate transformations. Fig. 9 shows 321

an example of a sequence with few objects. If there are two objects in one frame and 322

one object in the other, translations taking one object to either of the other objects will 323

score similarly. There is no way to clearly distinguish them, keeping in mind that 324

registration and tracking is being performed simultaneously. In the first-to-second frame 325

transition in Fig. 9, the actual object 211 is incorrectly labelled as new object 216 and 326

the new object is incorrectly labelled 211. The identity transformation, which was not 327

selected here, scores similarly but not necessarily better than the exhibited rival 328

transformation as both transformations match one object. Binning as discussed in 329

section 2.2 helps to discriminate between similar transformations based on displacement. 330

The transformations will be in the same score “bin” but the identity will be preferred by 331

the tracker because it has the smaller displacement.

Fig 9. Dealing with low information when ranking transformations: The image sequence (time
flows left to right) demonstrates how identifiers can be incorrectly assigned when there are too
few objects to generate and rank transformations as explained in the main text. White dots
and red dots correspond to objects at time t and t− 1 respectively. Using the identity
transformation would make the correct assignment in this example.

332

3.2.3 Post-processing 333

Here we discuss analysis and data filtering that can be done in post-processing stages to 334

refine the tracking result. 335

Anisotropic matching tolerance considers the trade-off when choosing the ε value. 336

When the value is very small, the tracker is very strict, marrying objects that sit within 337

a small ball of radius ε. If the input data are accurate and if a bound on fluctuations 338

away from the global transformation is known and small enough, then a small ε value is 339

sensible. If however there are unpredictable fluctuations for example due to inconsistent 340

centroid/peak detections in noisy data, then a large epsilon value is required to tolerate 341

these fluctuations and to avoid generating new identifiers erroneously. For some 342

datasets it may be difficult to find a value for ε that balances conflicting objectives. 343

One way to mitigate this is to use a larger ε value and then in a post-processing step 344
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Fig 10. Anisotropic matching tolerance: Differences in angles between the global
transformation and the displacements between married objects are compared. White dots and
red dots correspond to objects at time t and t− 1 respectively. Most red dots are to the left of
white dots which corresponds to a global transformation of about 170◦ from the positive x-axis
vector. Object 44 has a very different angle to the rest and in the image the red dot appears to
the right. Large displacements in conjunction with large angle differences for a number of
consecutive frames suggests debris.

replace the isotropic ball of radius ε with an anisotropic catchment region. This 345

penalises objects that are moving in the opposite direction to the global transformation 346

while being more tolerant of objects moving in a similar direction to the global 347

transformation. This is illustrated in Fig. 10 where it is clear object 44 is moving in a 348

different direction to the others. This deviation in movement may or may not be 349

explained as a small object fluctuation. 350

Data filtering can be applied in a post-processing stage. Fig. 11 illustrates 351

post-processing of the full datasets. The ellipse shows the region containing the most 352

likely mitotic events occurring in the root tip. The time colouring Fig. 11A illustrates 353

when and where events occur and indicates (roughly) if plotted points correspond to the 354

same object. In Fig. 11B, large angle differences between object displacement vectors 355

and a global transformation vector appear in lighter colours (e.g. red) and are indicative 356

of possible inlier misclassification. Objects outside of (or far from) the ellipse and 357

objects that show large angle differences are candidates for removal. In the case of angle 358

differences, actual displacements and ε values can be taken into account when filtering 359

objects as described in the preceding paragraph and illustrated in Fig. 10. Fluctuations 360

of the ROI area in each frame is an indicator for how well the image processing step can 361

localise the root. When the signal to noise ratio is good, the root region can be 362

accurately detected and there should be significant fluorescent activity corresponding to 363

biological events within a (relatively) small ROI which varies smoothly between frames. 364

On the other hand if there is too much noise or few (biological) events, it may be 365

difficult to localise the root from frame to frame resulting in a relatively large ROI or 366

one that varies non-smoothly. In the later case, debris may lie within the excessively 367

large ROI and be picked up by the tracker. In Fig. 11, this debris appears for example 368

in the top part of the images, particularly towards the later stages of the experiment 369

due to drift in microscope calibration or other factors. The root grows in the positive x 370

direction (left to right) and debris are typically static or moving with gravity in the 371

opposite direction as seen by some trail-like patterns roughly parallel to the x-axis. 372
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(a) Time-lapse with time(frames) in colour bar (b) Time-lapse with angle(degrees) in colour bar
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Fig 11. Time-lapse plots: Two different colourings are used to distinguish time(a) or
differences between the object displacement vector and the global transformation vector(b).
The ellipse represents the (Gaussian) statistical region of interest over many frames.

Lag analysis can identify possible tracker calibration issues. The tracker considers 373

transformations between consecutive frames, t− 1← t. Suppose for the purpose of 374

analysis we introduce a lag τ and consider transformations between frames t− τ ← t. 375

As a confidence indicator, we compare the propagation of object identifiers between 376

frames separated by different lags. Conditioned on objects being more than τ frames 377

old, we compare identifiers propagated over frames for τ ∈ {1, 2, 3}. We then count the 378

number of objects where identifiers are in agreement between different lags. For 379

example we may expect the following equivalence 380

t− 3
λ1←− t− 2

λ1←− t− 1
λ1←− t ≡ t− 3

λ3←− t (2)

where with an abuse of notation λτ corresponds to propagation of object identifiers 381

using optimal transformations at lag τ . If the lag analysis shows significant differences, 382

it may be due to accumulation of errors, in turn due to poorly chosen parameters. Lag 383

analysis can identity specific instances of violating frames and objects for 384

troubleshooting. The lag analysis result for a sequence of sample frames is shown in 385

Fig. 12 showing generally good agreement between different lags for suitably chosen 386

parameters. While large lag-lag differences suggest calibration issues, small discrepancies
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Fig 12. Dis/agreement between lags: Lag-1 identifiers for objects of interest (excluding
single-frame detections) are compared with identifiers assigned by λτ : τ ∈ {2, 3}
transformations for objects that are older than τ . We counted 734 objects in a sample
sequence. 42 ≈ 6% showed lag1-2 disagreements and excluding these, 29 ≈ 4% showed lag1-3
disagreements in specific frames.

387

are expected. For example if there is a sufficient accumulation of individual object 388

fluctuations between lags, which place an object outside of a given catchment region(ε 389

value), an object may be treated as an outlier and given a fresh identifier for larger lags. 390
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3.3 Discussion 391

In this work we addressed the problem of tracking transient fluorescent events in 392

structured point clouds. We presented a new tracking method in the context of a 393

sample dataset where mitotic events were tracked in Arabidopsis roots. Due to the 394

transient nature of fluorescent events and variation in image quality in experiments 395

lasting up to one week, we found a lack of guaranteed, permanent features in image 396

sequences, which greatly influenced the design of the algorithm. The lack of fiducial 397

markers led us to construct fuzzy markers through sub-sampling point clouds. We then 398

constructed suitable cost functions to evaluate affine transformations between these 399

fuzzy fiducial markers. We believe this approach is distinct from registration methods 400

which typically put greater emphasis on the existence of inlier objects. 401

Furthermore, our method is distinct from existing single particle tracking techniques 402

as we exploit a rigid-structure prior. By using transient fluorescent markers to track 403

mitotic events, we exchanged a morphological analysis problem for a fuzzy 404

registration-tracking problem. The tracking algorithm applies transformations 405

generated from sub-sampling the point cloud data using various strategies and evaluated 406

over the full frame data. The algorithm models frame-frame object movement as a 407

superposition of (a) global affine transformations due to global movement of the 408

structure or the observer and (b) small object fluctuations within the structure. 409

In extended light-sheet microscopy datasets, image processing and object detection 410

relies heavily on checking and responding to variability in image properties. This goes 411

beyond adaptive thresholding and may result in taking different routes through an 412

image processing pipeline. Isolation of regions of interest within noisy point cloud data 413

is also important. 414

We considered the role of certain model assumptions in coping with variable and 415

noisy data. (i) Object position updates are treated as small fluctuations away from a 416

global transformation. (ii) The choice of object “separation characteristic” ε is of 417

central importance at all stages of the image processing and tracking pipeline. When 418

considering the tracker in isolation, the ε value plays an additional role: it may merge 419

objects which an object detection stage discriminates between if those objects are not 420

sufficiently separated. In the case of accurately counting mitotic events, this reduces the 421

introduction of false-positives i.e. the erroneous generation of new identifiers. (iii) Not 422

favouring smaller displacements in transformations has a very negative effect on 423

tracking when the number of objects within frames diminishes. (iv) Object location and 424

angle differences between object displacements and the global transformation may be 425

used in a post-processing stage to remove misclassified outliers. 426

As useful as these model assumptions are in calibrating the tracker for our data, 427

they also describe situations where the tracker would not be suitable. For example if 428

objects are so densely populated that there is no useful minimum separation ε or if 429

objects move independently such that the magnitude of individual movements are of a 430

similar order to (or greater than) the magnitude of the global displacement, the 431

algorithm will be ineffective. 432

The algorithm as discussed here has not been optimised for large point clouds. The 433

point clouds we worked with contain less than 100 objects in each frame and often less 434

than 20. As the frames are large 3D volumetric images, image processing is the 435

performance bottleneck. Consequently, we have focused on the analysis and flexibility of 436

the tracking algorithm instead of optimisation, at this stage. The transformation 437

sampling and evaluation stages have been implemented efficiently within a 438

vector-programming paradigm. Focus on performance improvements should emphasise 439

efficiency of the transformation proposal sampling. This should, in general, be 440

considered NP-hard as proposals are generated by finding congruences in large point 441

cloud data. For point clouds with high objects counts, proposal sampling could be 442
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applied on a suitable subregion of the data to avoid excessive evaluations. 443

Our approach was motivated by the case of transient florescent markers used in
biology, where sub-cellular fluctuations are superposed with large-scale movements due
to tissue growth. We expect that our approach will be applicable in other situations
where tracking transient events embedded in rigid structures is required. A possible but
more complex extension could relax the constraint of a single global affine
transformation to an approximate hierarchy of local, structurally-constrained regions
within point clouds. Tracking individuals in a swarm of fireflies observed at night comes
to mind.
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