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Abstract: 45 

Predicting how pathogen populations will change over time is challenging. Such has been the 46 

case with Streptococcus pneumoniae, an important human pathogen, and the pneumococcal 47 

conjugate vaccines (PCVs), which target only a fraction of the strains in the population. Here, we 48 

use the frequencies of accessory genes to predict changes in the pneumococcal population after 49 

vaccination, hypothesizing that these frequencies reflect negative frequency-dependent selection 50 

(NFDS) on the gene products. We find that the standardized predicted fitness of a strain 51 

estimated by an NFDS-based model at the time the vaccine is introduced enables to predict 52 

whether the strain increases or decreases in prevalence following vaccination. Further, we are 53 

able to forecast the equilibrium post-vaccine population composition and assess the invasion 54 

capacity of emerging lineages. Overall, we provide a method for predicting the impact of an 55 

intervention on pneumococcal populations with potential application to other bacterial pathogens 56 

in which NFDS is a driving force. 57 

Introduction: 58 

Human interventions perturb microbial populations in many ways. Most obviously, the use of 59 

antibiotics or vaccines that target some strains and not others provide opportunities for new 60 

strains to emerge and become established. Examples include vaccines for antigenically diverse 61 

human pathogens like influenza, Neisseria meningitidis, Haemophilus influenzae, Streptococcus 62 

pneumoniae, and human papillomavirus [1–3]. Predicting these changes is a central goal of 63 

population genomic and evolutionary studies of pathogens [4–7]. For bacteria in particular, 64 

detailed predictions of how a population will respond to a selective pressure are challenging. 65 

Models that specify how mutations with a given fitness change in frequency over time are often 66 

hard to apply in practice, as we typically do not know in advance important parameters such as 67 

the fitness value of particular alleles or how this is affected by their frequency (frequency-68 

dependent selection) or genetic background (epistasis) [8,9]. 69 

Ongoing efforts to control disease caused by Streptococcus pneumoniae (the pneumococcus), a 70 

colonizer of the human nasopharynx and a cause of pneumonia, bacteremia, meningitis, and 71 

otitis media, underscore the difficulties of predicting changes after introduction of a vaccine [10]. 72 

Pneumococcal conjugate vaccines (PCVs) target only a fraction of this antigenically diverse 73 

species, which contains over 90 distinct serotypes [11]. Following widespread introduction of 74 
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PCVs, non-vaccine serotypes (NVT) benefitted from the removal of their vaccine-serotype (VT) 75 

competitors and became more common in carriage and disease, with the gains from reducing VT 76 

disease partly offset by increases in NVT disease [12–14]. These changes in the pathogen 77 

population varied by location and were not fully appreciated until retrospective analysis [15–17]. 78 

Our recent study of pneumococcal carriage isolates collected before and after PCV7 vaccine 79 

introduction in the southwest US [17] illustrates the complexity in post-vaccine population 80 

dynamics, echoing findings from other studies. Pneumococcal populations contain multiple 81 

‘sequence clusters’ which are closely related lineages, defined on the basis of sequence variation 82 

in loci present among all isolates (i.e., the core genome) [18]. We henceforth use the term strains 83 

to refer to these lineages/sequence clusters. Variation in genome content due to horizontal gene 84 

transfer is a hallmark of prokaryotes; therefore, in addition to the core genome, we can define the 85 

accessory genome, as those genes not found in all isolates in the sample [19,20]. Consistent with 86 

their close phylogenetic relatedness in terms of core genome sequence variation, each strain we 87 

identify is comprised of isolates that are fairly homogeneous – but not completely so – in the 88 

presence/absence of accessory genes as well as phenotypic properties such as serotype and 89 

antibiotic resistance [21].  90 

Previous work showed that post-vaccine success of pneumococcal strains may depend on the 91 

accessory genome [22,23]. In many bacteria, this can be a large fraction of the total number of 92 

genes found in a species (i.e., the ‘pangenome’) [24,25]. A population genomic study of 93 

pneumococci in Massachusetts children found that vaccination had remarkably little effect, after 94 

six years, on the overall frequencies of individual accessory genes (defined as clusters of 95 

orthologous genes or COGs) [23]. Despite the fact that nearly half the pre-vaccine population 96 

had serotypes targeted by the vaccine, only two of >3000 loci in the accessory genome 97 

significantly decreased in frequency 6 years post-introduction, and none increased [23]. More 98 

recently, a geographically diverse sample of pneumococcal genomes showed that while the 99 

distribution of strains varied widely across the globe, the proportion of isolates in each sample 100 

containing each individual accessory gene was highly consistent across locations [22]. Where 101 

vaccine was introduced, accessory gene frequencies were perturbed by the removal of vaccine 102 

types but trended back toward their pre-vaccine frequencies over time [17,22,26]. Negative 103 

frequency-dependent selection (NFDS) was proposed as the mechanism by which the 104 
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frequencies of loci were restored after vaccine introduction [22]. NFDS is a type of balancing 105 

selection, which maintains diversity by favoring variants when rare, but exacting a cost when 106 

they become common, such that the frequency of the variant stabilizes at intermediate values, or 107 

in some instances result in frequency oscillations [9]. Examples of mechanisms produced by 108 

NFDS include host immunity and bacteriophage predation, and as such, balancing selection is 109 

recognized as a key contributor to population composition and diversity [27,28]. Among 110 

pneumococci, similar processes have been proposed to explain the co-existence of multiple 111 

serotypes [29] and vaccine-induced metabolic shifts [30].  112 

Here, we present flexible, easily computable statistics that estimate the fitness of any strain using 113 

the contents of its accessory genome as a proxy for how it will be affected by NFDS, dependent 114 

on the frequencies of other strains in the population, and specifically of the accessory genes they 115 

carry. Even though we do not know the specific loci under selection or the mechanism involved, 116 

we are able to make predictions about the composition of a population as well as predict the 117 

fitness of any strain in any population, whether or not it has yet appeared in that population. 118 

Overall, this predictive model offers a way to study population processes and the response to 119 

interventions.  120 

 121 

Results: 122 

In the sample of 937 pneumococcal isolates comprised of 35 strains from the southwest US, we 123 

observed a sharp decline in PCV7-VT strains following vaccination (Figure 1 and S1 Figure). 124 

VT strains were subsequently replaced by NVT strains, including two emergent NVT strains that 125 

had not been observed pre-vaccination, although they were present during the same time period 126 

in a related carriage dataset from Massachusetts [17,23]. We first show that there was 127 

considerable deviation from the null expectation that NVT strains would increase in prevalence 128 

pro rata to their pre-vaccine frequency; the most common NVT strains before vaccination were 129 

not necessarily the most prevalent 12 years afterwards (Figure 1A). In particular we find 13 of 35 130 

strains deviated significantly from the prevalence expected under a null pro rata model; 9 were 131 

more common than expected and 4 less common, annotated with plus and minus signs, 132 

respectively, in Figure 1B. The impact of vaccination on individual NVT strains was hence not 133 
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easily predictable. Consequently, public health authorities and vaccine manufacturers have had 134 

to rely on post-vaccine surveillance to estimate the next epidemiologically important lineage and 135 

determine subsequent vaccine formulations. At best, this uncertainty reduces the population 136 

impact of vaccination; at worst, it could unintentionally increase the prevalence of virulent or 137 

antibiotic resistant lineages [31]. 138 

Having documented that there were strains that increased significantly more or less than their 139 

pre-vaccine frequency would indicate, we sought to define a parsimonious predictive algorithm 140 

based on NFDS that could account for these changes. We hypothesized that evolutionary 141 

dynamics could be predicted on the premise that after perturbation by vaccine, strains 142 

characterized by accessory genomes that could best restore the pre-perturbation accessory-gene-143 

frequency equilibrium would have the highest fitness and therefore increase in prevalence 144 

disproportionately. To this end, we implemented a deterministic model using the replicator 145 

equation to calculate the fitness of a strain based on its accessory genome, using vaccination as 146 

an example of perturbation [32–34] (equation 1).  147 

���

�� � ����� �  	
, 	 �  � ��
�

���

��   #�1
  

Under this formulation, ��  denotes the frequency of strain � (� � �1, … , ��
, � is the total number 148 

of strains, ��  denotes the fitness of strain �  (adapted from Ref. [22]), and 	  is the average 149 

population fitness. The difference (� � 	) is a standardized predicted fitness, and the fitness 150 

vector � is defined as the product of matrix � whose element ��,� is a value between 0 and 1 for 151 

the frequency of accessory gene � in strain �, and the vector �� � �
 whose ��	  element is the 152 

difference between the pre-vaccine frequency ��  and ��, which is the gene’s expected frequency 153 

post-vaccination, based on removing the VTs from the pre-vaccine population, of each accessory 154 

gene �  (equation 2). Intuitively, the vector �� � �
 represents the vacancy that vaccination 155 

produces in the population in terms of the accessory loci it removes, and �� quantifies the ability 156 

of strain � to fill that gap. In contrast with previous work [22], we do not define carrying capacity 157 

or migration rates, requiring only knowledge of the accessory gene frequencies at equilibrium 158 

and which strains they are associated with; these quantities can be estimated from a population 159 
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survey prior to the perturbation of interest. We assume that the impact of recombination on the 160 

accessory genome is negligible over the relatively short time period we study here. 161 

� � ��� � �
#�2
  

Using simulated data, we first assessed the ability of a strain’s standardized predicted fitness 162 

(� � 	) (for brevity we drop the modifier “standardized” hereafter) to predict the direction of its 163 

change in frequency, based on its ability to resolve the vaccine-induced perturbation (Figure 2). 164 

Note that this predicted fitness uses only data available before vaccine rollout. Using this model, 165 

we show that in simulations, the predicted fitness is consistent with the direction of a simulated 166 

strain’s adjusted prevalence change (i.e. changes in prevalence minus what would be expected if 167 

all NVT strains increased by the same proportion from their pre-vaccine prevalence) 92.8% of 168 

cases, independent of the initial pre-vaccine frequency (Figure 2B). Next, we asked whether this 169 

approach could predict the post-vaccine composition of an actual pneumococcal population, and 170 

specifically the relative contribution of each strain to serotype replacement. For each strain 171 

present before vaccine introduction, we used the accessory genome to calculate the fitness 172 

following the removal of vaccine types. We identified 2,371 genes that were present in between 173 

5% and 95% of isolates. In this data set, we found the predicted fitness value was significantly 174 

and positively correlated with the observed prevalence change (Adjusted R2=0.41, p<<0.001, 175 

Figure 3A). Further, the trajectory following vaccination, whether increasing or decreasing in 176 

frequency, was accurately predicted for 28 of the 31 tested strains identified in the sample, as 177 

indicated by the upper right and lower left quadrants of Figure 3A. Strains with a positive 178 

prevalence change had substantially higher predicted fitness than those with a negative one 179 

(mean fitness of strains that increased vs. decreased 6.4 vs. -2.4; 95% CI of the difference: 5.0-180 

12.5, p<0.001).  181 

While the predicted fitness estimates how successful each strain will be immediately following 182 

vaccination, the long-term post-vaccine prevalence or change in prevalence of each strain is of 183 

more direct interest for evolution and public health. Thus, we posited that over time post-184 

vaccination, gene frequencies would evolve to match as closely as possible to match those 185 

present pre-vaccination, and we used an optimization technique, quadratic programming, to 186 

calculate the NVT strain composition that produced accessory gene frequencies closest to those 187 
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observed in the pre-vaccine population. Here we specifically focused on only the 27 strains that 188 

were observed pre-vaccine in the southwest US sample, allowing a projection with only data that 189 

was available at the time of vaccine introduction. This approach predicted the strain composition 190 

of the population following vaccination well, characterized by a 95% confidence interval of the 191 

observed vs. predicted post-vaccine strain frequencies that includes the line of equality (1:1 line), 192 

which denotes a perfect prediction, and by an intercept and slope that does not differ 193 

significantly from zero and one, respectively (p=0.24; intercept 95% CI: -0.005, 0.030; slope 194 

95% CI: 0.257, 1.075, Figure 3B). Similar results were obtained when comparing predicted and 195 

observed change in prevalence (Figure 3C), where again the dotted line of equality fell within the 196 

95% confidence interval of the regression of observed vs. predicted change in prevalence 197 

(p=0.75; intercept 95% CI: -0.02, 0.01; slope 95% CI: 0.23, 1.36). In comparison, a naïve pro 198 

rata estimate based solely on pre-vaccine prevalence performed poorly in predicting the 199 

prevalence change (Figure 3D, p=0.001; intercept 95% CI: -0.05, -0.008; slope 95% CI: -1.43, 200 

0.35). In further support of these findings we examined a previously published carriage dataset of 201 

pneumococci colonizing children in Massachusetts. This dataset is imperfect in several respects. 202 

First, it was smaller (N=616), particularly the initial sample from the population, which had only 203 

131 isolates and came in the first year of vaccine introduction rather than before it; we thus refer 204 

to it as “peri-vaccine.” Also making this data set less ideal, the last sample was obtained only six 205 

years after the first sample, giving less time for evolution to occur than in our southwest US data 206 

set. Changes in strain frequencies are shown in S2 Figure A-B. Despite the limitations of the 207 

data set, applying the same quadratic programming approach we could predict the post-vaccine 208 

equilibrium prevalence of the nine strains used in the analysis (p=0.65; intercept 95% CI: -0.05, 209 

0.09; slope 95% CI: 0.25, 1.33) better than the pro rata model (S2 Figure C-E). 210 

A further pneumococcal vaccine (PCV13) was introduced during the second half of our post-211 

vaccine sampling of the southwest US dataset [17]. Despite this, the prevalence of PCV13 212 

vaccine serotypes remained largely unchanged, suggesting little impact of this vaccine over the 213 

period of our study. To test the potential effect on our current analysis, we partitioned the post-214 

vaccine sample into pre- and peri-PCV13 and the results are provided in Table 1, which 215 

demonstrate that our predictions were robust to sub-sampling. Finally, we tested the predictive 216 

value of different genomic elements, which are linked to accessory genes, finding that core 217 

genome loci (��
��= 17,101) and metabolic loci (��
��=5,853) were also capable of predicting the 218 
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impact of vaccine, though not as accurately as the accessory genome based on goodness of fit 219 

statistics (Table 1). This finding must be considered in the context of recombination, selection, 220 

and the evolutionary timescale impacting the pneumococcal genome, which may impact the 221 

varying magnitude of NFDS signal across sets of loci. Despite moderate levels of bacterial 222 

recombination among pneumococci, there remains appreciable linkage disequilibrium between 223 

loci nearby as well as genome-wide [8], which makes it difficult to discern the relative selective 224 

importance of any particular locus. Exactly which genomic elements are responsible for the 225 

predictive ability we document here is unknown but is obviously of interest and should be a 226 

focus for future work. 227 

Table 1. Comparison of pre- to post-vaccine prevalence change predictions using multiple 228 
models. Goodness of fit statistics including sum of squares due to error (SSE), root mean squared 229 

error (RMSE), and degrees of freedom adjusted R-squared (Adj. R2) are given for each model in 230 

relation to the 1:1 line. Fit statistics are provided for the naïve pro rata model and quadratic 231 
programming models using accessory genes, 5,853 biallelic polymorphic nucleotide sites found 232 

in 272 core-genome metabolic genes, and 17,101 biallelic polymorphic nucleotide sites found in 233 

1,111 core genes. The results of the sensitivity analysis using a subsample of 119 isolates 234 
collected in 2010 prior to the initiation of PCV13 vaccine introduction is also presented for the 235 

accessory.   236 

Model ��
�� Adj. R2 SSE RMSE 

Pro-rata (proportional change) NA 0.022 0.028 0.032 

Accessory genome (NFDS) 2,371 0.223 0.015 0.024 

Accessory genome (NFDS) - Sensitivity analysis (2010 
only) 2,371 0.081 0.024 0.030 

Core genome (NFDS) 17,101 0.173 0.016 0.024 

Metabolic loci (NFDS) 5,853 0.154 0.017 0.025 

 237 

In our main analysis, we can retrospectively calculate the predicted fitness of the two strains 238 

(shown as SC-10 and SC-24 in Figure 1 and S1 Figure) that emerged over the study period and 239 

compare them with contemporary samples collected elsewhere to determine their capacity for 240 

migration and emergence. Combining the southwest US dataset with the Massachusetts dataset 241 

[23,35], we identified 29 major strains and 2,511 accessory genes present between 5-95% among 242 

all 1,554 taxa. The predicted fitness values in our population after vaccine introduction range 243 
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from -9.7 to 16.3 (median=2.5, SD=5.5) for strains present in the Massachusetts dataset. This 244 

included two strains, SC-10 (serotype 19A; ST320) and SC-24 (serotypes 15A, 23A/B; ST338), 245 

that were both present in the Massachusetts dataset peri-PCV7 (2001-2004) and also increased in 246 

prevalence thereafter. We found that these two strains had higher predicted fitness, 8.6 and 7.2 247 

respectively for SC-10 and SC-24, than any of the other potential migrant strains that were not 248 

present in our southwest US sample before vaccination, indicating that their accessory gene 249 

frequencies were well adapted to offset the PCV7 perturbation in the southwest US population. 250 

Indeed, only two of the strains present before vaccination in the southwest US (SC-23 and SC-9) 251 

had a higher predicted fitness (Figure 3). This suggests we can use this approach to quantify 252 

which strains are most likely to successfully invade a population.  253 

There are two primary ways in which NVT strains can fill the gap left in the population by 254 

vaccination, depending on their genomic relatedness to the removed PCV7 VT strains. First, 255 

NVT taxa that are closely related to VT strains in core and accessory genomes are opportune 256 

replacements and are therefore expected to by more successful than average following 257 

vaccination. There are two strains in our dataset that are exemplar of this, which both increased 258 

after vaccination (see SC-09 and SC-23 in Figure 1 and S1 Figure). We therefore expect that for 259 

any strain that contains both VT and NVT representatives, the NVT fraction will increase post 260 

vaccination, especially since these NVT taxa are sometimes similar to their VT counterparts in 261 

terms of serotype properties such as capsule thickness and charge, which are independently 262 

correlated with prevalence [36,37]. A good example of this is the serotype 15B/C component of 263 

strain SC-26 of the southwest US sample, which we now predict to be successful following the 264 

more recent introduction of a vaccine incorporating six additional serotypes (PCV13) and which 265 

has indeed been noted to be increasing in certain locations [38–40]. Second, where such close 266 

relatives are not available, the pre-vaccine frequencies of accessory genes can be restored by 267 

other NVT that are divergent in core genomes but similar in accessory genomes. This association 268 

likely often results from the movement of MGEs in the population (e.g., phages and transposons) 269 

or non-homologous recombination, which can make distantly related strains more similar in 270 

terms of genome content. As illustrated by the pairwise comparison of core/accessory genome 271 

divergence and absolute fitness difference of each strain (S3 Figure), there is an appreciable 272 

range of differences in fitness for strains that are equidistant in core and accessory genome 273 

divergence.  274 
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Discussion: 275 

We show that by estimating the fitness of strains using an NFDS-based model and the 276 

frequencies of accessory genes, we are able to predict the direction of prevalence change 277 

following vaccination and more broadly the post-vaccine population composition. The ability of 278 

this type of balancing selection to determine the strain composition of a population is consistent 279 

with findings from environmental microbiology on multiple bacterial species [28]. Among 280 

pneumococci, changes in population dynamics after the introduction of vaccine have been 281 

explained by selection on many different aspects of the organism, including metabolic types, 282 

antibiotic resistance, carriage duration, recombination rates, and serotype competition, all of 283 

which are likely to be relevant contributors alongside, or components of, the accessory genome 284 

[30,31,41,42]. We provide a simple and effective approach for estimating the fitness of any strain 285 

in a population evolving under NFDS acting on accessory loci. All that is required is knowledge 286 

of the strain composition of the population and the accessory loci associated with each strain, as 287 

this approach does not depend on NFDS acting on particular known biological functions to 288 

predict the consequences of vaccination. It is quite conceivable that a minority of loci are 289 

involved, including even SNPs in the core genome, which also show a correlation (see Table 1 290 

and [22]). We do not wish to imply that the sorts of selection discussed here act alone. Our 291 

previous work suggests the interplay between host immunity and polymorphic protein antigens 292 

may play a significant role [43], and other work suggests an important role for metabolic loci in 293 

the core genome [30]. Phage predation and defense as well as antibiotic resistance all likely 294 

contribute to the observed signal [21].  295 

Certainly, as shown by outliers to predictions in Figure 3, we acknowledge that the model does 296 

not currently capture all population dynamics. Variation among loci in the strength of NFDS 297 

could account for some of these discrepancies, as indicated by retrospective model fitting. Other 298 

explanations include differences in the distribution of antibiotic resistance genes or possible 299 

vaccine cross-reactivity. For example, SC-18, containing serotype 6C, declined despite a positive 300 

predicted fitness; however, cross-reactivity between the PCV7 6B vaccine component and 6C 301 

may in part explain this observation [44]. Nevertheless, given the many potential pressures, 302 

mostly not directly observable, that we might expect to structure the pneumococcal population it 303 

is notable how effectively this approach can predict the impact of this perturbation. Overall, we 304 

find a significant relationship between predicted fitness and the adjusted prevalence change of a 305 
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strain. By optimizing the prevalence of each strain conditional on the gene frequencies before 306 

vaccination we can estimate the equilibrium population after vaccination, using both the 307 

predicted fitness and numerical approximations of the post-vaccine equilibrium. 308 

This work suggests numerous potential directions for future work, among them identifying the 309 

specific accessory loci or other genomic elements that are responsible for what we observe. 310 

Expanding the model to include immigration of other strains and disentangling the relative 311 

contribution of selection on various loci is likely to be a fruitful area for future research. One 312 

area worth exploring is the degree to which recombination acts to maintain gene frequencies on 313 

the timescale of population-level shifts in lineage composition. The emergence of new strains, 314 

characterized by novel combinations of accessory loci, is expected to be limited by the other 315 

strains present in the population in ways that are currently not well understood.  316 

Predicting evolution is a central goal of population genomics especially when related to 317 

pathogens and human health. While evolutionary theory provides an understanding of bacterial 318 

population processes including the relative success of lineages, distribution of phenotypes, and 319 

ecological niche adaption, these analyses are often conducted retrospectively. Here, we 320 

demonstrate a method for predicting the impact of perturbing the pneumococcal population that 321 

may be useful to predict the outcomes of future interventions including vaccines. By 322 

incorporating information on invasive capacity, these predictions could be extended to inform 323 

changes in invasive disease rates. These dynamics may suggest novel vaccine strategies in which 324 

one could target those strains whose removal would result in a predicted re-equilibration that 325 

favors the least virulent or most drug-susceptible lineages [45]. The pervasive finding of 326 

accessory genomes in most bacterial species is usually explained by specialization of lineages to 327 

specific niches; however, it could also reflect widespread NFDS, and so future work should seek 328 

for evidence of similar signal in the core and accessory genome of other bacteria [46]. 329 

Methods 330 

Study population and descriptive statistics (Figure 1 and S2 Figure). 331 

The southwest US dataset used in this study is a subset of three studies of pneumococcal carriage 332 

conducted among Native American communities in the southwest US from 1998 to 2012, as 333 

previously described [47–49]. The pre-vaccine sample was collected from the well-defined 334 
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control communities of the group-randomized trial of the PCV7 vaccine [48]. Pre-vaccine 335 

isolates included in our study were collected between March 1998 and April 2001. In late 336 

October 2000, PCV7 vaccination became routine, including catch-up for children aged <5 years. 337 

By March 2001, a total of 88% of 3–4-month old infants living in PCV7-randomized 338 

communities and 77% of those in control communities had received >1 dose of PCV7 [50]. 339 

However, only 7 of the 274 isolates in our pre-vaccine sample were collected between October 340 

2000 and March 2001; therefore, we feel it is reasonable to treat it as a pre-vaccine sample from 341 

an unperturbed population. The 13-valent pneumococcal conjugate vaccine (PCV13) was later 342 

introduced in 2010. The pneumococcal sample was subdivided into 35 sequence clusters (SCs), 343 

referred to as strains in the main text, based on core genome diversity using hierarchical 344 

Bayesian Approximation of Population Structure (hierBAPS) [51]. Secondary strain clustering 345 

(e.g., A/B/C) was assigned using the second level clustering provided by hierBAPS analysis. A 346 

previously described carriage dataset of pneumococcal isolates from Massachusetts, US was also 347 

used to explore NFDS dynamics. For our analysis, we used the original population stratification 348 

of 16 strains identified by Croucher et al. [23,35]. For both datasets, we then classified strains by 349 

serotype composition as vaccine serotype (VT), non-vaccine serotype (NVT), or mixed (VT-350 

NVT). The methods for whole-genome sequencing and genome assembly, and population 351 

genomic analysis have been described elsewhere [17].  352 

For the present analysis, we focused on 937 pneumococcal carriage isolates from the southwest 353 

US collected during three study periods (epochs): pre-vaccine – population equilibrium (E1, 354 

1998-2001); peri-PCV7 – population perturbation (E2, 2006-2008); post-PCV7 – population 355 

equilibration (E3, 2010-2012). The pre-vaccine period preceded the introduction of PCV7, while 356 

peri- and post- provided snapshots 5-6 and 10-12 years, respectively, after the introduction of 357 

PCV7. While the post-vaccine period includes, in part, the introduction of PCV13, we have 358 

previously shown that the majority of the sample was obtained when the impact of PCV13 was 359 

minimal [17]. This is supported by a sensitivity analysis to assess the effect of including all post-360 

vaccine (E3) isolates by splitting sample into pre- and post-introduction and testing 361 

independently (2010 vs. 2011-2012).  362 

For the additional dataset of carriage isolates from Massachusetts, we considered 133 isolates 363 

collected in 2001 as E1, even though the PCV7 was introduced in these communities in 2000, 364 
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and 280 strains collected in 2007 as post-PCV7 (E3). Comparatively, the elapsed pre/post-365 

vaccine time (E1-E3) differed considerably, being 6 years in the Massachusetts sample compared 366 

to 10-12 year in the southwest US sample. Based on previous analysis of the southwest US data, 367 

accessory gene frequencies were still experiencing perturbation 5-6 years after vaccine 368 

introduction (See S3 Figure in [17]). Therefore, it is likely that the Massachusetts sample had not 369 

yet reached a new post-vaccine equilibrium. We considered serotypes 4, 6A, 6B, 6E, 9V, 14, 370 

18C, 19F, and 23F as PCV7 vaccine-type. For each strain, we computed the proportion of PCV7 371 

VT and NVT. Three serogroup 6 serotypes were included because it has previously been shown 372 

that the serotype 6B component of PCV7 was cross-protective against 6A and that 6E produces a 373 

6B capsular polysaccharide [52]. Further, cross-reactivity is consistent with the observed 374 

elimination of 6A and 6E in the study population after the introduction of PCV7 [17].  375 

The observed changes in prevalence were estimated as ��
� �  ��

�, where ��
� is the prevalence of 376 

strain � at E3 (post-vaccine) and ��
� is the prevalence of strain � at E1 (pre-vaccine). As a null 377 

model for vaccine impact (pro rata model), we calculated the expected prevalence for each strain 378 

if its VT representation declined to zero in the whole population from pre- to post- vaccine, and 379 

its NVT representation increased proportionately to that in the whole population, and where the 380 

new NVT prevalence values ��  are renormalized to sum to one. We defined the prevalence 381 

change as ��
� � �� .  To determine significant deviations of the observed post-vaccine strain 382 

prevalence from the pro rata model, we sampled 10,000 bootstrap replicates with replacement 383 

from E1, and calculated the pro rata prevalence changes for each replicate. We then plotted the 384 

2.5%, 50%, and 97.5% quantiles of these resampled predictions in Figure 1B. We defined ��
� as 385 

significantly different from the null expectation if the strain’s prevalence change was outside the 386 

central 95% of the bootstrap distribution of the predicted value.  387 

Pneumococcal pangenome analysis. 388 

As previously described, pangenome analysis of 937 taxa was carried out using Roary v3.12.0 389 

[17]. The resulting presence/absence matrix was used to generate a binary accessory genome 390 

alignment of 2,371 clusters of orthologous groups (COGs). This binary alignment was used to 391 

infer a maximum likelihood (ML) phylogeny using RAxML v8.2 with BINGAMMA substitution 392 

model and 100 bootstrap replicates [53]. The same approach was used to infer a ML phylogeny 393 

of SNPs found in the core genome using the GTRGAMMA substitution model. Serotype, 394 
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collection period (epoch), and strain (SC) assignment were visualized in relation to the accessory 395 

genome phylogeny. We then imported the phylogeny into R using APE v4.1 and computed the 396 

mean pairwise patristic distance among all strains using the meandist function in the R package 397 

Vegan v2.4-67 [54]. Hierarchical clustering of scaled between-strain patristic distances was 398 

visualized using heatmap.2 in ggplots v3.0.1. Last, core and accessory genome divergence was 399 

compared to the absolute fitness difference among strains. For the additional carriage dataset 400 

from Massachusetts, the presence/absence matrix was obtained from the online repository 401 

available at https://www.nature.com/articles/sdata201558. 402 

Predicted Fitness. 403 

In the southwest US dataset, we identified 35 strains among 937 isolates. This included a 404 

polyphyletic grouping of strains present at low frequencies in the overall population (SC-27). 405 

Pre-vaccine, two strains (SC-10 and SC-24) were not sampled, having only been observed after 406 

the introduction of vaccine. Further, two strains (SC-22 and SC-23) had no NVT component pre-407 

vaccine but did post-vaccine. For these four strains, we imputed pre-vaccine accessory gene 408 

frequencies by subsampling representative taxa from the first time point when they were 409 

observed (peri-vaccine period (E2) in both instances). This allowed us to calculate the fitness of 410 

these strains. Three additional strains (SC-04C, SC-12, and SC-17) were excluded because they 411 

had no NVT isolates present pre-vaccine or were not observed post-vaccine (i.e., they were 412 

comprised solely of VT isolates); therefore, their fitness could not be imputed nor their 413 

prevalence change. Finally, there were a few instances of strains that contained both VT and 414 

NVT serotypes. Where this was the case, for the purposes of considering the NVT portion of 415 

such strains, we removed the VTs and considered the remainder in isolation as an NVT strain. 416 

This was repeated for 14 of 16 strains in the carriage dataset from Massachusetts. This required 417 

imputing five strains that were not sampled pre-vaccine. 418 

For the two previously unobserved strains (SC-10 and SC-24) in the primary dataset, we 419 

assessed the degree to which their accessory genome composition may have contributed to 420 

emergence after the introduction of PCV7 by comparing their fitness to strains found in the 421 

Massachusetts dataset [23,35]. To do this, we repeated the pangenome analysis using a merged 422 

dataset of 1,554 carriage isolates (including all genomes from [24]). Population structure 423 

(determination of strains) of the combined sample was assessed with hierBAPS and accessory 424 
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gene filtering was conducted as previously detailed. Frequencies of accessory genes were 425 

determined for each strain in the Massachusetts dataset, and the predicted fitness values were 426 

calculated by comparing those frequencies to �� � �
 in the primary southwest USA dataset. The 427 

distribution of fitness values in the Massachusetts dataset were assessed and compared with the 428 

two emergent strains to determine their ranking. Last, to predict the impact of PCV13 on the 429 

pneumococcal population, we repeated the quadratic programming analysis on the post-vaccine 430 

population. To do this, we recalculated the change in strain prevalence resulting from the 431 

removal of six additional PCV13 VT serotypes (1, 3, 5, 6A, 7F, 19A) and determined the 432 

predicted fitness for each extant NVT strain to identify those with positive values, i.e. those that 433 

will likely be more successful in the PCV13 era.  434 

Post-vaccine equilibrium frequencies via quadratic programming 435 

Using 2,371 accessory genes present in 5-95% of taxa of the southwest US dataset, we 436 

determined pre-vaccine accessory gene frequencies for each strain, considering NVT taxa only. 437 

For this, we focused on 27 major strains which 1) had NVT taxa present pre-vaccine and 2) were 438 

not polyphyletic. This excluded eight strains (SC-04C, SC-10, SC-12, SC-17, SC-22, SC-23, SC-439 

24, and SC-27) and replicated what would have been possible with the available pre-vaccine 440 

data. S4 Figure shows the distribution of the 2,371 accessory genes among isolates belonging to 441 

the 27 strains. This figure was also used to test the assumption that the impact of recombination 442 

on the accessory genome is negligible over our study period, where we compared the pre-vaccine 443 

and post-vaccine accessory gene frequencies for each NVT strain. For the 27 strains, we 444 

computed the predicted prevalence of each strain such that post-vaccine accessory gene 445 

frequencies approached as closely as possible to pre-vaccine frequencies by using a quadratic 446 

programming approach. Quadratic programming involves optimizing a quadratic function based 447 

on several linearly constrained variables [55], and was done using the package quadprog v1.5-5 448 

implemented in Rstudio v1.0.143 with R v3.3.19 [56]. Details of this implementation can be 449 

found in the R code provided. This was then repeated using: 1) 17,101 biallelic polymorphic 450 

sites found in 1,111 genes in the core genome and present among 5-95% of taxa and 2) 5,853 451 

biallelic polymorphic sites found in 272 metabolic genes present in the core genome and present 452 

among 5-95% of taxa. We then conducted a sensitivity analysis using genes present in 1-99% 453 

and 2.5-97.5% of taxa and found the results did not differ significantly from those obtained using 454 
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genes present among 5-95% of taxa. Detailed methods for the ascertainment of genomic loci are 455 

in Azarian et al [17].  456 

Using 1,056 accessory genes present in 5-95% of taxa of the Massachusetts dataset, we 457 

determined pre-vaccine accessory gene frequencies for each strain, considering NVT taxa only. 458 

For this, we focused on 9 major strains, which had NVT taxa present pre-vaccine and were not 459 

polyphyletic (SC-1, SC-2, SC-4, SC-8, SC-9, SC-10, SC-11, SC-12, SC-16). This excluded 460 

seven strains and replicated what would have been possible with the available pre-vaccine data. 461 

For the 9 strains, we computed the predicted prevalence of each strain such that post-vaccine 462 

accessory gene frequencies approached as closely as possible to pre-vaccine frequencies using a 463 

quadratic programming as described above. 464 

For each model, we evaluated accuracy by determining if the slope and intercept of the predicted 465 

and observed strain frequencies were close to one and zero, respectively. Goodness of fit 466 

statistics including sum of squares due to error (SSE), root mean squared error (RMSE), and 467 

degrees of freedom adjusted R-squared (Adj. R2) were used to evaluate each model. In addition 468 

to assessing how well we could predict post-PCV7 prevalence, we also tested if we accurately 469 

inferred whether a strain would increase or decrease after the introduction of vaccine. To do this, 470 

we calculated the observed prevalence trajectory from pre- to post-vaccine and compared that to 471 

the predicted trajectory, identifying those with significantly positive or negative risk differences 472 

using Fisher’s exact test.  473 
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 676 
Figure 1. A.) Pre-vaccine to post-vaccine change in prevalence of strains (SCs). Strains are ordered from highest to lowest pre-vaccine 677 

prevalence. B.) Observed prevalence change calculated as post-vaccine frequencies minus pre-vaccine frequencies. Changes in prevalence 678 

are compared to that expected under a pro rata null model (i.e., not using the predictive methods in this paper). Observed changes in prevalence 679 

are represented by points colored by the serotype composition of the strain: non-vaccine serotype (NVT) only, PCV7 vaccine-serotype (VT) only, 680 

and mixed VT and NVT (VT-NVT). The point and whiskers show the prevalence change expected if all VT strains were removed and NVT 681 

increased proportional to their pre-vaccine prevalence – i.e., in a null model of pro rata increase where only the VT strains were removed and all 682 

NVT strains increased equally in proportion to their pre-vaccine prevalence. The dot is the median, and the whiskers give the 2.5% and 97.5% 683 

quantiles of predicted changes under the null model using 10,000 bootstraps from pre-vaccine samples. Significant differences between the 684 

changes in prevalence from the pro rata model and the observed data are denoted with plus and minus signs specifying strains that were 685 

significantly more (n=9) or less (n=4) common, respectively. Among the most successful were strains that contained both VT and NVT isolates 686 

(SC-22 and SC-23) whose NVT component included serotypes 6C, 15C, and 35B, as well as SC-24 and SC-25, which were dominated by the 687 

NVT serotypes 23A and 15C, respectively. SC-27 is polyphyletic, comprised of an aggregate of strains that are at low frequency in the overall 688 

population. Compared to strains comprised of solely NVT isolates, those with mixed NVT-VT had marginally higher risk differences, indicating 689 

greater success than expected under the null model (β=0.03, SE=0.015, F(1,29)=3.67, p=0.06). Two strains that emerged during the study period 690 

(SC-10 and SC-24) were not included in this analysis as they were not present at the first time point. 691 
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 692 
Figure 2. A.) Conceptual diagram for simulations. Descriptive representation of the strain prevalence at different stages relative to vaccine 693 

introduction: pre-vaccine equilibrium, vaccine introduction, and post-vaccine equilibrium. We modeled a population of VT and NVT strains 694 

(represented as unique genotypes with alleles 1 or 0 at a locus, denoting the presence or absence of a single accessory locus) and simulated the 695 

removal of VT genotypes, following the post-vaccine population to equilibrium (details in methods). In this illustrative figure, eight strains are 696 

shown, with their prevalence in the population evolving over time. The system is allowed to evolve until it reaches a steady state (‘pre-vaccine 697 

equilibrium’). Three strains were then targeted to mimic a vaccine introduction, which removes them from the system. The predicted fitness was 698 

then estimated from the period just after the vaccine introduction, when the population has been depleted of VT but relative prevalence of NVT 699 

has not changed – a quantity that can be calculated from pre-vaccine data alone. Finally, the system reaches a second steady state (‘post-vaccine 700 

equilibrium’). Different shades of blue represent the rank of the strain frequencies in the post-vaccine equilibrium. B.) Simulation results. 701 

Comparison of the direction of prevalence change of strains from pre- to post-vaccine using simulated data and predicted fitness from these 702 

simulated data. For these 10 replicate simulations, 2,371 accessory loci and 35 randomly chosen strains were simulated, including three VT 703 

genotypes. For each replicate, the pre-vaccine equilibrium frequencies of the 2,371 accessory loci were varied. Final prevalence of strains were 704 

obtained by quadratic programing, and prevalence change for each NVT strain was calculated as post-vaccine prevalence minus pre-vaccine 705 

prevalence, in both cases with all NVT strains summing to 100%. Each column in the decreased and increased category represents the results from 706 

one simulation (i.e., the first column in the decreased category corresponds to the first column in the increased category and the dots sum to 707 

32). The predicted fitness of the strain accurately predicts the direction of the prevalence change in 92.8% of cases (teal dots). Grey dots represent 708 

instances where the direction of the prevalence change was not predicted correctly in the simulation. 709 

  710 
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 711 

 712 

Figure 3. A.) Relationship between predicted fitness and observed prevalence change from pre- to post-vaccine among 31 strains, in each 713 

case summing to 100%. Prevalence change was calculated as post-vaccine frequencies minus pre-vaccine frequencies. Predicted fitness was 714 

calculated using data solely from the pre-vaccine sample, with the exceptions of strains for which there were no non-vaccine serotype (NVT) 715 

isolates present in the sample before the introduction of PCV7 (n=4). For those strains, data were imputed from the time point during which they 716 

were first observed. Four strains were excluded either because they were polyphyletic (SC-27) or had no NVT isolates present pre- or post-717 

vaccine, and therefore could not be imputed (SC-04C, SC-12, and SC-17). The points are colored by serotype composition of strains: NVT only 718 

(blue) and mixed vaccine serotype (VT) and NVT (purple). The shaded quadrants indicate regions of accurate prediction of the prevalence change 719 

direction (increased post-vaccine vs. decreased) given the predicted fitness value. Three outlier strains are annotated for which the predicted 720 

direction of their prevalence change differed from that which was observed (i.e., they were predicted to increased based on their fitness when their 721 

prevalence from pre- to post-vaccine decreased, or vice-versa). B.) Scatterplot of observed versus predicted prevalence of 27 strains at post-722 

vaccine equilibrium based on quadratic programming. These 27 strains contained at least one NVT strain pre-vaccine. Points are colored based 723 

on serotype composition as described in panel A. Perfect predictions would lie on dotted line of equality (1:1 line). The shaded grey region shows 724 

the confidence interval from the linear regression model used to test for deviation of the observed vs. predicted values compared to the 1:1 line. 725 

Two outliers are annotated for which the difference between their predicted and observed prevalence was >1.5 times the interquartile range of the 726 

distribution of predicted and observed prevalence differences. As a note, the predictions remained significant if SC-09 (the extreme strain at 10% 727 

prevalence in B) was removed (slope, 95% CI: 0.021, 1.05; intercept, 95% CI: -0.003, 0.03; p=0.19, chi-squared=3.5). C-D.) Comparison of the 728 

predicted prevalence change from quadratic programming analysis using accessory genes and naïve pro rata model as shown in Figure 729 

1B, but applied to just these 27 strains. The dotted line of equality (1:1 line) and confidence interval (grey) are shown as in panel B. Goodness 730 

of fit statistics including sum of squared errors (SSE), root mean squared error (RMSE), and degrees of freedom adjusted R-squared (Adj. R2) are 731 

given for each model. The lower SSE and RMSE indicate a better model fit.  732 
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