
“splicedfamalign_apbc2019” — 2018/9/18 — page 1 — #1

Bioinformatics
doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: Day Month Year
Manuscript Category

SplicedFamAlign: CDS-to-gene spliced alignment
and identification of transcript orthology groups
Safa Jammali 1,2∗, Jean-David Aguilar 1,2, Esaie Kuitche 1 and Aïda
Ouangraoua 1

1Department of Computer science, Faculty of Science, Université de Sherbrooke, Sherbrooke, QC, Canada and
2Department of Biochemistry, Faculty of medecine and health science, Université de Sherbrooke, Sherbrooke, QC, Canada.

∗ To whom correspondence should be addressed.

Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Motivation: The inference of splicing orthology relationships between gene transcripts is a basic step
for the prediction of transcripts and the annotation of gene structures in genomes. Spliced alignment
that consists in aligning a spliced cDNA sequence against an unspliced genomic sequence, constitutes
a promising, yet unexplored approach for the identification of splicing orthology relationships. Existing
spliced alignment algorithms do not exploit the information on the splicing structure of the input sequences,
namely the exon structure of the cDNA sequence and the exon-intron structure of the genomic sequences.
Yet, this information is often available for coding DNA sequences (CDS) and gene sequences annotated
in databases, and it can help improve the accuracy of the computed spliced alignments. To address this
issue, we introduce a new spliced alignment problem and a method called SplicedFamAlign (SFA) for
computing the alignment of a spliced CDS against a gene sequence while accounting for the splicing
structures of the input sequences, and then the inference of transcript splicing orthology groups in a gene
family based on spliced alignments.
Results: The experimental results show that SFA outperforms existing spliced alignment methods in terms
of accuracy and execution time for CDS-to-gene alignment. We also show that the performance of SFA
remains high for various levels of sequence similarity between input sequences, thanks to accounting
for the splicing structure of the input sequences. It is important to notice that unlike all current spliced
alignment methods that are meant for cDNA-to-genome alignments and can be used for CDS-to-gene
alignments, SFA is the first method specifically designed for CDS-to-gene alignments. We show its
usefulness for the comparison of genes and transcripts within a gene family for the purpose of analyzing
splicing orthologies. It can also be used for gene structure annotation and alternative splicing analyses.
Availability: SplicedFamAlign was implemented in Python. Source code is freely available at
https://github.com/UdeS-CoBIUS/SpliceFamAlign
Contact: safa.jammali@usherbrooke.ca

1 Introduction
A spliced alignment is an alignment of a partial or full length spliced
transcript sequence against an unspliced genomic sequence [8]. A spliced
alignment allows to highlight the boundaries and the alignment of exons of
the transcript sequence on the genomic sequence. It is an effective method
for gene recognition, gene structure prediction and alternative splicing
analyses [2, 11, 15, 19, 21].

Several methods have been developed to address different versions of
the cDNA-to-genome spliced alignment problem, which consists in finding
an optimal alignment of a spliced cDNA sequence against an unspliced
genomic sequence, given an optimal function [3, 9, 12, 14, 23, 25]. A
complete overview of these methods is provided in [25] and complemented
by [12]. These methods follow a general scheme that consists in
first identifying candidate target alignment locations on the genomic
sequence for the cDNA sequence, and then computing approximate spliced
alignments of the cDNA sequence against each candidate target genomic
regions. For computing approximate spliced alignments, the first criterion
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of optimality used by all spliced alignment methods is the sequence
similarity. In addition to sequence similarity, some methods also account
for splice signals on the unspliced genomic sequence such as canonical
dinucleotide splice signals "GT" and "AG" at extremities of an intron,
in their criterion of optimality in order to infer accurate exon boundaries
in the alignments. It has been shown that the performance of methods
accounting for splice signals is superior to that of only sequence similarity-
based methods [12, 25]. Indeed, splice signals constitute strong structural
signals that are used by splice signal-based methods for inferring accurate
splice sites. Thus, the use of splice signals explains the superiority of
splice signal-based methods over only sequence similarity-based methods.
However, none of the existing spliced alignment methods takes into
account the splicing structure of the input sequences, namely the exon
structure of the cDNA sequence and the exon-intron structure of the
genomic sequences, in addition to splice signals and sequence similarity.
Yet, the information on the splicing structure and known splice sites is often
available in annotation of CDS and gene sequences. This information can
be used to improve the accuracy of spliced alignments.

In this paper, we re-visit the spliced alignment problem for the purpose
of computing accurate CDS-to-gene spliced alignments and identifying
transcript orthology groups within a set of transcripts from a coding
gene family. Identifying orthologous isoforms at transcript level is a pre-
requisite to describing evolutionary relationships between genes in terms
of splicing structure and sets of splice variants [5, 17]. Here, we focus on
the spliced alignment of full CDS against gene sequences within a gene
family, which allows to identify splicing orthologous CDS with similar
sequences and splicing structures from genes that have evolved from a
common ancestral gene [26, 1]. Splicing orthologs are supposed to have
retained the same function in the course of evolution. Identifying splicing
orthologs using spliced alignments requires precise alignment of exons
and location of their boundaries in the spliced alignments. To achieve this
aim, we introduce a new version of the spliced alignment problem that
accounts for the splicing structure of the input sequences. For this version
of the problem, we propose SplicedFamAlign (SFA), a method for fast
and accurate alignment of spliced CDS against unspliced gene sequences
(SFA-align), and for the identification of splicing orthologs using spliced
alignments (SFA-ortholog).

The SFA-align algorithm (see overview in Figure 1) starts by
fastly computing local alignments in order to identify highly conserved
sequences between the input CDS and gene sequences. These local
alignments are used as anchors and each anchor alignment is trimmed
at the extremities in order to cover at most one exon on the CDS. Next, a
gapped extension algorithm accounting for CDS exon boundaries is used
to extend anchor alignments in both direction in order to maximize the
coverage of CDS exons. Finally a global spliced alignment algorithm
accounting for the exon boundaries of the CDS and the gene sequence
can be applied for aligning the remaining segments between the extended
anchors. This anchored spliced alignment approach has been used by
several other methods such as Splign [12], Spidey [24] and MGAlign [18].
The added value of the SFA method is that it makes use of the splicing
structure of the input sequences in its local and global spliced alignment
steps, in addition to the splice signals on the genomic sequence, in order
to produce more accurate spliced alignments.

The SFA-ortholog algorithm starts by identifying pairwise orthologous
CDS. The definition of the orthology relation between two CDS relies on
the preservation of their splicing structures. We say that a spliced alignment
of a CDS sequence against a gene sequence preserves the exon structure of
the CDS, if the spliced alignment induces a sequence conservation of all
the exons of the CDS on the gene sequence, and it also induces an intron
between any two consecutive exons of the CDS, and no intron within an
exon of the CDS (see Figure 2 for example in which the exon structures of

Local&alignment!in!order!to!iden)fy!highly!conserved!
exon!segments,!used!as!anchors!!

Gapped&extension&of&anchors&in!order!to!maximize!
exon!coverage!

Global&spliced&alignment&algorithm&in!order!to!align!
remaining!exons!

Fig. 1: Overview of the SFA-align algorithm.

both CDS1 and CDS2 are preserved by their spliced alignments against a
gene sequence).

Next, two CDS are splicing orthologs if their spliced alignments
against the gene of one of the two CDS a) preserve their exon structures, and
b) induce a one-to-one correspondence between the exons of the two CDS
(see Figure 2 for example). Finally, the pairs of orthologous CDS within
a gene family are used to define an orthology graph whose nodes are all
the CDS of the family and edges represent pairwise orthology relations
between the CDS. Then, assuming perfect pairwise orthology relations,
the CDS orthology groups are defined as the connected components of the
orthology graph.

Gene!

CDS1!

CDS2!
exon2.2! exon2.3!exon2.1!

exon1.2! exon1.3!exon1.1!

Fig. 2: Two orthologous CDS, according to the definition of splicing
orthology: a) the exon structures of the two CDS are preserved by
their splicing alignments against the gene sequence and b) the induced
one-to-one correspondence between the exons of CDS1 and CDS2 is
(exon1.1,exon2.1),(exon1.2,exon2.2), (exon1.3,exon2.3).

The main contributions of SplicedFamAlign can be described as
follows:

1. It allows fast computing of accurate CDS-to-gene spliced alignments,
and accurate CDS splicing orthology groups within a gene family.

2. Its performance remains high for various levels of sequence similarity,
thanks to the use of the splicing structure of input sequences, which
allows to detect splicing structure conservation even in the cases of
low sequence conservation.

3. In the case where the splicing structure of sequences are not given
as input, SplicedFamAlign includes a preliminary step that allows
computing the splicing structure of input sequences by aligning each
CDS against its own gene.
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Table 1. Detailed description of the real data, from the Ensembl-Comapara database, used for the evaluation. For each gene family, the following information are
given: the species name, the Ensembl identifier of gene, the number of CDS for each gene, the average CDS length, the average gene length, and the average pairwise
Percent Sequence Identity (PID). The average pairwise PID were computed based on pairwise alignments of the CDS obtained from the multiple alignments of
their proteins families provided by Ensembl-Comapara.

Family
FAM86 MAG TP53

Species Gene_ID #CDS Gene_ID #CDS Gene_ID #CDS

Human
ENSG00000158483
ENSG00000186523
ENSG00000145002

3
4
2

ENSG00000105492
ENSG00000142512
ENSG00000105695

6
7
4

ENSG00000141510
ENSG00000073282
ENSG00000078900

15
11
9

Chimpanzee ENSPTRG00000007738 1 ENSPTRG00000011374 1 ENSPTRG00000008703 1
Mouse ENSMUSG00000022544 1 ENSMUSG00000051504 4 ENSMUSG00000022510 8
Rat ENSRNOG00000002876 1 ENSRNOG00000021023 2 ENSRNOG00000010756 4
Cow ENSBTAG00000008222 1 ENSBTAG00000017044 1 ENSBTAG00000001069 1
Chiken ENSGALG00000002044 1 ENSGALG00000007324 2
Lizard ENSACAG00000005408 1
Total 8 genes 14 8 genes 26 8 genes 51
Avg. CDS length 726 1397.42 1277.41
Avg. gene lengths 22782.37 26049.75 109457.75
Avg. pairwise PID 56.57 41.41 57.21

2 Results and discussion

2.1 Dataset

SplicedFamAlign was evaluated based on a dataset of three real sets of
homologous genes and three simulated sets of gene families.

2.1.1 Real data
The dataset contains homologous genes with their CDS sequences from
3 gene families FAM86, MAG and TP53 from the Ensembl-Compara
database release 85 [6]. For each family, 8 homologous genes were selected
with 14 CDS for FAM86, 26 for MAG and 51 for TP53. For each set of
homologous genes, the genes are from 6 different amniote species, human,
chimpanzee, mouse, rat, cow and chicken (for FAM86 and TP53) or lizard
(for MAG). Table 1 gives more details about the real dataset.

FAM86 is a group of genes with sequence similarity and unknown
function. MAG is the family of Myelin Associated Glycoprotein genes
whose proteins are type I membrane protein and member of the
immunoglobulin superfamily. TP53 is a family of genes encoding for tumor
suppressor proteins p53.

2.1.2 Simulated Data
We generated a dataset of simulated gene families with gene and cDNA
sequences accounting for gene splicing structure evolution and alternative
splicing events. We designed a new simulation method that takes as input
a gene tree with branch lengths representing evolutionary rates, generates
an ancestral gene at the root of the tree, and makes this gene evolve along
branches of the gene tree. The ancestral root gene is generated with an
exon-intron structure and an initial set of CDS of alternative transcripts for
the gene, based on parameters learned from a dataset of 10.000 vertebrate
genes from amniote species from the Ensembl database [6]. The evolution
simulated along branches of the tree accounts for two levels of evolution.
First, at the level of genes, the following evolutionary events acting on
the splicing structure of genes are included, exon duplication, exon gain
and exon loss. Evolutionary events acting on the sequence of coding
exons, namely nucleotide insertion, deletion and substitution events are
also included at the level of genes, using empirical codon evolution models
[16]. Second, at the level of transcripts, we account for two events acting on
the sets of transcripts and CDS generated by genes, isoform creation, and
isoform loss. The isoform creation event corresponds to the acquisition by
a gene of the ability to produce a new transcript through a new combination

of exons. The isoform loss event corresponds to the loss of the ability to
produce a given transcript.

Using the simulation method, we generated three sets of gene family,
a first set called Small for which the evolutionary rates on the gene tree
branches are low, a second set called Medium with medium evolutionary
rate, and a third set called Large with a high evolutionary rates. Each of
the three set contains 36 simulated gene families with 5 genes and 5 to 17

CDS in total. For each family in each set, we generated a set of 5 gene
sequences with their CDS, all true pairwise spliced alignments between
any CDS and any gene of the family, the true multiple sequence alignment
of all CDS and gene sequences, and all true splicing orthology relations
between CDS. Table 2 gives more details about the simulated datasets used
for the evaluation.

Table 2. Detailed description of the simulated data used for the evaluation: For
each simulated dataset, the number of families, the number of genes per family,
the average number of CDS, the average CDS length, the average gene length,
and the average pairwise PID in families are given. For the average measures,
the standard deviations are also given.

Small Medium Large
Number of families 36 36 36
Number of genes per family 5 5 5

Avg. number of CDS
8.86
(2.95)

8.03
(2.78)

9.30
(2.87)

Avg. CDS length
808.24
(175.79)

779.44
(186.66)

799.40
(214.40)

Avg. gene length
2556.83
(537.93)

2358.60
(548.06)

2477.95
(552.02)

Avg. pairwise PID
76.25
(18.92)

39.20
(13.85)

11.42
(3.86)

2.2 Evaluated methods

SplicedFamAlign results were compared with the results of Splign [12],
the most recent and current best performing cDNA-to-genome spliced
alignment method. In [12], Splign was compared with SIM4 [7], Spidey
[24], BLAT [14], GMAP [25], and Spa [23] in terms of the capacity of
the method to realize alignments at various levels of similarity between
input sequences. Splign was shown to be more performant that other
methods in the comparison for all levels of sequence similarity. Three

review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peerthis version posted September 19, 2018. ; https://doi.org/10.1101/420307doi: bioRxiv preprint 

https://doi.org/10.1101/420307


“splicedfamalign_apbc2019” — 2018/9/18 — page 4 — #4

4 Jammali et al.

version of SplicedFamAlign were tested. SFA_L corresponds to the first
local alignment step of SplicedFamAlign. SFA_E is SFA_L followed by
the gapped extension step of the method. SFA_G is SFA_E followed by
the final global alignment step of the method. A description of the methods
used in the evaluation is given in Table 3.

Table 3. Description of the methods used in the evaluation: For each method,
the optimization criteria and the specific parameters are given.

Method Optimization Criteria Specific parameters
SFA_L sequence similarity

splice signal
splicing structure

tblastx e-value= 10−7

SFA_E
max. number of gaps in extension α = 21
min. PID of aligned segments β = 30

SFA_G min. PID of aligned segments β = 30

Splign
sequence similarity
splice signal

Default parameters
min_exon_identity = 0

For SFA_E, the maximum number of gaps in a left or right extension
of an anchor alignment is α = 21. For SFA_E and SFA_G, the additional
aligned segments obtained after the anchor extension step or the global
alignment step are kept if and only if they have a Percent Sequence Identity
(PID) greater or equal to β = 30% (See Section 3.3 for a more detailed
description of the parameters of algorithms used in the anchor extension
and the global alignment steps of SFA).

For Splign, the parameter min_exon_identity is set to 0 in order to
allow Splign achieve the highest coverage of CDS possible. Setting this
parameter to higher values makes Splign get worse performance (data not
shown).

2.3 Discussion

First, we compared the ability of the methods to compute spliced
alignments with high coverage of CDS (Figure 3), relevant Percent
Sequence Identity (PID) (Figure 4), and induced exon extremities
corresponding to actual exon extremities in the CDS and the gene sequence
(Figure 5). For the simulated data, for which the true alignment of the
sequences in provided, we compared the ability of the methods to recover
the true spliced alignments (Figure 6).

Second, the true orthology relationships between the CDS are also
known for the simulated data. We compared the ability of the methods to
be used for computing the true CDS orthology groups within a gene family
based on spliced alignments (Figure 7).

Third, we compared the execution time of the methods (Figure 8).

2.3.1 Evaluation of the quality of spliced alignments

CDS coverage. We compared the CDS coverage of the spliced alignments
computed using the methods. The results are shown in Figure 3. In terms
of CDS coverage, SFA methods and especially SFA_G, show the best
results and their performances remain high for various levels of similarity
between input sequences, covering in average more than 90% of CDS for
all simulated datasets (Small, Medium, Large). Splign achieves a high
CDS coverage when the sequences have a high level of similarity (Small
dataset), but the performance decreases for medium and low similarity
levels.
Percent Sequence Identity (PID). The PID of the spliced alignments
constitutes also a good criterion to evaluate the quality of the alignments.
For all methods and all datasets, the PID computed for their spliced
alignment results are shown in Figure 4. The PID for SFA_L and SFA_E
decreases when the input sequence similarity decreases, which is expected.
However, for the other methods, especially Splign, the PID remains high
for most datasets (more than 80%). For instance, while Splign achieves
the lowest CDS coverage for the MAG family (Figure 3), it achieves the
highest PID for this family. Taken together, the results on the CDS coverage

Fig. 3: Average CDS coverage of spliced alignments obtaining using
the methods (SFA_L, SFA_E, SFA_G, Splign) on the real and simulated
dataset. For the simulated datasets composed of several gene families, the
standard deviations are also given.

and the PID (Figure 3 and 4) suggest that Splign is very stringent and aligns
only highly sequence-conserved segments, whereas the SFA methods align
also less similar segments.

Fig. 4: Average Percent Sequence Identity (PID) for each method and
each dataset used in the evaluation. For the simulated datasets composed
of several gene families, the standard deviation are also given.

Inference of real exon extremities. We compared the ability of the
methods to correctly identify actual exon extremities in the CDS and the
gene sequence and canonical splice sites in the gene sequence. We used
the following performance metrics. The precision measure represents the
fraction of inferred exon extremities that corresponds to real CDS exon
extremities (A), real gene exon extremities (B), canonical gene splice
sites (C). The recall measure represents the fraction of real CDS exon
extremities (A) , real gene exon extremities (B), canonical gene splice
sites (C) that are correctly inferred by the spliced alignments. The f-score
is the harmonic mean of precision and recall.

f-score = 2 ∗
precision ∗ recall
precision + recall

The results of the comparison are shown in Figure 5. In terms of
precision, we observe that, for all references (A), (B) and (C), all methods
achieve a good performance. Globally, they perform better for gene exon
extremities (B) and canonical splice sites (C) than for CDS exon extremities
(A). In particular, Splign performs almost perfectly for (B) and (C). SFA_E
is the second one in terms of precision and also performs well.

In terms of recall, SFA_G is the best performing method for all
references (A), (B) and (C), closely followed by SFA_E and SFA_L.
The performance of SFA methods remains similar for various levels of
sequence similarity (Small, Medium and Large datasets). However, the
performance of Splign decreases when the level of sequence similarity
decreases. This observation is coherent with the results obtained for the
evaluation of the CDS coverage achieved by the methods. Indeed, the
lower the CDS coverage, the lower the recall measure achieved.
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Fig. 5: Precision, recall and f-score measure, for all methods (SFA_L, SFA_E, and SFA_G, Splign), for the comparison of inferred exon extremities with
real CDS exon extremities (A) , real gene exon extremities (B), canonical gene splice sites (C). For the simulated datasets composed of several gene
families, the standard deviation are also given for precision and recall.

Fig. 6: Precision, recall and f-score measure, for all methods (SFA_L,
SFA_E, and SFA_G, Splign), for the comparison of the computed spliced
alignments with the true spliced alignments. For each simulated dataset,
the standard deviation are also given for precision and recall.

Fig. 7: Precision, recall and f-score measures, for all methods (SFA_L,
SFA_E, and SFA_G, Splign), for the comparison of the computed CDS
orthology groups with the true CDS orthology groups. For each simulated
dataset, the standard deviation are also given for precision and recall.
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Combining the precision and the recall measures, the f-score measure
shows that SFA_E and SFA_L are the best performing methods. The
robustness of the SFA methods to changes in the level of sequence
similarity can be explained by the use of the splicing structure of the
input sequences that allows to detect structure conservation even when the
sequence conservation signal is low.

Comparison with true alignments. For the simulated datasets for
which the true spliced alignments of CDS against gene sequences are
provided, we evaluated the ability of the methods to correctly recover
the true spliced alignments. We evaluated the precision, recall and f-
score measure of a computed spliced alignment as follows. The precision
measure is the fraction of pairs of aligned nucleotides in the computed
alignment that are also aligned together in the true alignment. The recall
measure is the fraction of pairs of aligned nucleotides in the true alignment
that are also aligned together in the computed alignment.

The f-score is a combination of the precision and recall as defined for
the evaluation of the ability to infer real exon extremities.

The results of the evaluation are shown in Figure 6. We can observe
that all methods achieve high and comparable precision rates. In terms
of recall, the SFA methods also have a high performance for various
levels of sequence similarity. Splign also performs very well for high
sequence similarities (Small dataset), but the performance decreases with
the decrease of sequence similarity.

2.3.2 Evaluation of the quality for CDS orthology groups identification
We applied our algorithm for the identification of CDS orthology groups
based on structural similarity, using spliced alignments computed by the
methods SFA_L, SFA_E, and SFA_G and Splign. For each method, we
then obtained a set of CDS orthology groups.

We evaluated and compared the ability of the methods to recover the
true CDS orthology groups. Two CDS are true orthologs if the sets of exons
composing them are in bijection in such a way that any pair of exons in
bijection descend from a same ancestral exon. Thus, we compared the CDS
orthology groups obtained using each method with the true CDS orthology
groups given in the simulated datasets. The precision, recall and f-score
measures of a computed clustering are defined as follows.

The precision represents the fraction of pairs of CDS found as orthologs
by the computed clustering that are true orthologs. The recall represents the
fraction of true pairs of orthologous CDS that are also found as orthologs
by the computed clustering. The f-score is a combination of the precision
and recall as defined in Section 2.3.1.

Figure 7 shows the results for each method. The precision score for
Splign on the dataset Large is N/A because no pair of CDS were found
as orthologs by the computed clustering. As for previous comparisons,
the precision scores are high for all methods. For the SFA methods, the
recall scores are also high and robust to changes in the level of sequence
similarity, whereas for Splign, the recall score decreases when the level of
sequence similarity decreases.

2.3.3 Evaluation of the execution time:
Finally, we compared the execution time of the methods. The average
execution times of the SFA_L, SFA_E and Splign methods to compute
spliced alignments for each dataset are shown in Figure 8. The execution
times of SFA_G are not displayed in the same figure as they are more
than 500 times higher than the execution times of other methods. The very
high execution times of SFA_G are explained by the global alignment step
of the method that uses a dynamic programming algorithm of quadratic
time complexity with a multiplicative constant Imax − Imin = 5000

(See Section 3.3, Step 3 for a description of the main recurrence formula
used by the dynamic programming algorithm). For instance, in contrast to
Splign which stops without achieving its global alignment step when the

sequence similarity is low, the global alignment step of SFA_G is achieved
even if the preceding steps of local alignment and anchor extension end up
with a spliced alignment having a low CDS coverage. For the remaining
methods, the execution times of SFA_E are slightly higher than those of
SFA_L. Splign has higher execution times than SFA_L and SFA_E for
real datasets, but slightly lower execution times for simulated datasets.
This can be explained by the smaller difference between CDS lengths and
gene lengths in the simulated datasets compared to the real data. (See the
average CDS and gene lengths of datasets in Tables 1 and 2). So, when the
time-consuming global alignment step of Splign is achieved, it is applied
on larger instances in the real dataset than in the simulated dataset.

Fig. 8: Average execution times in second (sec) of SFA_L, SFA_E and
Splign to compute spliced alignments for all datasets. For each simulated
dataset, the standard deviation are also given.

3 Methods
In this section, we first give some formal definitions that will be useful for
the remaining of the section. In the second subsection, the definitions
of three versions of the spliced alignment problem are given under a
unified framework allowing to compare theoretically the optimization
criteria of the different versions of the problem. All existing cDNA-
to-genome spliced alignment methods correspond either to the first or
the second version of the problem that account for sequence similarity
and splice signals in the input genomic sequence. The last version of
the problems introduced in this paper additionally takes into account
the splicing structure of the input sequences. In the third subsection,
we describe our SFA-align algorithm for the new version of the spliced
alignment problem. In the fourth subsection, we describe SFA-ortholog
algorithm for the computation of CDS orthology groups, using spliced
alignments.
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3.1 Preliminary definitions: gene, CDS, spliced alignment

Given a set S, |S| denotes the size of S, and given a sequence T ,
length(T ) denotes the length of T . Note that in the nomenclature used
in this section, we call CDS the exon structure of a coding sequence and
CDS sequence the nucleotide sequence of the coding sequence.

Gene and CDS: A gene sequence is a DNA sequence on the alphabet
of nucleotides Σ = {A,C,G, T}. Given a gene sequence g, an exon of g
is represented as a pair of integers (a, b) such that a ≤ b and a and b are
the start and end locations of the exon on the gene sequence. The sequence
of the exon (a, b) is then denoted by g[a, b]. A CDS of the gene sequence
g is represented as a chain c = {(a1, b1), . . . , (aj , bj)} of exons of
g such that for any two successive exons (ai, bi) and (ai+1, bi+1),
bi < ai+1. The ith exon of the CDS c is then denoted by c[i]. The
set of introns induced by the CDS c is denoted by Intron(c) =

{(b1, a2), (b2, a3) . . . , (bj−1, aj)}. The set of known CDS of a gene
g is denoted by C(g) and the set of all exons of all konwn CDS of g is
denoted by E(g) =

⋃
c∈C(g) c (see Figure 9 for an illustration).

Spliced alignment for identification of splicing orthology groups 5

splicing impact in the speciation process. Their is multiple way to determine
homology. In the gene homology, this is more base on the similarity because
we are searching for conserved information. At the transcriptome level, this is
more ambigus because an exon can have conservation among 2 species but still
can or can not be transcripted or translated in RNA or protein. In consequence,
some would say we need to add the function and not only the similarity and the
structure. Some think the homology is all about similarity. In our tool, we choose
the middle way by searching for %3 gap and adding more value to spliced jonction
but not looking at protein signature . The question of using transcriptome data
to find homology.[19]

3 Methods

3.1 Preliminary definitions: gene, CDS, spliced alignment

In this subsection, we first give some formal definitions that will be useful for
the remaining of the section. Given a set S, |S| denotes the size of S, and given
a sequence or an interval T , length(T ) denotes the length of T .

Gene and CDS: A gene sequence is a DNA sequence on the alphabet of
nucleotides ⌃ = {A, C, G, T}. Given a gene sequence g of length n, an exon of g
is represented as a pair of integers (a, b) such that 1  a  b  n. The sequence
g[a, b] of an exon (a, b) of g is the segment of g identified by its start and end
positions a and b on g. A CDS c = {(a1, b1), . . . , (aj , bj)} of g is a chain of exons
of g such that for any two successive exons (ai, bi) and (ai+1, bi+1), bi < ai+1.
The ith exon of c is denoted by c[i]. The set of introns induced by c is denoted
by Intron(c) = {(bi, ai+1) | 1  i < j}.

The set of existing CDS of a gene g is denoted by C(g) and the set of all exons
of g by E(g) =

S
c2C(g) c. For instance, in the example below, the nucleotides of

the gene sequence g are numbered by position from 1 to 63, and C(g) = {c1, c2}
such that c1 = {(9, 12), (18, 29), (49, 56)} and c2 = {(4, 12), (18, 23), (35, 43),
(49, 60)} and E(g) = {(4, 12), (9, 12), (18, 23), (18, 29), (35, 43), (49, 56), (49, 60)}.

pos:000000000111111111122222222223333333333444444444455555555556666

----123456789012345678901234567890123456789012345678901234567890123

g : CGTATGGAATGCGTAAGAAGCAGGTCTGGGTAAGCATACGTGGGTAAGGGGAATGATTGAAAG

c1: --------ATGC-----AAGCAGGTCTGG-------------------GGGAATGA

c2: ---ATGGAATGC-----AAGCAG-----------CATACGTGG-----GGGAATGATTGA

The sequence g[c] of a CDS c of g is the concatenation of the sequences of
the exons composing c in the order in which they appear in c. An exon of a CDS
sequence g[c] of length m is represented as a pair of integers (k, l) such that
1  k  l  m. In this case, the sequence g[c][k, l] of the exon (k, l) in g[c], is the
segment of g[c] identified by its start and end positions k and l on g[c]. The set of
exons composing a CDS sequence g[c] is denoted by E(g[c]). For instance, in the
example above, g[c1] =ATGCAAGCAGGTCTGGGGGAATGA, |g[c1]| = 24, the first exon
of g[c1] is (1, 4), and g[c1][1, 4]=ATGC, and E(g[c1]) = {(1, 4), (5, 16), (17, 24)}.

Fig. 9: Toy example of a gene sequence g with nucleotides numbered
by position from 1 to 63, and a set of two CDS C(g) =

{c1, c2} such that c1 = {(9, 12), (18, 29), (49, 56)} and c2 =

{(4, 12), (18, 23), (35, 43), (49, 60)}, inducing a set of exons E(g) =

{(4, 12), (9, 12), (18, 23), (18, 29), (35, 43), (49, 56), (49, 60)}. The
sequence of the CDS c1 is g[c1] =ATGCAAGCAGGTCTGGGGGAATGA

with a set of exons E(g[c1]) = {(1, 4), (5, 16), (17, 24)}. The first exon
of the CDS sequence g[c1] is (1, 4) with exon sequence g[c1][1, 4]=ATGC.

The sequence of a CDS c of g is denoted by g[c]. g[c] is the
concatenation of the sequences of the exons composing c. An exon of
a CDS sequence g[c] is represented as a pair of integers (k, l) such that
k ≤ l, and k and l are the start and end locations of the exon on the CDS
sequence. In this case, the sequence of the exon (k, l) of g[c] is denoted
by g[c][k, l]. The set of exons composing a CDS sequence g[c] is denoted
by E(g[c]) (see Figure 9 for an illustration).

Spliced alignment: A spliced alignment is an alignment of a CDS
sequence against a gene sequence that allows to identify conserved
exons sequences. Formally, a spliced alignment of a CDS sequence
g[c] against a gene sequence h is represented as a chain A =

{(k1, l1, a1, b1), . . . , (kj , lj , aj , bj)} of quadruplets called blocks such
that for any block (k, l, a, b) ofA, k ≤ l and k and l are the start and end
locations of a segment on the CDS sequence, and a ≤ b and a and b are the
start and end locations of a segment on the gene sequence or a = b = 0;
The ith block of a spliced alignment A is denoted by A[i], and:

1. k1 = 1, lj = length(g[c]) and for any two successive blocks
A[i] = (ki, li, ai, bi) and A[i + 1] = (ki+1, li+1, ai+1, bi+1),
we have li = ki+1 − 1.

2. for any two blocksA[i1] andA[i2] with i1 < i2, we have bi1 < ai2
if ai1 6= 0 and ai2 6= 0.

A block (k, l, a, b) represents an alignment of a segment g[c][k, l] of the
CDS sequence with a segment h[a, b] of the gene sequence. If a = b = 0,
then the gene segment h[a, b] is empty and the block (k, l, a, b) represents

a deletion of the CDS segment g[c][k, l] in the spliced alignment. We call
such a block a deleted block. Otherwise, the block (k, l, a, b) represents
a conservation between a putative CDS exon sequence g[c][k, l] and a
putative gene exon sequence h[a, b], and we call such a block a conserved
block (see Figure 10 for an illustration).

Condition 1. of the spliced alignment definition implies that the set of
conserved and deleted blocks of the spliced alignment covers the entire
CDS sequence. Condition 2. implies that the blocks are ordered in the
alignment following an increasing order of their location on the CDS
sequence, and this order is also preserved on the gene sequence.

For instance, in Figure 9, the spliced alignment of g[c1] against g is
A = {(1, 4, 9, 12), (5, 16, 18, 29), (17, 24, 49, 56)} (see Figure 10 for
more general examples of spliced alignments with conserved and deleted
blocks ).

h!

g[c]!

A[1]! A[2]!

h!

g[c]!

Intron!

Introns!

A[3]! A[4]! A[5]!

A[2]! A[3]!A[1]!

Fig. 10: Top. Illustration of a spliced alignment between a CDS sequence
g[c] and a gene sequence h, composed of 5 blocks, 3 conserved blocks
(A[2], A[4] and A[5]) and 2 deleted blocks (A[1] and A[3]). It induces 1

putative intron between the successive conserved blocks A[4] and A[5].
The deleted blocks A[1] = (k1, l1, a1, b1) and A[3] = (k3, l3, a3, b3)

are such that a1 = b1 = 0 and a3 = b3 = 0. Bottom. A spliced
alignment composed of 3 conserved blocks that induce 2 putative introns
between A[1] and A[2] and between A[2] and A[3].

A spliced alignmentA induces a set of putative gene intron segments.
These intron segments are the gene segments that lie between two
successive blocks of the spliced alignment that are conserved blocks.
Formally, the set of introns induced by a spliced alignment A =

{(k1, l1, a1, b1), . . . , (kj , lj , aj , bj)} is denoted by Intron(A) =

{(bi, ai+1) such that (ki, li, ai, bi) and (ki+1, li+1, ai+1, bi+1) are
conserved blocks}. Two successive conserved blocks of the spliced
alignment A also induce a junction between two successive segments in
the CDS sequence that are separated by an intron segment in the gene
sequence. The set of putative exon junctions induced the spliced alignment
A is denoted by Junction(A) = {li such that (ki, li, ai, bi) and
(ki+1, li+1, ai+1, bi+1) are conserved blocks}. Note that if all blocks
composing A are conserved, then the number of introns induced by A is
|Intron(A)| = |Junction(A)| = |A| − 1.

3.2 A new constrained version of the spliced alignment
problem

In this subsection, we first re-call two existing versions of the spliced
alignment problem and we introduce a third more constrained version that
takes additionally account of the splicing structure of input sequences. We
discuss the motivations and limits of the different versions as we give their
definitions.
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Given a block (k, l, a, b) of a spliced alignment of a CDS sequence g[c]
against a gene sequence h, let sim(g[c][k, l], h[a, b]) denote the score of
an optimal global alignment between the CDS segment g[c][k, l] and the
gene segment h[a, b] in a given scoring scheme. Note that if a = b = 0,
then h[a, b] is an empty segment. The following is a reformulation of the
less constrained version of the spliced alignment problem introduced in [8].
This formulation gives a unified framework to formally define and compare
all the versions of the spliced alignment problem formulated thereafter.

Spliced Alignment Problem I (SAP_I):
Input: A CDS sequence g[c] from a gene sequence g ; a gene sequence h.
Output: A spliced alignment A of g[c] against h that maximizes∑

(k,l,a,b)∈A
sim(g[c][k, l], h[a, b])

The SAP_I problem accounts only for the sequence similarity between
the segments composing the blocks of the spliced alignment. In practice,
in more than 99% of real cases of splicing, the spliced intron sequences
start with a dinucleotide sequence "GT" and ends with a dinucleotide
sequence "AG" corresponding to canonical splice sites [4, 20]. They
exists also other non-canonical splice site pairs such as GC-AG, AT-AC
that occur less frequently. Thus, in order to improve the accuracy of spliced
alignments, a more constrained version of the problem allows to account
for the extremities of intron segments induced by a spliced alignment.
Given an intron (b, a) induced by two successive conserved blocks of a
spliced alignment of a CDS sequence g[c] against a gene sequence h, let
splicesignals(h[b, a]) denote a score of the putative intron segment
h[b, a] accounting for the presence or absence of known splice signals at
the extremities of h[b, a]. A putative intron segment with two canonical
splice signals at its extremities has a higher score than a segment with
only one which has a higher score than a segment without any canonical
splice signal at its extremities. A more constrained version of the spliced
alignment problem studied in [12, 25] for instance is the following.

Spliced Alignment Problem II (SAP_II):
Input: A CDS sequence g[c] from a gene sequence g ; a gene sequence h.
Output: A spliced alignment A of g[c] against h that maximizes∑

(k,l,a,b)∈A
sim(g[c][k, l], h[a, b])

+
∑

(b,a)∈Intron(A)

splicesignals(h[b, a])

The SAP_I and SAP_II problems do not account for the splicing
structure of the input sequences. In order to further improve the accuracy of
spliced alignments, we define a more constrained version of the problem
that takes into account the exon structure of the CDS sequence and the
exon-intron structure of the gene sequence.

Given a putative intron (b, a) ∈ Intron(A) induced by two
successive conserved blocks of a spliced alignment A of a CDS
sequence g[c] against a gene sequence h, let splicesitesE(h)(b, a)

denote a score of the putative intron segment h[b, a] accounting for the
correspondance of its extremities with known splice sites in the gene
sequence h. A putative intron segment whose extremities both correspond
to known splice sites in the gene sequence receives a higher score than
a segment with only one extremity corresponding to a known splice site
which has a higher score than a segment without any correspondance to
known splice sites at its extremities.

Similarly, for a putative CDS exon junction l ∈ Junction(A)

induced by two successive conserved blocks of the spliced alignment A,
let exonjunctionE(g[c])(l) denote a score of the putative CDS exon

junction l accounting for its correspondance with a real exon junction in
the CDS sequence g[c]. If l corresponds to a real exon junction in E(g[c])

it receives a higher score than if it does not correspond to a junction in
E(g[c]). The more constrained version of the problem introduced here is
defined as follows.

Spliced alignment Problem III (SAP_III):
Input: A CDS sequence g[c] from a gene sequence g ; the set of exons
E(g[c]) of g[c] ; a gene sequence h ; the set of exons E(h) of h.
Output: A spliced alignment A of g[c] against h that maximizes∑

(k,l,a,b)∈A
sim(g[c][k, l], h[a, b])

+
∑

(b,a)∈Intron(A)

splicesignals(h[b, a])

+
∑

(b,a)∈Intron(A)

splicesitesE(h)(b, a)

+
∑

l∈Junction(A)

exonjunctionE(g[c])(l)

Examples of algorithms developed for the SAP_I problem which
accounts only for the sequence similarity at the nucleotide or at the amino
acid level are BLAT [14], DDS/GAP2 [10], SOAPsplice [9] and HSA [3].
Several algorithms have also been developed for the SAP_II problem, for
instance Geneseqer [22], Sipdey [24], Splign [12], SIM4 [7], MGAlign
[18], GMAP [25] and Spa [23]. These algorithms account for splice signals
in addition to sequence similarity. A comparison of a subset of these tools
has demonstrated the superiority of splice signal-based methods compared
to only sequence similarity-based methods [25]. Moreover, it was shown in
[12] that, among splice signal-based methods, the best performing current
spliced alignment method for cDNA-to-gene alignment was Splign. Thus,
taking account of more information about the input sequences improves
the accuracy of spliced alignments. We then expect that accounting for
information on the exon structure of CDS sequences and the exon-intron
structure of gene sequences will further improve spliced alignments.

3.3 The SFA-align algorithm for the SAP_III problem

In this section, we describe a heuristic algorithm called SFA-align for the
SAP_III problem. The algorithm follows a general approach followed by
most heuristic methods developed for the SAP_I and SAP_II problems.
The algorithm is decomposed into three steps that each accounts for the
splicing structure of the input sequences. Note that in the case where
the splicing structures of the input sequences are not provided, SFA-
align includes a preliminary step in which the splicing structure of input
sequences are inferred by computing a spliced alignment of each CDS
against its own gene having a Percent Sequence Identity (PID) of 100. An
overview of the main steps of SFA-align is depicted in Figure 1. It starts
with a fast local alignment to compute highly conserved local segments
used as anchors in the alignment. Next, the anchor alignment are extended
in order to maximize the exon coverage. Finally, between the anchors, a
global alignment of the remaining segments can be applied to complete
the alignment.

Step 1. Local alignments using tblastx. This step is achieved using
Translated Blast (tblastx) [13] in order to obtain a preliminary set of local
alignments between the input CDS sequence and gene sequence. Tblastx
is used in order to account for the translation of the sequences into amino
acid sequences. This allows to detect conserved exon segments translated
into amino acid sequences even in the presence of translational frameshifts
or nucleotide silent mutations.

Given the set of hits obtained using tblastx with a given threshold E-
value, the following procedure is applied to obtain the final set of local
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alignments. i) Each hit is assigned to the exon of the CDS that the hit covers
the more, and the hit is minimally trimmed at its extremities to cover only
this CDS exon. Thus, the boundaries of a trimmed hit never exceed the
boundaries of the CDS exon that it is assigned to ; ii) All hits within the
same CDS exon are compared and only a subset of pairwise compatible
hits with the lowest E-values is kept ; iii) Finally, the hits within different
exons are compared and only compatible hits with the lowest E-values are
kept ; iv) For each exon, the remaining compatible hits are gathered into
a set of non-overlapping local alignments for the exon. A more detailed
description of this procedure is given in Algorithm 1 in Appendix. Figure
11 provides an illustration of the result of the procedure on an example. In
this example, Step i of the local alignment procedure associates hits 1 and
2 to exonE1, hits 3 and 4 to exonE2, hit 5 to exonE3, and hit 6 to exon
E4. The extremities of the hit 5 are also trimmed so that the hit covers
only exonE3. Step ii removes hit 4 from the list of hits associated to exon
E2 because it is incompatible with hit 3 that has a lower E-value. Next,
Step iii removes hit 6 from the list of hits associated to exon E4 because
it is incompatible with hit 5 associated to exon E3 with a lower E-value.
Finally, Step iv ends up with three local alignments covering exons E1,
E2 and E3 illustrated by hits 1, 3, 5 in Figure 12.

Gene!

CDS!

E2! E3!E1! E4!

1!
2!

4!
3!

6!

1!
2!

4!
3!

6!

Local!!
alignment!!
hits!

5!

5!

Fig. 11: Example of a set of six hits obtained using tblastx between a
CDS and a gene sequence, with hits numbered from 1 to 6 by increasing
E-values. The local alignment algorithm ends up with the three local
alignments 1, 3, 5 covering exons E1, E2 and E3 .

Step 2. Gapped extension of anchors. In this step, each local
alignment obtained from Step 1 is extended in both directions in
order to increase as much as possible the coverage of the CDS
exon to which it is associated. The extension procedure allows
an extended portion of an alignment to start with a succession
of gaps whose number must be a multiple of 3 and shall
not exceed a given number α of gaps. For example, a local
alignment ("AAUCGGA","AAUCGGA") that partially covers a CDS exon
"AAUCGGAUGGGUG" could be extended on the right until the extremity
of the exon following three possible configurations. It can be extended as
(a) ("AAUCGGAUGGGUG","AAUCGGAUGGGUG") without any gap at the
start of the extension, or (b) ("AAUCGGAUGGGUG","AAUCGGA---GUG")
starting with 3 gaps in the gene sequence, or (c) ("AAUCGGA---UGGGUG",
"AAUCGGACCCUGGGUG") starting with 3 gaps in the CDS.

Given a local alignment of a CDS segment and a gene segment
represented by a block (k, l, a, b) such that k and l are the start and
end positions of the segment in the CDS, and a and b are the start and
end positions of the segment in the gene sequence, the gapped extension
procedure applied on (k, l, a, b) is as follows. Let (k′, l′) be the exon
of the CDS to which the local alignment (k, l, a, b) is associated. Note
that k′ ≤ k ≤ l ≤ l′. i) If k′ < k, then the alignment (k, l, a, b) can
be extended on the left. The procedure tries all possible configurations of
extension, (a) without any gap at the start of the extension, (b) starting with
gaps in the gene sequence or (c) starting with gaps in the CDS, such that the
extension does not overlap any other local alignment. For configurations
(b) and (c), all possible numbers of gaps 3 ∗ i with i ranging from 1 and
α/3 are evaluated, the extension configuration having the highest identity
score is returned. If this identity score is above a given identity threshold

β, then the alignment is extended on the left, otherwise no extension is
applied. i) If l < l′, then the alignment (k, l, a, b) can also be extended
on the right. A procedure similar to the previous one is applied in order to
try all possible configurations of extension on the right. A more detailed
description of the procedure is given in Algorithm 2 in Appendix. Figure
12 also provides an illustration of the configurations of left extension that
are explored by the procedure on an example.

Gene!

E3! E4!

3! 5!

1! 3! 5!

a!

a!

b!

c1!

b!

c2!
c3!

1!

b!
b!

E2!E1!

c1!
c2!
c3!

α!

α!

CDS!

Fig. 12: Example of a set of three local alignments 1, 3, 5 between a
CDS and a gene sequence obtained at the end of the local alignment
step. All possible configurations (a), (b) and (c) of left extension of the
local alignments 3 are illustrated. The maximum number of gaps α for
configurations (b) and (c) is also illustrated.

Step 3. Global spliced alignment algorithm. For all CDS exons that were
left completely unaligned by the previous steps, a dynamic programming
algorithm for global spliced alignment is applied. Restricting the global
alignment to remaining unaligned exons of the CDS allows to accelerate
the global algorithm step by dividing the dynamic programming space.
The following main recurrence formula is used.

S(i, j) = max



S(i− 1, j − 1) + score(i, j)

S(i− 1, j) + score(i,−);

S(i, j − 1) + score(−, j);
max(j′,j)∈E(h){S(i, j′)

+ exonjunction(i)

+ splicesignals(h[j′, j])

+ splicesites(j′, j)};
maxl∈[Imin,Imax]{S(i, j − l)

+ exonjunction(i)

+ splicesignals(h[j − l, j])
+ splicesites(j − l, j)};

(1)

In Formula (1), when computing the global spliced alignment between
a CDS segment g[c][k, l] and a gene segment h[a, b], S(i, j) is the
maximum score of a global spliced alignment of the segment g[c][k, k +

i − 1] and the segment h[a, a + i − 1]. For instance, if g[c][k, l] has
length m and h[a, b] has length n, then S(m,n) is the maximum score
of a global spliced alignment of g[c][k, l] and the segment h[a, b].

In the formula, the three first cases contribute to the computation
of sequence alignment scores within blocks of the spliced alignment,
given score(i, j), score(i,−), score(−, j) that denote the scores of
substitution, insertion and deletion of nucleotides. The two last cases
contribute to evaluating the structure alignment score according to the
correspondence of induced introns with known splicing signals and the
splicing structure of input sequences. Formula (1) is an extension of
the main recurrence formula used in the global alignment step of Splign
[12]. The extension consists in accounting for exonjunction(i) and
splicesites(j′, j) that are the scores for CDS exon junctions and
genomic introns introduced for the definition of the SAP_III problem.
The last case of the formula also contributes to the extension and allows
to further account for the splicing structure of the unspliced genomic
sequence.
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Finally, any new alignment block computed in this step is kept if and
only if its identity score is above a given identity threshold β, otherwise it
is not added to spliced alignment.

3.4 The SFA-ortholog algorithm for the identification of
CDS orthology groups

In this section, we give a definition of CDS orthology groups computed
by the SFA-ortholog algorithm based on pairwise spliced alignments. We
first start with a definition of orthologous CDS based on spliced alignment.

In [26], an extension of the concept of gene orthology to spliced
transcript orthology was introduced. They defined orthologous transcripts
as two structurally similar transcripts from two orthologous genes. The
orthology relationship between two transcripts relies on the structural
similarity between the transcripts. This structural similarity is evaluated
using the CDS associated to the transcripts and their spliced alignments
against genes.

CDS orthology: Let c1 and c2 be two CDS from two homologous genes
g and h respectively. Let A1 be a spliced alignment of the CDS sequence
g[c1] against the gene sequence h. The CDS c1 and c2 are orthologs if:
(1) | c1 | = | c2 | ;
(2) Intron(A1) = Intron(c2) ;
(3) for any i, 1 ≤ i ≤ | c1 |, [length(c1[i])−length(c2[i])]%3 = 0.

In other terms, c1 are c2 as orthologs if (1) they have the same number
of exons | c1 | = | c2 | ; (2) the spliced alignment of c1 against h induces
the same introns for c1 and c2, Intron(A1) = Intron(c2) ; (3) the
lengths of each pair of corresponding exons in c1 and c2 are congruent
modulo 3. Conditions (1) and (2) ensure that the two CDS have the same
splicing structure. Condition (3) ensures that the two CDS are translated
in the same codon phase in each pair of corresponding exons in order to
generate similar protein sequences.

Note that this definition only requires that one of the spliced alignments
of g[c1] against h or h[c2] against g supports the orthology relation. An
alternative more stringent definition of CDS orthology consists in requiring
the reciprocity, i.e. that both spliced alignment support the orthology
relation.

CDS orthology groups: Given a set of CDS C from a set of homologous
genes G, the transitivity of the CDS orthology relation is assumed and
used to identify distant orthologs in C that cannot be directlty identified by
means of the CDS structural similarity. Such orthologs could be missed
because of partial spliced alignments due to low sequence similarity.

The CDS orthology relation on C is then extended into an equivalence
relation such that for any three CDS c1, c2, c3 in C, if c1 and c2 are
orthologs and c2 and c3 are orthologs, then c1 and c3 are also orthologs.
The CDS orthology groups are defined as the equivalence classes of the
resulting equivalence relation.

4 Conclusion
The article introduces a new version of the spliced alignment problem
accounting for the splicing structure of input sequences. It constitutes a
new approach to compute accurate CDS-to-gene spliced alignments, by
detecting conservations in the splicing structure of input sequences.

We present a heuristic algorithm for the problem, and we show that
it is useful to improve the accuracy of spliced alignments and to identify
CDS orthology groups within a set of CDS from homologous genes. The
application of the algorithm to real and simulated datasets shows that the
new method outperforms existing spliced alignment methods in terms
of accuracy, with comparable execution times for CDS-to-gene spliced
alignment, and its performance is robust to changes in the level of input
sequence similarity.
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Appendix

Algorithm 1 Local alignment
INPUT: list_of_hits: list of tblastx hits
OUTPUT: list_of_anchors: list of local alignments
***Step i)***
for H ∈ list_of_hits do
E ← find the exon of the CDS that the hit H covers the more
H ← trim the hit H so that H covers only the exon E
hits_of_exon[E]← add the hit H to hits_of_exon[E]

end for
***Step ii)***
for E ∈ CDS_exons do
kept_hits_of_exon[E]←[]
hits_of_exon[E]← sort hits_of_exon[E] by increasing E-value
for H ∈ hits_of_exon[E] do

if H is compatible with all hits in kept_hits_of_exons[E] then
kept_hits_of_exon[E]← add H to kept_hits_of_exon[E]

end if
end for

end for
***Step iii)***
for (E1, E2) ∈ CDS_exons2 do

for (H1, H2) ∈ kept_hits_of_exon[E1] ×
kept_hits_of_exon[E2] do

if H1 and H2 are not compatible then
keep the hit with the lower E-value and discard the other

end if
end for

end for
***Step iv)***
for E ∈ CDS_exons do
S ← merge hits_of_exon[E] into a set S of non-overlapping local
alignments (k, l, a, b) of CDS segments (k, l) and gene segments
(a, b)

list_of_anchors ← add set S of local alignments to
list_of_anchors

end for

Algorithm 2 Gapped extension
INPUT: list_of_anchors: list of local alignments
OUTPUT: list_of_ext_anchors: list of extended local alignments
for (k, l, a, b) ∈ list_of_anchors do

(k′, l′)← CDS exon covered by (k, l, a, b)

***Step i) Extension on the left***
if k′ < k then

***Extension configuration (a)***
max_identity_extension← (k′, k, a− (k − k′), a)

max_identity ← PID(max_identity_extension)

***Extension configuration (b)***
for i ∈ [1, α

3
] do

extension← (k′, k, a− (k − k′)− 3i, a− 3i)

identity_extension← PID(extension)

if identity_extension > max_identity then
max_identity_extension← extension

max_identity ← identity_extension
end if

end for
***Extension configuration (c)***
for i ∈ [1, α

3
] do

extension← (k′, k − 3i, a− (k − 3i− k′), a)

identity_extension← PID(extension)

if identity_extension > max_identity then
max_identity_extension← extension

max_identity ← identity_extension
end if

end for
if max_identity ≥ β then
left_extension← extension

end if
end if
***Step ii) Extension on the right***
if l < l′ then
right_extension← procedure symmetric to the one used in Step
i) for extension on the left

end if
end for
(k, l, a, b) ← merge left_extension, (k, l, a, b) and
right_extension into a single extended alignment
list_of_ext_anchors← add (k, l, a, b) in list_of_ext_anchors
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