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Abstract 

Insulin controls glucose homeostasis and cell growth through bifurcated signaling pathways.  

Dysregulation of insulin signaling is linked to diabetes and cancer.  The spindle checkpoint 

controls the fidelity of chromosome segregation during mitosis.  Here, we show that insulin 

receptor substrate 1 and 2 (IRS1/2) cooperate with spindle checkpoint proteins to promote 

insulin receptor (IR) endocytosis through recruiting the clathrin adaptor complex AP2 to IR.  

A phosphorylation switch of IRS1/2 orchestrated by extracellularly regulated kinase 1 and 

2 (ERK1/2) and Src homology phosphatase 2 (SHP2) ensures selective internalization of 

activated IR.  SHP2 inhibition blocks this feedback regulation and growth-promoting IR 

signaling, prolongs insulin action on metabolism, and improves insulin sensitivity in mice.  

We propose that mitotic regulators and SHP2 promote feedback inhibition of IR, thereby 

limiting the duration of insulin signaling.  Targeting this feedback inhibition can improve 

insulin sensitivity. 
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Introduction 

The pancreatic hormone insulin controls glucose homeostasis and promotes cell growth and 

proliferation.  Dysregulation of insulin signaling is linked to human metabolic syndromes and 

cancer1.  Insulin binds to the insulin receptor (IR) on the plasma membrane (PM), and triggers 

phosphorylation-mediated activation of crucial enzymes that regulate glucose and lipid 

metabolism, and cell growth and division2-4.  Activated IR phosphorylates itself and the insulin 

receptor substrate (IRS) proteins on tyrosines.  Phosphorylated IRS proteins bind to multiple 

downstream effectors and adaptors, and activate two major branches of insulin signaling: the 

phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT) and mitogen-activated protein 

kinase (MAPK) pathways.  The PI3K-AKT pathway mainly governs metabolic homeostasis, 

whereas the MAPK pathway controls cell growth and proliferation.  Src homology phosphatase 2 

(SHP2, also known as PTPN11) binds to the C-terminal phospho-tyrosine sites of IRS1/2 and 

promotes the activation of the MAPK pathway5,6.  Mutations of IR cause severe inherited insulin 

resistance syndromes7, but the molecular mechanisms underlying insulin resistance in type 2 

diabetes are complex and multifactorial1.  One common theme is that insulin resistance in diabetic 

animals or patients causes ectopic accumulation of diacylglycerol and abnormal activation of novel 

protein kinase Cs (PKCs), which suppress insulin signaling at the level of IRS1 and possibly IR1,8. 

The spindle checkpoint monitors kinetochore-microtubule attachment during mitosis and 

prevents chromosome missegregation9-13.  In response to unattached kinetochores, the mitosis 

arrest deficiency 2 (MAD2) and budding uninhibited by benomyl 1 related 1 (BUBR1) proteins, 

as subunits of the mitotic checkpoint complex (MCC), inhibit the anaphase-promoting 

complex/cyclosome (APC/C) bound to its mitotic activator, the cell division cycle 20 (CDC20) 

protein, to delay chromosome segregation14-19.  When all kinetochores are properly attached by 
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microtubules, the MAD2-binding protein p31comet (also called MAD2L1BP) prevents the 

conformational activation of MAD220,21 and collaborates with the ATPase TRIP13 to disassemble 

MCC, thus promoting chromosome segregation22-27. 

We have recently discovered a critical role of MAD2, BUBR1, and p31comet in insulin 

signaling during interphase (Fig. 1a)28.  Specifically, MAD2 and BUBR1 are required for clathrin-

mediated endocytosis of IR.  MAD2 directly binds to the C-terminal MAD2-interacting motif 

(MIM) of IR, and recruits the clathrin adaptor AP2 to IR through BUBR1.  p31comet prevents 

spontaneous IR endocytosis through blocking the interaction of BUBR1-AP2 with IR-bound 

MAD2.  Adult liver-specific p31comet knockout mice exhibit premature IR endocytosis in the liver 

and whole-body insulin resistance.  Conversely, BUBR1 deficiency delays IR endocytosis and 

enhances insulin sensitivity in mice.  These findings implicate dysregulation of IR endocytosis as 

a potential mechanism of insulin resistance. 

In this study, we show that IRS1/2 cooperate with several spindle checkpoint proteins to 

promote insulin-stimulated IR endocytosis.  In addition to MAD2 and BUBR1, CDC20 is also 

required for IR endocytosis.  We further identify novel feedback regulation of IR endocytosis 

through a phosphorylation switch on IRS1/2 that is dependent on SHP2 and the MAPK pathway.  

Finally, we present evidence to suggest that targeting SHP2 might be a viable strategy to increase 

insulin sensitivity and treat diabetes. 

 

Results 

Decreased IR plasma membrane localization in human diabetics.  Previous biochemical 

studies have shown that insulin binding to liver plasma membranes is reduced in obese and diabetic 

mice and humans29,30, suggesting that the level of insulin receptor at the plasma membrane (PM) 
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might be reduced in diabetics.  To confirm these findings, we examined the IR PM levels in liver 

samples from human patients using immunofluorescence staining.  Because of the challenges of 

collecting liver sections from normal healthy individuals, we used surgical resection samples from 

patients with hepatocellular carcinoma that contained normal (non-malignant) and malignant 

tissues, and analyzed only normal hepatocytes.  We performed immunofluorescence with anti-IR 

and anti-ZO1 (as a PM marker) antibodies on 51 non-diabetic and 19 type 2 diabetes patient 

samples, and analyzed IR PM levels.  IR PM signals in the liver sections from type 2 diabetes 

patients were significantly weaker than those in non-diabetic patients (Fig. 1b,c).  There was no 

correlation between insulin treatment and IR PM levels.  These findings suggest that reduced IR 

PM levels might be a contributing factor to insulin resistance in human patients. 

We note, however, that the reduction of IR on the cell surface in liver samples of human 

type 2 diabetes patients can be a consequence of insulin resistance, rather than the cause.  It is also 

possible that the reduced IR localization at the plasma membrane is due to a decrease in overall IR 

expression.  Despite these caveats, our immunofluorescence results are consistent with earlier 

findings, and suggest that mechanisms regulating IR plasma membrane levels, including 

endocytosis, might be defective in diabetics. 

 

CDC20 is required for proper IR endocytosis.  We have previously shown that MAD2 and 

BUBR1 promote IR endocytosis through recruiting AP2, and p31comet inhibits this process through 

antagonizing the MAD2–BUBR1 interaction (Fig. 1a)28.  We further tested whether other well-

known mitotic regulators also have a role in IR endocytosis.  Depletion of CDC20, but not BUB1, 

BUB3, or MAD1, delayed insulin-activated IR endocytosis (Fig. 1d-f).  Thus, CDC20 is required 

for IR endocytosis. 
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CDC20 binds to both MAD2 and BUBR1 and nucleates the formation of MCC that consists 

of BUBR1, BUB3, MAD2, and CDC2022,31.  BUB3 is not absolutely required for the integrity and 

function MCC, but enhances the efficiency of MCC formation by targeting BUBR1 to 

kinetochores.  Structures of MCC nicely explain the binding cooperativity among MAD2, CDC20, 

and BUBR1, and highlight the importance of the BUBR1 KEN1 motif in MCC assembly22.  The 

assembly of an MCC-like complex on IR might strengthen the weak MAD2–BUBR1 interaction 

and help to recruit AP2 to IR. 

To test this hypothesis, we first examined the region of BUBR1 responsible for IR 

endocytosis.  The C-terminal domain of BUBR1 binds to the N-terminal trunk domain of AP2B1 

(Fig. 1g and Supplementary Fig. 1a,b), consistent with a previous report32.  Expression of wild-

type (WT) BUBR1, but none of BUBR1 truncation mutants, restored IR endocytosis in cells 

depleted of BUBR1 (Fig. 1h,i and Supplementary Fig. 1c).  BUBR1 interacts with CDC20 through 

multiple binding motifs22,33-35.  We constructed BUBR1 mutants targeting KEN1 (ΔKEN1) or 

KEN2 (ΔKEN2) boxes in the N-terminal region, and Phe (ΔPhe, also known as ABBA3) and D 

boxes (ΔD2) in the middle region (Fig. 1g).  The ΔKEN2, ΔPhe, ΔD2 and ΔPhe+ΔD2 restored 

insulin-activated IR endocytosis in cells depleted of BUBR1 (Fig. 1h,i and Supplementary Fig. 

1c).  However, BUBR1 ΔKEN1 could not restore IR endocytosis in BUBR1-depleted cells.  Given 

the critical role of BUBR1 KEN1 in MCC assembly, these data suggest that IR uses an MCC-like 

complex to recruit AP2, except that in this context MAD2 binds to the MIM on IR, not the MIM 

on CDC20. 

 

IRS1/2 promote IR endocytosis.  Insulin binding to IR promotes clathrin-mediated endocytosis 

of the insulin-IR complex, which regulates the intensity and duration of signaling.  Two sequence 
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motifs in IR––the NPEY960 and di-leucine (L986L) motifs––have previously been implicated in 

AP2 binding and IR endocytosis36-39 (Fig. 2a).  We have shown that the MAD2-interacting motif 

(MIM, R1333ILTL) of IR binds to MAD2, which in turn recruits AP2 with the help of BUBR1 and 

CDC20. 

To study the relative contributions of these IR motifs to endocytosis, we generated HepG2 

cell lines stably expressing IR-GFP WT, the MIM mutant (4A), Y960F, or L986A/L987A (AA), 

and examined the subcellular localization of these IR-GFP proteins (Fig. 2b,c).  Without insulin 

treatment, IR WT, 4A, and Y960F localized to the plasma membrane (PM), but IR AA was 

enriched in intracellular compartment (IC).  A large fraction of IR AA co-localized with the late 

endosome marker RAB7, indicating that IR AA underwent unscheduled endocytosis and 

accumulated in late endosomes (Fig. 2d).  Thus, the di-leucine motif is not required for IR 

endocytosis and actually prevents it through unknown mechanisms.  The di-leucine motif is 

located in a β strand of the N-terminal lobe of the IR kinase domain (Fig. 2e).  Mutation of this 

motif is expected to alter the structural integrity or activity of the IR kinase domain. 

IR Y960F, 4A, and Y960F/4A mutants were less efficiently internalized after insulin 

stimulation (Fig. 2f).  The IR Y960F/4A double mutant was not significantly more defective than 

the single mutants (Fig. 2f).  As Y960 is phosphorylated in the activated IR40, defective endocytosis 

of IR Y960F suggests that phosphorylation of Y960 (pY960) might be required for timely IR 

internalization. 

The phosphotyrosine-binding (PTB) domain of IRS1/2 directly binds to phosphorylated 

NPEY960 motif in activated IR41-45.  Co-depletion of IRS1/2 blocked IR endocytosis induced by 

insulin, whereas depletion of either had no effect (Fig. 3a,b and Supplementary Fig. 2a).  

Expression of RNAi-resistant IRS1 restored IR endocytosis in cells depleted of both IRS1/2.  Thus, 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 17, 2018. ; https://doi.org/10.1101/419911doi: bioRxiv preprint 

https://doi.org/10.1101/419911
http://creativecommons.org/licenses/by/4.0/


	 8 

IRS1/2 act redundantly to promote IR endocytosis likely through binding to the phospho-NPEY960 

motif.  These results can explain why the activated IR is preferentially internalized. 

IRS1 interacts with the adaptor related protein complex 1 Mu 1 subunit (AP1M1) and 

AP2M1 through multiple YXXΦ (X, any amino acids; Φ, bulky hydrophobic residues) motifs46,47.  

The IRS1-AP2M1 interaction negatively regulates endocytosis of insulin-like growth factor 1 

receptor (IGF1R)47.  We confirmed that in vitro translated Myc-IRS1 full-length and the YXXΦ-

containing central region (residues 449-679) bound to GST-AP2M1 (Fig. 3c and Supplementary 

Fig. 2b-e).  IRS2 is highly homologous to IRS1 and also has conserved YXXΦ motifs (Fig. 3c and 

Supplementary Fig. 2e)3.  AP2M1 binds to YXXΦ motifs and promotes clathrin-mediated 

endocytosis48.  Thus, IRS1/2 contribute to IR endocytosis through bridging an interaction between 

AP2 and activated IR. 

We tested whether mutations of YXXΦ motifs in IRS1 and IRS2 disrupted AP2M1 binding.  

In vitro translated IRS1 (residues 449-864) bound to GST-AP2M1.  Single YA mutant weakened 

the IRS1-AP2M1 interaction, and 3YA (Y612A/Y632A/Y662A) further reduced it 

(Supplementary Fig. 3a).  An in vitro translated IRS2 fragment (residues 520-888) containing 7 

putative YXXΦ motifs also bound to GST-AP2M1, and mutations of 4 such YXXΦ motifs 

(Y649A/Y671A/Y734A/Y758A) greatly reduced IRS2 binding to AP2M1 (Supplementary Fig. 

3b).  These results suggest that IRS1 and IRS2 directly bind to AP2M1 through multiple YXXΦ 

motifs. 

RNAi-resistant IRS1 Y612A and 3YA mutants could not restore IR endocytosis in 293FT 

or HepG2 cells depleted of IRS1/2 (Fig. 3d,e and Supplementary Fig. 3d,e).  Failure of these 

mutants to functionally complement indicates that the IRS1/2-AP2M1 interaction is required for 

insulin-activated IR endocytosis.  We could not detect IRS1 in late endosomes during IR 
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endocytosis, suggesting that IRS1 might dissociate from the IR complex during the uncoating of 

the clathrin coat and prior to the fusion of the endocytic vesicles with the endosome.  Endogenous 

IRS1 interacted with the AP2 complex in 293FT cells and in primary mouse hepatocytes 

stimulated with insulin, but not in untreated cells (Fig. 3f,g).  Thus, IRS1/2 bind to AP2 through 

canonical YXXΦ motifs in vitro and in mammalian cells, and promote insulin-activated IR 

endocytosis. 

 

The SHP2-MAPK pathway promotes IR endocytosis through IRS1/2 regulation.  The 

tyrosine residues in YXXΦ motifs on IRS1/2 can be phosphorylated by the activated IR and be 

dephosphorylated by the tyrosine phosphatase SHP22,49.  Strikingly, the serine residues 

immediately following the YXXΦ motifs are well conserved (Fig. 3c and Supplementary Fig. 2e), 

and can be phosphorylated by ERK1/250-52.  ERK1/2-dependent phosphorylation has been 

proposed to reduce IRS1 tyrosine phosphorylation through negative feedback50-52, but the 

mechanism and function of this feedback regulation are unknown.  We hypothesized that the 

MAPK pathway and SHP2 might regulate the IRS1/2-AP2 interaction and IR endocytosis through 

modulating IRS1/2 phosphorylation patterns. 

To test this hypothesis, we examined the effects of inhibiting SHP2 or the MAPK pathway 

on insulin-activated IR endocytosis (Fig. 4a,b).  The IR inhibitor (BMS536924) expectedly 

blocked IR endocytosis.  Strikingly, the MEK inhibitors (U0126 and PD0325901) and the SHP2 

inhibitor (SHP099) also inhibited IR endocytosis.  By contrast, the AKT inhibitor (AKTi, VIII) 

did not affect IR endocytosis, indicating a specific requirement for the MAPK pathway and SHP2.  

Inhibitors of MPS1 (Reversine) and PLK1 (BI2546) did not appreciably inhibit IR endocytosis, 

ruling out the involvement of these mitotic kinases in this process. 
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The tyrosine residues in YXXΦ motifs on IRS1/2 also bind PI3K53,54.  It is formally 

possible that the failure of IRS1 3YA mutant to restore IR endocytosis in cells depleted of IRS1/2 

was an indirect consequence of reduced PI3K activity.  To test this possibility, we checked the 

effect of IRS1 3YA on insulin signaling (Supplementary Fig. 3e).  IRS1/2 depletion was sufficient 

to inhibit IR endocytosis, but was insufficient to inhibit insulin signaling at insulin concentrations 

used in our IR endocytosis assays.  Expression of IRS1 WT or the 3YA mutant did not appreciably 

alter insulin signaling.  Furthermore, the PI3K inhibitor (GDC-0941) did not affect insulin-

activated IR endocytosis (Fig. 4a,b).  This result argues against reduced PI3K activity as the 

underlying reason for the observed defects of insulin-activated IR endocytosis in IRS1/2-depleted 

cells, and further confirms that the PI3K-AKT pathway is not involved in this process. 

We next chemically synthesized the unphosphorylated and phosphorylated IRS1 peptides 

containing 612YMPMS and examined their binding to AP2M1 (Fig. 4c).  The unphosphorylated 

IRS1 peptide (YMPMS) bound to AP2M1, but the mutant peptide with Y612 and M615 replaced 

by alanine (AMPAS) did not.  Phosphorylation of the serine in the YMPMS motif (YMPMpS) 

enhanced AP2M1 binding.  Isothermal titration calorimetry (ITC) measurements confirmed that 

the phospho-serine IRS1 peptide (pS-IRS1) indeed bound to AP2M1 with higher affinity (Kd = 

280 nM), as compared to the unphosphorylated peptide (Kd = 2.03 µM) (Fig. 4d).  Thus, 

phosphorylation of IRS1 at S616, a known ERK1/2 site, enhances IRS1 binding to AP2M1 in vitro.  

Phosphorylation of the tyrosine in the YMPMS motif (pYMPMS and pYMPMpS) abolished 

AP2M1 binding (Fig. 4c), suggesting that tyrosine dephosphorylation of IRS1 is required for 

AP2M1 binding.  Consistent with these in vitro findings, SHP2-binding-deficient IRS1 mutants 

(residues 1-864 or Y2A, Y1179A/Y1229A) could not restore insulin-activated IR endocytosis in 

293FT or HepG2 cells depleted of IRS1/2 (Fig. 3d,e and Supplementary Fig. 3c,d). 
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Comparison of the dephosphorylation kinetics of singly (pYMPMS) or doubly (pYMPMpS) 

phosphorylated IRS1 peptides revealed that pS616 on IRS1 promoted pY612 dephosphorylation 

by SHP2 (Fig. 4e,f).  Therefore, aside from directly augmenting the IRS1-AP2M1 interaction, 

serine phosphorylation of IRS1 indirectly promotes AP2M1 binding through enhancing the 

tyrosine dephosphorylation of IRS1 by SHP2 in vitro.  Consistent with a role of ERK1/2-dependent 

phosphorylation of IRS1 in IR endocytosis, expression of the RNAi-resistant IRS1 phospho-

mimicking mutant (3SD), but not the phospho-deficient mutant (3SA), restored IR endocytosis in 

293FT cells depleted of IRS1/2 (Fig. 3d,e). 

Taken together, our results support the following mechanism for insulin-activated IR 

endocytosis (Fig. 4g).  The activated IR phosphorylates the tyrosine residues in YXXΦS motifs 

and the C-terminal SHP2-docking sites of IRS1/2, and stimulates the PI3K-AKT and MAPK 

pathways.  In a negative feedback mechanism, activated ERK1/2 phosphorylate the serines in 

YXXΦS motifs on IRS1/2 and assist SHP2 to dephosphorylate IRS1/2.  The IRS1/2 YXXΦS 

motifs with the serine phosphorylated and tyrosine dephosphorylated bind to AP2 with optimal 

affinities, promoting clathrin-mediated endocytosis of IR. 

 

Structural basis of the phospho-regulation of IR endocytosis.  We next determined the crystal 

structure of AP2M1 (residues 160-435) bound to the serine-phosphorylated YXXΦS motif from 

IRS1 (pS-IRS1) (Supplementary Table 1).  The overall structure of the AP2M1–pS-IRS1 complex 

was similar to those of previously determined structures of AP2M1 bound to YXXΦ motifs.  

AP2M1 contained two interlinked β-sandwich subdomains: subdomain 1 (β1-6 and 17-19) and 

subdomain 2 (β7-16) (Fig. 4h).  The pS-IRS1 peptide binds at the edges of strands β18 and β17 in 

subdomain 1, and interacts with residues from strands β1, β17, and β18 (Fig. 4h,i).  In particular, 
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Y612 and M615 make extensive hydrophobic interactions with AP2M1.  The RNAi-resistant IRS1 

3YF mutant with tyrosines in the YXXΦS motifs replaced by phenylalanines could not fully 

restore IR endocytosis in 293FT cells depleted of IRS1/2 (Fig. 3d,e).  The hydroxyl group of Y612 

forms a hydrogen bond with D176 in β1, providing an explanation for why phenylalanines cannot 

functionally substitute for tyrosines.  Phosphorylation of Y612 is expected to introduce both static 

hindrance and unfavorable electrostatic interactions with D176, explaining why tyrosine 

phosphorylation of YXXΦS motifs disrupts the IRS1–AP2 interaction. 

We did not observe well-defined electron density for pS616 in IRS1, despite its ability to 

enhance the IRS1–AP2 interaction.  pS616 is located in the vicinity of a positively charged patch 

on AP2M1 formed by residues K405, H416, and K420 (Fig. 4j), suggesting that the phospho-

serine might engage in favorable electrostatic interactions with this basic patch.  Mutations of 

H416 and K420 did not, however, reduce IRS1 binding (Supplementary Fig. 3f,g).  Mutation of 

K405 destabilized the AP2M1 protein and reduced its binding to both the phosphorylated (pS616) 

and unphosphorylated IRS1 peptides.  Thus, consistent with the lack of electron density, pS616 

does not make defined electrostatic interactions with specific acceptor residues, and interacts with 

the positively charged patch as one structural entity. 

 

SHP2 promotes IR endocytosis in mice.  Liver-specific SHP2 knockout (KO) mice show 

increased insulin sensitivity55,56, suggesting that SHP2 attenuates certain aspects of insulin 

signaling in the liver.  We examined whether SHP2 inhibition could improve insulin sensitivity.  

The allosteric SHP2 inhibitor, SHP099, stabilizes the inactive conformation of SHP2, thus 

inhibiting its phosphatase activity5.  Wild type mice maintained on high-fat diet (HFD) for 5 weeks 

were treated with SHP099 (60 mg/kg body weight) by daily oral gavage for 6 days, and then tested 
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for glucose and insulin tolerance.  Strikingly, SHP099 administration markedly increased glucose 

tolerance and insulin sensitivity in HFD-fed mice (Fig. 5a,b).  SHP099 did not change the body 

weight of mice fed HFD (Fig. 5c).  Insulin stimulation caused IR endocytosis and reduced the IR 

staining at the PM in mouse liver sections (Fig. 5d,e).  SHP099 delayed insulin-activated IR 

endocytosis.  Finally, SHP099 inhibited the insulin-stimulated IRS1–AP2 interaction in primary 

hepatocytes (Fig. 3g). 

To further confirm the requirement of SHP2 in promoting IR endocytosis in vivo, we 

introduced adeno-associated viruses 8 (AAV) encoding control (Ctrl) or SHP2 short-hairpin RNAs 

(shRNA) into mice fed HFD via tail-vein injection.  The SHP2 protein level in the liver from mice 

treated with AAV-SHP2 shRNA was reduced by ~70% as compared to that in mice treated with 

Ctrl shRNA (Supplementary Fig. 4a).  By contrast, the SHP2 protein level in WAT and skeletal 

muscle was not effectively depleted by SHP2 shRNA.  Thus, as expected, SHP2 shRNA delivered 

by AAV was most effective in the liver.  Consistent with the phenotypes of SHP099 administration, 

AAV-SHP2 shRNA treatment markedly increased glucose tolerance and insulin sensitivity in mice 

fed with HFD (Fig. 5a,b).  AAV-SHP2 shRNA treatment did not change body weight (Fig. 5c).  

Importantly, AAV-mediated SHP2 silencing inhibited insulin-activated IR endocytosis in the liver 

(Fig. 5d,e).  These results confirm a role of SHP2 in promoting IR endocytosis and in metabolic 

homeostasis in vivo. 

Liver is a major site for insulin clearance and defects in this process can cause 

hyperinsulinemia57-59.  Hepatic insulin clearance is mainly mediated by IR endocytosis, as liver-

specific IR KO mice and mice deleted of the carcinoembryonic antigen-related cell adhesion 

molecule 1 (CEACAM1), a key regulator of IR endocytosis, develop severe hyperinsulinemia57,59.  

We thus examined the effects of SHP099 on insulin clearance.  To estimate insulin clearance, we 
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examined the levels of insulin and C-peptide, a cleavage product of proinsulin, and determined the 

ratio of the serum levels of C-peptide and insulin.  The fasting insulin level in mice fed normal 

chow was not altered by SHP099 administration, despite the inhibition of IR endocytosis in the 

liver (Fig. 5f).  In HFD-fed mice, SHP099 slightly increased the fasting insulin level.  The serum 

levels of C-peptide were similar to those in vehicle-treated groups in both conditions (Fig. 5g), 

suggesting that SHP099 did not alter insulin secretion.  As a result, the C-peptide:insulin ratio in 

mice fed HFD after SHP099 administration showed a mild reduction as compared to the control 

group (Fig. 5h).  Therefore, despite causing defective IR endocytosis in the liver, SHP2 inhibition 

led to a mild defect in insulin clearance, but not severe hyperinsulinemia as observed in the 

CEACAM1 KO mice. 

As shown in Fig. 4b, the inhibitory effect of SHP099 on IR endocytosis was not as complete 

as that of the IR inhibitor at 20 min after insulin stimulation, suggesting that there might be SHP2-

independent IR endocytosis mechanisms.  We have confirmed a requirement for CEACAM1 in IR 

endocytosis in our cellular assays (Fig. 5i,j).  It is possible that CEACAM1 is required for all 

mechanisms of IR endocytosis whereas SHP2 only regulates the IRS1/2 branch (Fig. 5k).  Future 

studies are needed to define the relationships and relative contributions of the various regulators 

of IR endocytosis. 

 

SHP2 inhibition enhances insulin-activated AKT pathway in mice.  We next examined the 

effect of SHP2 inhibition on insulin signaling in the liver, epididymal white adipose tissue (WAT), 

and skeletal muscle from mice fed with HFD.  We monitored the insulin-induced phosphorylation 

of IRS1 (pY608 and pS612; equivalent to pY612 and pS616 of human IRS1, respectively), IR 

(pY1152/1153 and pY962; equivalent to pY1150/1151 and pY960 of human IR, respectively), 
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AKT (pT308), and ERK1/2 (pT202/Y204, pERK1/2).  Indeed, SHP2 inhibition enhanced and 

prolonged the IRS1 pY608 signal in the liver, indicating that SHP2 is a relevant phosphatase for 

this phosphorylation in vivo (Fig. 6a,b).  Consistent with a previous report 5, SHP099 inhibited the 

activation of the MAPK pathway by insulin in the liver.  SHP2 inhibition attenuated insulin-

induced IRS1 pS612 signal, consistent with the fact that ERK1/2 mediate this phosphorylation in 

vivo.  By contrast, insulin-triggered activating phosphorylation of AKT was significantly increased 

and prolonged in the liver from SHP099-treated mice.  Consistent with an inhibition of IR 

endocytosis, the total IR levels in both groups of mice were increased by SHP099 treatment 

whereas the ratios of phospho-IR to total IR were not altered.  These results suggest that targeting 

SHP2 can block the feedback regulation of IR endocytosis by selectively inhibiting the MAPK 

pathway.  Suppressed IR endocytosis prolongs signaling through the PI3K-AKT pathway, which 

regulates metabolism and does not depend on SHP2. 

SHP099 greatly inhibited the activation of the MAPK pathway and the serine 

phosphorylation on IRS1 (pS612) upon insulin stimulation in skeletal muscle (Supplementary Fig. 

5a,b).  However, the IRS1 pY608 level in skeletal muscle from SHP099-treaed mice exhibited 

only a slight increase, and the levels of activating phosphorylation of AKT were similar to those 

in vehicle-treated mice.  SHP099 did not appreciably alter the insulin-stimulated activation of the 

PI3K-AKT or MAPK pathways in WAT (Supplementary Fig. 5c,d).  These data suggest that SHP2 

inhibition has distinct effects on insulin signaling and possibly IR endocytosis in different tissues.  

The underlying reasons for these variations among tissues are unknown at present.  Because 

SHP099 only increases AKT signaling in the liver, but not in skeletal muscle or WAT, our findings 

suggest that the liver is a major site of action for the insulin-sensitizing effect of the SHP2 inhibitor 

in vivo.  We cannot, however, rule out the contributions of other tissues to the observed phenotypes. 
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Discussion 

We have elucidated a feedback regulatory mechanism of IR endocytosis and identified SHP2 as a 

molecular target whose inhibition delays insulin-activated IR endocytosis (Fig. 6c).  Targeting this 

feedback regulation of IR endocytosis prolongs the metabolic branch of insulin signaling and 

improves insulin sensitivity in mice. 

The mechanism of IR endocytosis was extensively studied for decades.  Our recent 

discovery that mitotic checkpoint regulators, including MAD2 and BUBR1, are required for IR 

endocytosis promoted us to re-examine the mechanism of IR endocytosis.  In addition to the 

recently discovered MAD2-interacting motif (MIM), two other sequence motifs in IR, the 

NPXY960 motif and the di-leucine motif (L986/L987), had previously been implicated in AP2 binding 

and IR endocytosis36-39.  In this study, we have shown that the dileucine motif is not required for 

IR endocytosis.  The NPXY motif is indeed required for IR endocytosis.  Instead of directly 

binding to AP2, the phosphorylated NPXY motif binds to IRS1/2, which in turn recruits AP2 

through multiple YXXΦ motifs.  We propose that IRS1/2 bound to pY999 of IR provide one 

binding site for AP2, and the MAD2–CDC20–BUBR1 complex bound to the MIM of IR provides 

another AP2-binding site.  These two modules collaborate to recruit AP2 to IR, triggering IR 

endocytosis.  Alternatively, as IRS1/2 contain multiple functional YXXΦ motifs, each of these 

motifs and MAD2–CDC20–BUBR1 may mediate the recruitment of one AP2 complex, leading to 

the clustering of multiple AP2 molecules on IR and efficient assembly of the clathrin coat. 

Our findings presented herein implicate that an MCC-like mitotic regulator module is 

assembled onto IR to control its endocytosis in interphase.  These results raise the intriguing 

possibility that IR might reciprocally regulate MCC assembly and spindle checkpoint signaling 
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during mitosis.  It will be interesting to examine the effect of the connection between IR and mitotic 

checkpoint regulators on aneuploidy and spindle checkpoint activities. 

Endocytosis of a cell surface receptor normally occurs after the receptor has been activated 

and has transduced its signals downstream.  The mechanism ensuring that IR endocytosis only 

occurs after downstream signaling is unknown.  In this study, we have shown that the MAPK 

pathway is required for IR endocytosis.  Activated ERK1/2 phosphorylates the YXXΦS motifs in 

IRS1/2 and promotes dephosphorylation of the tyrosine in these motifs by SHP2 in vitro and in 

vivo.  The YXXΦS motifs containing phospho-serine and unphosphorylated tyrosine are optimal 

ligands for AP2.  Because ERK1/2 activation is a critical downstream event of insulin signaling, 

the requirement for an active MAPK pathway in IR endocytosis constitutes important feedback 

regulation that ensures proper insulin signaling.  Chemical inhibition of SHP2 is an effective way 

to disrupt this feedback regulation, as it not only directly prevents the removal of the negative 

tyrosine phosphorylation, but also inhibits the MAPK pathway and blocks the installation of the 

positive serine phosphorylation.  Whether the MAD2−CDC20−BUBR1 module is under similar 

feedback regulation by the MAPK pathway is an interesting question for future studies. 

Our study suggests that inhibition of SHP2 delays IR endocytosis, prolongs IR signaling 

through the PI3K-AKT pathway, and improves insulin sensitivity in the mouse.  SHP2 inhibition 

prolongs phosphorylation of YXXΦ motifs on IRS1/2.  Because these phospho-tyrosine motifs 

also interact with PI3K, the enhanced tyrosine phosphorylation of these motifs as a result of SHP2 

inhibition may directly promote PI3K activation.  This direct effect may contribute to the 

effectiveness of SHP2 inhibitors in counteracting insulin resistance.  Genetic suppression of IR 

endocytosis in other ways, without the inhibition of SHP2, will better define the role of IR 

endocytosis during insulin signaling. 
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Future studies are required to clarify the potential role of premature IR endocytosis in the 

pathogenesis of human insulin resistance syndromes.  Mutations of IR are known to cause inherited 

severe insulin resistance syndromes7, but the mechanisms by which these mutations affect IR 

function have not been systematically explored.  It will be interesting to test whether these 

mutations cause premature IR endocytosis and whether SHP2 inhibitors can recover the IR PM 

levels and insulin sensitivity. 

Hyperactivation of signaling through receptor tyrosine kinases (RTKs) drives cancer 

progression.  Chemical inhibitors of RTKs are widely used in the clinic to treat human cancers.  A 

common signaling pathway downstream of RTKs is the RAS-RAF-MAPK pathway, which 

promotes cell proliferation and survival.  SHP2 acts upstream of RAS-RAF to activate the MAPK 

pathway60,61.  Thus, intense efforts have been devoted to develop chemical inhibitors of SHP2, 

which are expected to have therapeutic potential in cancer chemotherapy.  SHP099, a specific 

allosteric inhibitor of SHP2, has been shown to have efficacy in targeting RTK-driven cancers in 

animal models5.  Although phenotypes of SHP2 KO mice suggest potential adverse effects of 

SHP2 inhibition62-66, SHP099 administration into mice did not show significant toxic effects in 

that previous study5 and in the present study.  Our study shows that SHP2 inhibition improves 

systemic insulin sensitivity in mice.  Thus, SHP2 inhibitors, such as SHP099, can be potentially 

repurposed to treat type 2 diabetes.  Obesity increases the risks of both diabetes and certain types 

of cancers in humans67.  The prevalence of all three conditions (obesity, diabetes, and cancer) has 

increased in recent years.  SHP2 inhibitors may be particularly beneficial to patients who suffer 

from both diabetes and cancer. 

 

Methods 
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Mice.  Animal work described in this manuscript has been approved and conducted under the 

oversight of the University of Texas Southwestern Institutional Animal Care and Use Committee.  

All animals were maintained in a specific antigen-free barrier facility with 12 h light/dark cycles 

(6AM on and 6 PM off).  Mice were fed a standard rodent chow (2016 Teklad Global 16% protein 

rodent diet, Harlan Laboratories).  For inducing insulin resistance, C57BL/6J (Stock No. 000664, 

Jackson laboratory) were fed a high-fat (60%) diet (OpenSource Diets, Cat. No. D12492). 

Glucose and insulin tolerance tests, and metabolic analysis were performed as described 

previously28.  For in vivo pharmacological assays, 6-8-week-old male mice were fed high-fat diet 

(HFD) for 5 weeks.  Two days before drug administration, mice were switched to normal chow.  

SHP099 (MedChem Express) was dissolved in DMSO and diluted into a 0.5% hypromellose and 

0.1% Tween-80 solution.  60 mg/kg of SHP099 was administered by daily oral gavage for 6 days.  

For glucose tolerance test, mice were fasted for 14 h, and their blood glucose levels (T=0) were 

measured with tail bleeding using a glucometer (AlphaTRAK).  Then, 2 g of glucose/kg of body 

weight was injected intraperitoneally.  Blood glucose levels were measured at the indicated time 

points after glucose injection.  For insulin tolerance test, mice fasted for 4 h were injected 

intraperitoneally with recombinant human insulin (Eli Lilly) at 1 U/kg body weight, and their blood 

glucose levels were measured at the indicated time points after injection. 

 

Reagents.  Generation of rabbit polyclonal antibodies against GST, MAD1, CDC20 and BUB1 

was described previously28,68-70.  The following antibodies were purchased from commercial 

sources: anti-ZO-1/TJP1 and anti-ACTIN (MA137018; Thermo Scientific); anti-IR-pY1150/1151 

(19H7; labeled as pY1152/1153 IR for mouse IR in this study), anti-IRS1-pS616 (C15H5; labeled 

as pS612 IRS1 for mouse IRS1 in this study), anti-AKT (40D4), anti-pT308 AKT (D25E6), anti-
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ERK1/2 (L34F12), anti-pERK1/2 (197G2), anti-SHP2 (D50F2) and anti-RAB7 (D95F2, Cell 

Signaling); anti-IRS1-pY612 (labeled as pY608 IRS1 for mouse IRS1 in this study), anti-IR-

pY972 (labeled as pY962 IR for mouse IR in this study) and anti-IR (CT-3, Millipore); anti-AP2B1 

(BD Biosciences); anti-IRS2 (EPR904) and anti-AP2M1 (EP2695Y, Abcam); anti-GFP and anti-

MYC (9E10; Roche); anti-IRS1 (A301-158A, Bethyl laboratory); anti-CEACAM1 (283340, R&D 

Systems); anti-ACTIN (C-4), anti-IR (CT-3); and anti-mCherry (1C51, Novus). 

The small interfering RNAs (siRNAs) were synthesized by Dharmacon (Lafayette, CO) 

and had the following sequences: human BUBR1 (GGA CAC AUU UAG AUG CAC Utt) 28; 

human CDC20 (AGA ACA GAC UGA AAG UAC UUU); human MAD1 (GAG CAG AUC CGU 

UCG AAG UUU)68; human BUB3 (GAG UGG CAG UUG AGU AUU U); human BUB1 (GAG 

UGA UCA CGA UUU CUA A)71; human IRS1 (GAA CCU GAU UGG UAU CUA C dTdT); 

human IRS2 (On-TARGETplus human IRS2 (8660) siRNA-SMARTpool); human CEACAM1 #1 

(CCA UCA UGC UGA ACG UAA A); human CEACAM1 #2 (GAU CAU AGU CAC UGA GCU 

A); human CEACAM1 #3 (CGU AUU GGU GUG AGG UCU U); human CEACAM1 #4 (CCA 

UUA AGU ACA UGU GCC A); siLUC (UCA UUC CGG AUA CUG CGA U).  The cDNAs 

encoding human IRS1 and human AP2M1 were purchased from Thermo Scientific.  pBabe-puro 

mouse IRS2 was a gift from Dr. Ronald Kahn (Addgene plasmid #11371).  The siRNA-resistant 

and YXXΦ motif mutants of IRS1 were generated by site-directed mutagenesis (Agilent 

Technology).  IRS1 peptides (YMPMS, CHTDDGYMPMSPGVA; AMPAS, 

CHTDDGAMPASPGVA; pYMPMS, CHTDDGpYMPMSPGVA; YMPMpS, 

CHTDDGYMPMpSPGVA; pYMPMpS, CHTDDGpYMPMpSPGVA) were chemically 

synthesized at KareBay Biochem, Inc. 
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For testing the effects of kinase inhibitors on IR endocytosis, the cells were serum starved 

for 14 h and inhibitors were added at 2 h before insulin treatment.  Inhibitors used in this study 

were as follows: the IR kinase inhibitor BMS536924 (2 µM; Tocris), the MEK inhibitors U0126 

(40 µM; Cell signaling) and PD0325901 (10 µM; Selleck Chemicals), the SHP2 inhibitor SHP099 

(10 µM; Medchem express), the AKT inhibitor VIII (5 µM, Calbiochem), the PI3K inhibitor GDC-

0941 (10 µM; Selleck Chemicals), the PLK1 inhibitor BI2536 (200 nM, Selleck Chemicals), and 

the MPS1 inhibitor Reversine (1 µM, Sigma). 

 

Cell culture, transfection, and viral infection.  293FT and HepG2 cells were cultured in high-

glucose DMEM supplemented with 10% (v/v) FBS, 2 mM L-glutamine, and 1% 

penicillin/streptomycin.  Plasmid transfections into 293FT and HepG2 cells were performed with 

LipofectamineTM 2000 (Invitrogen).  siRNA transfections were performed with Lipofectamine 

RNAiMAX (Invitrogen). 

 293FT or HepG2 cells expressing IR-GFP WT, or mutants were generated as described 

previously28.  Briefly, cDNAs encoding IR mutants were cloned into the pBabe-GFP-puro vector.  

The vectors were co-transfected with viral packaging vectors into 293FT cells, and the viral 

supernatants were collected at 2 days and 3 days after transfection.  The concentrated viruses were 

added to 293FT and HepG2 cells with 4 µg/ml of polybrene.  Cells were selected with puromycin 

(1 µg/ml for 293FT and 2 µg/ml for HepG2) at 3 days after infection and sorted by flow cytometry 

to collect cells expressing similar levels of IR-GFP. 

For the expression of IRS1 WT or mutants in HepG2 cells, cDNA encoding IRS1 WT or 

mutants were cloned into the pBabe-mCherry-puro vector.  The vectors were co-transfected with 

viral packaging vectors into 293FT cells, and the viral supernatants were collected.  The 
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concentrated viruses were added to HepG2 cells stably expressing IR-GFP WT.  The cells were 

transfected with the indicated siRNA at 1 day after viral infection.  Analysis was performed at 4 

days after infection. 

Primary hepatocytes were isolated from 2-month-old male mice with a standard two-step 

collagenase perfusion procedure.  Cells were plated on collagen-coated dishes and incubated in 

attachment medium [Williams’ E Medium supplemented with 5% (v/v) FBS, 10 nM insulin, 10 

nM dexamethasone, and 1% (v/v) penicillin/streptomycin].  After 2-4 h, the medium was changed 

to low-glucose DMEM supplemented with 5% (v/v) FBS, 10 nM dexamethasone, 10 nM insulin, 

100 nM triiodothyronine, and 1% (v/v) penicillin/streptomycin.  After 1 day, the cells were serum 

starved for 14 h and treated with dimethyl sulfoxide (DMSO) or SHP099 for 2 h. 

Adeno-associated viruses (AAV) encoding SHP2 shRNA (AAV8-GFP-U6-mPTPN11-

shRNA) or control shRNA (AAV-GFP-U6-scrmb-shRNA) were generated at Vector Biolabs.  We 

injected 10-11-week-old male mice fed with HFD for 5 weeks with the viruses at 1 x 1012 genomic 

copies per mouse.  Experiments were performed at 2 weeks after virus injection. 

 

Tissue histology and immunohistochemistry.  The fixation, histological analysis, and 

immunohistochemistry of mouse tissues were performed as described previously28.  For human 

patient sample analysis, the deparaffinized sections were subjected to antigen retrieval with 10 

mM sodium citrate (pH 6.0), incubated with 0.3% H2O2, blocked with 0.3% BSA, and then 

incubated first with anti-IR (CT3, Millipore, 1:100) and anti-ZO1 (Thermo Scientific, 1:200) 

antibodies and then with secondary antibodies (Alexa Fluor 568 goat anti-mouse and Alex Fluor 

488 goat anti-rabbit; Molecular Probes).  The slides were counterstained with DAPI.  Five to nine 

images (depends on the percentage of normal hepatocytes) were randomly taken under 40x 
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magnification.  The total cell numbers and numbers of IR PM-positive cells were counted at least 

twice for individual images.  Over 100 cells were analyzed for each patient samples.  All 

immunohistochemistry and scoring were performed blinded to the diabetes status.  Human tissue 

collection and analysis were performed under the supervision of the Institutional Review Board 

(IRB; STU 062013-043). 

 

Metabolic profiling.  Blood samples were collected from overnight fasted mice using 

submandibular bleeding methods.  For serum preparation, blood was allowed to form clots at room 

temperature for 30 min, centrifuged at 3000 g for 15 min at 4˚C, and stored at -80˚C.  Serum insulin 

and C-peptide levels were determined with the STELLUX Chemic Rodent Insulin ELISA kit 

(Alpco) and Mouse C-peptide ELISA kit (Alpco), respectively.  ELISA analysis for insulin and C-

peptide was performed by Metabolic Phenotyping Core at UT Southwestern Medical Center. 

 

Immunoprecipitation (IP) and quantitative Western blots.  Cells were incubated with the cell 

lysis buffer [50 mM HEPES (pH 7.4), 150 mM NaCl, 10% (v/v) Glycerol, 1% (v/v) Triton X-100, 

1 mM EDTA, 100 mM sodium fluoride, 2 mM sodium orthovanadate, 20 mM sodium 

pyrophosphate, 0.5 mM dithiothreitol (DTT), 2 mM phenylmethylsulfonyl fluoride (PMSF)] 

supplemented with protease inhibitors (Roche) and PhosSTOP (Roche) on ice for 1 h.  The cell 

lysates were cleared by centrifugation and incubated with antibody-conjugated beads.  The beads 

were washed, and the bound proteins were eluted with the SDS sample buffer and analyzed by 

SDS-PAGE and Western blotting.  For quantitative Western blots, anti-rabbit immunoglobulin G 

(IgG) (H+L) (Dylight 800 or 680 conjugates) and anti-mouse IgG (H+L) (Dylight 800 or 680 
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conjugates) (Cell Signaling) were used as secondary antibodies.  The membranes were scanned 

with the Odyssey Infrared Imaging System (LI-COR, Lincoln, NE). 

 

Immunofluorescence.  Indirect immunofluorescence microscopy was performed on cells grown 

on coverslips and fixed in cold methanol at -20˚C for 10 min.  The fixed cells were incubated with 

PBS for 30 min and 3% BSA in 0.1% PBST for 1 h, and then treated with diluted antibodies in 

0.3% BSA in 0.1% PBST at 4˚C overnight.  After being washed, cells were incubated with 

fluorescent secondary antibodies and mounted on microscope slides in ProLong Gold Antifade 

reagent with DAPI (Invitrogen).  Images of fixed cells were acquired as a series of 0.4 µm stacks 

with a DeltaVision system (Applied Precision, Issaquah, WA).  Raw images were deconvolved 

using the iterative algorithm implemented in the softWoRx software (Applied precision, Issaquash, 

WA).  The central section of a 0.4 µm z-stack containing 3 contiguous focal planes was used for 

quantification.  The cell edges were defined with Image J.  The whole cell signal intensity (WC) 

and intracellular signal intensity (IC) were measured.  The plasma membrane signal intensity (PM) 

was calculated by subtracting IC from WC.  Identical exposure times and magnifications were 

used for all comparative analyses. 

 

Protein purification.  The full-length human AP2M1 was cloned into a pGEX 6P-1, and the 

plasmid was transformed into Escherichia coli strain BL21 (DE3).  Protein expression was induced 

by 0.2 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) at 25˚C overnight.  The harvested 

pellets were lysed in the lysis buffer I [20 mM Tris-HCl, pH 8.0, 150 mM NaCl, 1% (v/v) TritonX-

100, 5% (v/v) Glycerol, 1 mM DTT, 1 mM PMSF].  After sonication, lysates were cleared by 

centrifugation at 4˚C.  The supernatants were filtered by 0.45 µm filter and incubated with pre-
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equilibrated Glutathione Sepharose 4B beads (GE Healthcare).  The resulting protein-bound beads 

were washed extensively with lysis buffer I. 

The AP2M1 fragment (residues 160-435) was cloned into a modified pET28a that 

introduced an N-terminal His6-tag followed by a thrombin cleavage site.  The plasmid was 

transformed into BL21 (DE3).  Protein expression was induced by 0.2 mM IPTG at 20˚C overnight.  

The harvested pellets were lysed in the lysis buffer II [20 mM Tris-HCl, pH 7.5, 500 mM NaCl, 

20 mM Imidazole, 1 mM PMSF].  After sonication, lysates were cleared by centrifugation at 4˚C.  

The supernatants were filtered by 0.45 µm filter and incubated with pre-equilibrated Ni2+-NTA 

beads (Qiagen).  Protein-bound beads were washed with 150 ml of wash buffer I [20 mM Tris-

HCl, pH 7.5, 1M NaCl, 20 mM Imidazole] and with 50 ml of wash buffer II [20 mM Tris-HCl, pH 

7.5, 100 mM NaCl, 20 mM Imidazole].  The proteins were then eluted with the elution buffer [20 

mM Tris-HCl, pH 7.5, 100 mM NaCl, 150 mM Imidazole] and incubated with thrombin (Sigma) 

at 4˚C overnight.  The protein was further purified with a Superdex 200 size exclusion column 

(GE Healthcare).  The relevant protein fractions were pooled, aliquoted, and snap-frozen for future 

experiments. 

 

Crystallization of the AP2M1-pIRS1 complex.  The purified AP2M1 (residues 160-435) was 

mixed with the pS-IRS1 peptide (CHTDDGYMPMpSPGVA, residues 607-620) at a molar ratio 

of 1:5 and then crystalized with the hanging-drop vapor diffusion method.  The crystals of the 

AP2M1-pS-IRS1 complex grew within few days after the protein solution was mixed with the 

reservoir solution [1.0 M sodium malonate, pH 5.0, 0.1 M sodium acetate tri-hydrate, pH 4.5, 2% 

(w/v) PEG 20k].  All crystals were cryoprotected with the reservoir solution including 15% (w/v) 

glycerol for data collection. 
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Data collection and structure determination.  X-ray diffraction datasets were collected at the 

Advanced Photon Source (APS) beamline Sector 19-ID at a wavelength of 0.97914 Å and at 100K.  

HKL3000 was used to process the datasets72.  The crystal of the AP2M1-pS-IRS1 complex 

diffracted to a minimum Bragg spacing of 3.2 Å and exhibited the symmetry of space group P64 

with cell dimensions of a = b = 125.33 Å, c = 74.82 Å.  There are two molecules in the asymmetric 

unit, with a 53.4% solvent content. 

The structure was determined by molecular replacement with PHASER-MR 73, using the 

structure of the AP2M-IGN38 complex (PDB ID: 1BXX) as the search model.  Structure 

refinement was performed with COOT and PHENIX74-76.  The final Rwork and Rfree were 20.3% 

and 23.6%, respectively.  Data collection and refinement statistics are provided in Supplementary 

Table 1.  The model quality was validated with Molprobity77.  All structural figures were generated 

with the program PyMOL (http://www. pymol.org/) with the same color and labeling schemes. 

 

Protein-binding assays.  For GST pull-down assays of in vitro translated (IVT) IRS1 or IRS2 

proteins, beads bound to GST-AP2M1 or GST were incubated with IVT products diluted in the 

cell lysis buffer at 4˚C for 2 h.  After incubation and washing, proteins bound to beads were eluted 

with the SDS loading buffer, resolved with SDS-PAGE, and detected with Coomassie staining or 

immunoblotting with the appropriate antibodies.  Peptide pull-down assays were performed as 

described previously28.  The isothermal titration calorimetry (ITC) assays were performed with a 

MicroCal Omega ITC200 titration calorimeter (GE Life Sciences) at 20˚C with minor 

modifications78.  Briefly, the recombinant AP2M1 protein (residues 160-435) and peptides were 

dialyzed into the HEPES buffer [25 mM HEPES, pH 7.5, 50 mM NaCl].  For each titration, 300 
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µl of AP2M1 (50 µM) were added to the calorimeter cell.  IRS1 peptides (YMPMS, 528.9 µM or 

YMPMpS, 507.4µM) were injected with an injection syringe in nineteen 2.0-µl portions.  Raw 

data were processed and fitted with the NITPIC software package 79. 

 

Phosphatase assays.  Active SHP2 (2.9 µM, SignalChem) diluted in the phosphatase dilution 

buffer [50 mM imidazole, pH 7.2, 0.2% 2-mercaptoethanol, 65 ng/µl BSA] was incubated with 

IRS1 peptides (2.6 mM) at 37˚C for the indicated time points.  Two microliters of reaction products 

were spotted onto 0.45 µm nitrocellulose membrane (BioRad) and dried completely.  The 

membrane was blocked with 5% nonfat milk in TBS for 1h, and washed once with TBS-T (0.02% 

Tween 20).  The membrane was incubated with anti-IRS1-pY612 antibodies diluted in TBS-T at 

4˚C overnight.  After washing with TBS-T, the anti-rabbit immunoglobulin G (IgG) (H+L) Dylight 

800 conjugates (Cell Signaling) were applied as secondary antibodies.  The membranes were 

scanned with the Odyssey Infrared Imaging System (LI-COR, Lincoln, NE) for quantification. 

 

In vivo insulin signaling assays.  HFD-fed mice were administered vehicle or SHP099 for 5 days.  

The mice were fasted overnight and administered vehicle or SHP099 once more.  At 2 h after the 

last administration, the mice were injected with or without 1 U insulin (Eli Lilly) via inferior vena 

cava.  For hepatic knockdown of SHP2, mice fed HFD were injected with AAV-GFP or SHP 

shRNA.  At 17 days after injection, the mice were fasted overnight and injected with or without 1 

U insulin (Eli Lilly) via inferior vena cava.  The livers were collected at the indicated time points.  

White adipose tissue (WAT) and skeletal muscles were collected at 2 min and 3 min after the 

indicated time points, respectively.  30 mg of tissue was mixed with the cell lysis buffer [50 mM 

HEPES (pH 7.4), 150 mM NaCl, 10% (v/v) glycerol, 1% (v/v) Triton X-100, 1 mM EDTA, 100 
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mM sodium fluoride, 2 mM sodium orthovanadate, 20 mM sodium pyrophosphate, 0.5 mM 

dithiothreitol (DTT), 2 mM phenylmethylsulfonyl fluoride (PMSF)] supplemented with protease 

inhibitors (Roche), PhosSTOP (Roche), 25 U/ml turbo nuclease (Accelagen) and 100 µM 

cytochalasin B (Sigma), homogenized with Minilys (Bertin Technologies), and then incubated on 

ice for 1 h.  After centrifugation at 20,817 g at 4˚C for 1 h, the lysates were analyzed by quantitative 

Western blotting. 

 

Statistical analyses.  Prism was used for the generation of all curves and graphs and for statistical 

analyses.  Results are presented as mean ± SEM or mean ± SD.  Two-tailed unpaired t tests were 

used for pairwise significance analysis.  Sample sizes were determined on the basis of the 

maximum number of mice that could be bred in similar ages to maintain well-matched controls.  

Power calculations for sample sizes were not performed.  We monitored weight and health 

conditions of mice, and excluded mice from experiments if the animal was unhealthy and the body 

weight was more than two standard deviations from the mean.  Randomization and blinding 

methods were not used, and data were analyzed after the completion of all data collection in each 

experiment. 

 

Data availability.  The coordinates of the AP2M1-pIRS1 structure have been deposited to the 

Protein Data Bank (PDB ID: 6BNT).  All other data are available from the authors upon request. 
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Figure Legends 

Fig. 1 The MAD2−CDC20−BUBR1 module is required for insulin-activated IR endocytosis.  a 

Model of the regulation of IR endocytosis by spindle checkpoint proteins.  MIM, MAD2 

interacting motif.  b Representative images of liver specimens from human non-diabetic and 

diabetic patients stained with DAPI (blue) and anti-IR (red) and anti-ZO-1 (green) antibodies.  

Scale bars, 40 µm.  c Quantification of the percentage of cells with positive IR PM signals in liver 

specimens in (a) (mean ± SD; *p<0.0001).  The liver specimens from insulin-treated patients were 

presented as orange triangles.  d Western blot analysis of lysates of HepG2 cells stably expressing 

IR-GFP WT that had been transfected with the indicated siRNAs.  e Cells in (d) were serum starved, 

treated without or with 100 nM insulin for 5 min, and stained with anti-GFP antibodies.  Scale bar, 

10 µm.  f Quantification of the ratios of PM and IC IR-GFP signals of cells in (e) (mean ± SD; 

*p<0.0001).  g Domains and motifs of human BUBR1 and AP2B1.  TPR, tetratricopeptide repeat 

domain; GLEBS, GLE2-binding sequence; KARD, kinetochore attachment regulatory domain.  

Fragments that can or cannot bind to AP2B1 or BUBR1 are presented as + or −, respectively.  NT, 

not tested.  The KEN1/2 boxes, destruction boxes (D1/2), and Phe boxes (also called ABBA boxes; 

1/2/3) are shown as red, blue, and green bars, respectively.  h 293FT cells stably expressing IR-

GFP WT were transfected with the indicated siRNAs and Myc-BUBR1, serum starved, treated 

without or with 100 nM insulin for 5 min, and stained with anti-GFP (IR; green), anti-Myc 

(BUBR1; red), and DAPI (blue). Scale, 10 µm.  i Quantification of the ratios of PM and IC IR-

GFP signals of cells in (h) (mean ± SD; *p<0.0001). 

 

Fig. 2 The NPEY motif and MIM of IR are required for endocytosis.  a Schematic illustration of 

sequence motifs (left) and mutants (right) of IRβ.  b HepG2 cells stably expressing IR-GFP WT, 
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4A, Y960F, or AA were serum starved and stained with anti-GFP antibodies.  Scale bar, 10 µm.  c 

Quantification of the ratios of plasma membrane (PM) and intracellular (IC) IR-GFP signals of 

cells in (b) (mean ± SD; *p<0.0001).  d HepG2 cells stably expressing IR-GFP AA were serum 

starved and stained with anti-GFP and anti-RAB7 antibodies.  The boxed region was magnified 

and shown on the right.  Scale bar, 10 µm.  e Ribbon diagram of the crystal structure of the IR 

kinase domain, with L986 and L987 shown as sticks.  f HepG2 cells stably expressing IR-GFP 

WT, 4A, Y960F, or Y960F/4A were serum starved, treated without or with 100 nM insulin for the 

indicated durations, and stained with anti-GFP antibodies.  Quantification of the ratios of PM and 

IC IR-GFP signals of cells was shown (mean ± SD; *p<0.0001). 

 

Fig. 3 IRS1/2 are required for insulin-activated IR endocytosis.  a HepG2 cells stably expressing 

IR-GFP WT were transfected with the indicated siRNAs or siRNA-resistant Myc-IRS1, serum 

starved, treated without or with 100 nM insulin for 5 min, and stained with anti-GFP antibodies.  

b Quantification of the ratios of PM and IC IR-GFP signals of cells in (a) (mean ± SD; *p<0.0001).  

c Domains and YXXΦ motifs of human IRS1 and mouse IRS2.  PH, pleckstrin homology domain; 

PTB, phosphotyrosine-binding domain.  AP2M1- and SHP2-binding regions are indicated.  

YXXΦ motifs and phosphotyrosine sites of IR for SHP2 binding are shown as blue and red bars, 

respectively.  The MAPK phosphorylation sites are labeled as green letters in the sequences.  d 

293FT cells stably expressing IR-GFP WT were transfected with the indicated siRNAs or siRNA-

resistant Myc-IRS1, serum starved, treated without or with 100 nM insulin for 5 min, and stained 

with anti-GFP (IR; green), anti-Myc (IRS1; red), and DAPI (blue). (3YA, Y612A/Y632A/Y662A; 

3YF, Y612F/Y632F/Y662F; 3SA, S616A/S636A/S666A; 3SD, S616D/S636D/S666D; Y2A, 

Y1179A/Y1229A).  e Quantification of the ratios of PM and IC IR-GFP signals of cells in (d) 
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(mean ± SD; *p<0.0001).  f 293FT cells were serum starved and treated without or with 100 nM 

insulin for 5 min.  Total cell lysate (TCL), anti-IRS1 IP, and IgG IP were blotted with anti-IRS1 

and anti-AP2B1 antibodies.  g Serum-starved primary hepatocytes were treated with DMSO or 10 

µM SHP099 for 2 h and treated with 100 nM insulin for 5 min.  Total cell lysate (TCL), anti-IRS1 

IP were blotted with anti-IRS1 and anti-AP2B1 antibodies. 

 

Fig. 4 The SHP2-MAPK pathway promotes insulin-activated IR endocytosis.  a HepG2 cells 

expressing IR-GFP WT were starved, treated with the indicated inhibitors for 2 h, treated without 

or with 100 nM insulin for 20 min, and stained with anti-GFP (IR; green) and DAPI (blue).  b 

Quantification of the ratios of PM and IC IR-GFP signals of cells in (A) (mean ± SD; *p<0.0001).  

c Binding of IRS1 peptides to AP2M1 (residues 160-435).  Input and proteins bound to IRS1-

peptide beads were analyzed by SDS-PAGE and stained with Coomassie (CBB).  The relative 

band intensities are shown below (mean ± SD; n=4 independent experiments).  d Isothermal 

titration calorimetry (ITC) analysis of binding between IRS1 peptides and AP2M1 (residue 160-

435), with Kd indicated.  e The IRS1 peptides were incubated with active SHP2 for the indicated 

durations, spotted onto membranes, and detected with the anti-pY612-IRS1 antibody.  f 

Quantification of the relative SHP2 activity in (e) (mean ± SD; n=4 independent experiments; 

*p<0.0001).  g Model of the regulation of insulin-activated IR endocytosis by a phosphorylation 

switch on IRS1/2.  Insulin-bound IR phosphorylates itself and IRS1/2, and activates the PI3K-

AKT and MAPK pathways.  SHP2 acts upstream of RAS-RAF and promotes the activation of 

MAPK pathway.  p31comet binds to the IR-bound MAD2 and blocks IR-AP2 association to prevent 

premature IR endocytosis.  In feedback regulation, activated ERK1/2 phosphorylate S616 and 

other sites on IRS1.  SHP2 binds to the C-terminal phospho-tyrosine site on IRS1 and 
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dephosphorylates pY612 of the doubly phosphorylated IRS1 (pY612/pS616), thus promoting 

IRS1-AP2M1 association.  p31comet is released from MAD2 by an unknown mechanism, allowing 

the assembly of an MCC-like complex on IR.  MAD2- and IRS1/2-dependent AP2 recruitment 

and clustering trigger clathrin-mediated IR endocytosis.  h Ribbon diagram of the crystal structure 

of AP2M1 (residues 160-435) bound to pS-IRS1.  pS-IRS1 is shown as sticks.  i Surface drawing 

of AP2M1, with pS-IRS1 shown as sticks.  j A close-up view of the surface drawing of AP2M1 

colored by its electrostatic potential (blue, positive; red, negative; white, neutral).  pS-IRS1 is 

shown as sticks. 

 

Fig. 5 SHP2 inhibition delays IR endocytosis and improves insulin sensitivity in mice.  a,b 

Glucose tolerance test (a) and insulin tolerance test (b) of male mice fed HFD for 5 weeks.  The 

mice were administered vehicle or SHP099 for 6 days.  At 1 day after the last drug administration, 

experiments were performed.  Vehicle, n=12; SHP099, n=10; mean ± SEM.  c Body weight of 

mice administered vehicle or SHP099 at 7 days post administration.  Mean ± SD.  d HFD-fed mice 

were administered vehicle or SHP099 for 5 days.  The mice were fasted overnight and administered 

vehicle or SHP099 once more.  At 2 h after the last administration, the mice were injected with or 

without 1 U insulin via inferior vena cava.  The livers were collected at the indicated time points 

and the sections were stained with anti-IR (red) and DAPI (blue).  Scale bars, 5 µm.  e 

Quantification of the ratios of plasma membrane (PM) and intracellular compartments (IC) IR 

signals of the livers in (d) (mean ± SD; *p<0.0001).  f-h The levels of fasting serum insulin (f) and 

C-peptide (g), and the ratio of C-peptide:insulin (h) in mice fed normal chow or HFD for 5 weeks.  

The mice were administered vehicle or SHP099 for 6 days.  i HepG2 cells stably expressing IR-

GFP were transfected with CEACAM1 siRNAs, serum starved, treated without or with 100 nM 
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insulin form 5 min, and stained with anti-GFP and DAPI.  Quantification of the ratios of PM and 

IC IR-GFP signals of cells was shown (mean ± SD).  j Western blot analysis of cell lysates in (i).  

k Model of the regulation of insulin-activated IR endocytosis by CEACAM1, the MAD2–CDC20–

BUBR1 module, and the SHP2-IRS1/2 module. 

 

Fig. 6 Mitotic regulators and SHP2 promote feedback inhibition of IR.  a Insulin signaling in the 

liver from mice fed HFD for 5 weeks.  The mice were administered vehicle or SHP099 for 5 days, 

fasted overnight, and administered vehicle or SHP099 once more.  At 2 h after the last 

administration, the mice were injected with or without 1 U insulin via inferior vena cava.  The 

livers were collected at the indicated time points.  Lysates were prepared from these tissues and 

subjected to quantitative immunoblotting with the indicated antibodies.  b Quantification of the 

blots in (a).  Mean ± SD; *p<0.05, **p<0.01, ***p<0.001, and ****p<0.0001.  c Targeting 

feedback regulation of IR endocytosis for diabetes treatment.  Left panel depicts the feedback 

regulation of IR endocytosis by ERK1/2 and SHP2 during unperturbed insulin signaling.  Right 

panel illustrates the mechanism by which SHP2 inhibitor (SHP099) or shRNA blocks growth-

promoting IR signaling and IR endocytosis, and prolongs insulin signaling through the PI3K-AKT 

pathway, which controls metabolism. 
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Supplemental Figures 

Supplementary Fig. 1 Mapping the binding domains between BUBR1 and AP2B1.  a Binding of 

BUBR1 full length (FL) and truncation mutants to AP2B1.  293FT cells were transfected with 

plasmids encoding GFP-AP2B1 and Myc-BUBR1 proteins.  Total cell lysate (TCL) and anti-GFP-

AP2B1 IP were blotted with anti-Myc and anti-GFP antibodies.  b Binding of AP2B1 full length 

(FL) and truncation mutants to BUBR1.  293FT cells were transfected with plasmids encoding 

GFP-AP2B1 and Myc-BUBR1 proteins.  Total cell lysate (TCL) and anti-Myc-BUBR1 IP were 

blotted with anti-GFP and anti-Myc antibodies.  c Western blot analysis of lysates of cells in Fig. 

1h. 

 

Supplementary Fig. 2 IRS1 promotes IR endocytosis and interacts with AP2.  a Western blot 

analysis of cell lysates in Fig. 3a.  Asterisks indicate non-specific bands.  b Domains and YXXΦ 

motifs of human IRS1.  PH, pleckstrin homology domain; PTB, phosphotyrosine-binding domain.  

IRS1 fragments that can or cannot bind to AP2M1 are presented as red or black lines, respectively.  

YXXΦ motifs and phosphotyrosine sites for SHP2 binding are presented as blue and red bars, 

respectively.  c Binding of IRS1 WT and mutants to GST or GST-AP2M1.  Input and protein 

bound to beads were blotted with anti-Myc (IRS1) antibodies and stained with Coomassie (CBB).  

The relative band intensities are shown below (mean ± SD; n=3 independent experiments).  d 

Binding of IRS1 WT and truncation mutants to GST or GST-AP2M1.  Input and protein bound to 

beads were blotted with the indicated antibodies.  The relative band intensities are shown below 

(n=2 independent experiments). 
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e Sequence alignment of a conserved region in IRS1/2.  Three YXXΦ motifs are boxed with red 

dashed lines.  The phosphorylation sites of IR and MAPK are indicated as red and blue dots, 

respectively. 

 

Supplementary Fig. 3 The YXXΦ motifs of IRS1/2 bind to AP2M1 and are required for insulin-

activated IR endocytosis.  a Binding of IRS1 WT and mutants to GST or GST-AP2M1.  The 

relative band intensities are shown below (3YA, Y612A/Y632A/Y662A; mean ± SD; n=3 

independent experiments).  b Binding of IRS2 WT and mutants to GST or GST-AP2M1.  The 

relative band intensities are shown below (Mean ± SD; n=2 independent experiments).  c HepG2 

cells stably expressing IR-GFP WT were transfected with the indicated siRNA or siRNA-resistant 

mCherry-IRS1, serum starved, treated without or with 100 nM insulin for 5 min, and stained with 

anti-GFP (IR; green), anti-mCherry (IRS1; red), and DAPI (blue). (3YA, Y612A/Y632A/Y662A; 

Y2A, Y1179A/Y1229A).  d Quantification of the ratios of PM and IC IR-GFP signals of cells in 

(c) (mean ± SD; *p<0.0001).  e 293FT cells stably expressing IR-GFP WT were transfected with 

the indicated siRNA or siRNA-resistant Myc-IRS1, serum starved, treated without or with 100 nM 

insulin form 5min.  The cell lysates were subjected to quantitative immunoblotting with the 

indicated antibodies.  The relative band intensities are shown below.  Representative results from 

3 independent experiments were presented.  f Surface drawing of AP2M1 with the bound pS-IRS1 

shown as sticks.  The potential acceptor residues for IRS1 pS616 are labeled.  g Binding of the pS-

IRS1 peptide to WT and mutants of AP2M1 (residues 160-435).  Input and proteins bound to pS-

IRS1 peptides were analyzed by SDS-PAGE and stained with Coomassie (CBB).  h Quantification 

of the relative band intensities in (g).  Mean ± SD; n=3 independent experiments. 
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Supplementary Fig. 4 Depletion of SHP2 by shRNA delays IR endocytosis and improves insulin 

sensitivity in mice.  a The level of SHP2 in liver, skeletal muscle and epididymal WAT from mice 

fed HFD for 5 weeks.  The mice were injected with AAV-control (Ctrl) or SHP2 shRNA.  At 17 

days after injection, the mice were fasted overnight and injected with or without 1 U insulin via 

inferior vena cava.  The livers were collected at the indicated time points.  WAT and skeletal 

muscle were collected at 2 min and 3 min after the indicated time points, respectively.  Lysates 

were prepared from these tissues and subjected to quantitative immunoblotting with the indicated 

antibodies.  b,c Glucose tolerance test (b) and insulin tolerance test (c) in mice injected with AAV-

Ctrl or AAV-SHP2 shRNA and fed HFD. Experiments were performed at 2 weeks after injection.  

n=6; mean ± SEM.  d Body weight in HFD-fed mice injected with AAV-Ctrl or AAV-SHP2 

shRNA.  Mean ± SD.  e HFD-fed mice were injected with AAV-Ctrl or AAV-SHP2.  At 17 days 

after injection, the mice were fasted overnight and injected with or without 1U insulin via inferior 

vena cava.  The livers were collected at the indicated time points and the sections were stained 

with anti-IR (red) and DAPI (blue).  Scale bars, 5 µm.  f Quantification of the ratios of PM and IC 

IR signals of the livers in (e) (mean ± SD; *p<0.0001). 

 

Supplementary Fig. 5 Effect of SHP099 on insulin signaling in skeletal muscle and white adipose 

tissue (WAT) from HFD-fed mice.  a Insulin signaling in the skeletal muscle from mice fed HFD 

for 5 weeks.  The mice were administered vehicle or SHP099 for 5 days, fasted overnight and 

administered vehicle or SHP099 once more.  At 2 h after the last administration, the mice were 

injected with or without 1 U insulin via inferior vena cava.  The livers were collected at the 

indicated time points (See Fig. 6a,b).  WAT and skeletal muscle were collected at 2 min and 3 min 

after the indicated time points, respectively.  Lysates were prepared from these tissues and 
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subjected to quantitative immunoblotting with the indicated antibodies.  Asterisk indicates non-

specific bands.  b Quantification of the blots in (a).  Mean ± SD; *p<0.05, **p<0.01, ***p<0.001, 

and ****p<0.0001.  c Insulin signaling in the WAT from mice in (a).  d Quantification of the blots 

in (c).  Mean ± SD; *p<0.05. 
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Supplementary Table 1.  Data processing and refinement statistics 

 AP2M1-pIRS1 
Data collection  
Space group P64 
Cell dimensions  
        a, b, c (Å) 125.33, 125.33, 74.82  

        α, β, γ (°) 90.00,90.00, 120.00 

Resolution (Å) 32.6-3.20 (3.26-3.20) 

Rmerge (%) 16.1 (29.2) 

<I>/<σI> 13.2 (1.4) 

Completeness (%) 100 (100) 

Number of total reflections 152046 

Number of unique reflections 11485 

Redundancy  12.4 (13.3) 
 

Refinement  
Resolution (Å) 27.14–3.20 (3.31-3.20) 
No. reflections (work/free) 11157 (1113) / 1113 (113) 
Rwork / Rfree 20.3 (29.1) / 23.6 (35.9) 
R.m.s deviations  
       Bond lengths (Å)  0.01 
       Bond angles (°) 1.30 
Completeness (%) 100 
Ramachandran plot  
       Favored (%) 91 
       Allowed (%) 8.4 
       Outliers (%) 0.4 

*Highest-resolution shell is shown in parenthesis. 
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