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Background: Parkinson’s disease patients (PDP) are evalu-
ated using the unified Parkinson’s disease rating scale (UP-
DRS) to follow the longitudinal course of the disease. UP-
DRS evaluation is performed by a neurologist, and hence its
use is limited in the evaluation of short-term (daily) fluctua-
tions. Subjects taking L-DOPAas part of treatment to reduce
symptoms exhibit motor fluctuations as a common compli-
cation.Objectives: The aim of the study is to assess the use
of speech analysis as a proxy to continuously monitor PDP
medication state.Methods:We combine acoustic, prosody,
and semantic features to characterize three speech tasks
(picture description, reverse counting and diadochokinetic
rate) of 25 PDP evaluated under differentmedication states:
"ON" and "OFF" L-DOPA.Results: Classification of medica-
tion states using features extracted from audio recordings
results in cross-validated accuracy rates of 0.88, 0.84 and
0.71 for the picture description, reverse counting and diado-
chokinetic rate tasks, respectively. When adding feature
selection and semantic features, the accuracy rates increase
to 1.00, 0.96 and 0.83 respectively; thus reaching very high
classification accuracy on 3 different tasks. Conclusions:
We show that speech-based features are highly predictive

Abbreviations:MFCC,Mel-Frequency Cepstral Coefficients; PD, Parkinson’s Disease. PDP, Parkinson’s Disease Patients.
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of medication state. Given that the highest performance
was obtainedwith a very naturalistic task (picture descrip-
tion), our results suggest the feasibility of accurate, non-
burdensome and high-frequencymonitoring of medication
effects.
K E YWORD S
Parkinson’s, Speech Analysis, Medication State, ON/OFF state,
L-DOPA

Parkinson’s Disease (PD) is the secondmost common neurodegenerative disease, after Alzheimer’s. The estimated
prevalence of PD in industrialized countries is 0.3% in the general population, 1.0% in people older than 60 years, and
3.0% in people over 80 years old [1]. Around 7 to 10 million people worldwide live with PD; that is more than the
combined number of people diagnosed withmultiple sclerosis, muscular dystrophy and Lou Gehrig’s disease. In the US,
nearly 60,000 Americans are diagnosedwith Parkinson’s disease each year, not including the potentially thousands of
undetected cases [2]. To follow the progression of PD, themost widely used clinical rating scale is the Unified Parkinson
Disease Rating Scale (UPDRS) [3]. It was originally developed in the 1980s and revised in 2001. The UPDRS was
not meant for continuous monitoring; it has to be administered by neurologists or motor disorder specialists. As an
alternative explored in recent years, speech can potentially be used to monitor patients, to inform on medication
effectiveness, and to follow progression. The UPDRS already includes a section for scoring speech in 5 different
levels: 0: Normal (no problems); 1: Slight (speech is soft, slurred or uneven); 2: Mild (occasionally parts of the speech
are unintelligible); 3: Moderate (frequently parts of the speech are unintelligible); and 4: Severe (speech cannot be
understood). However speech scores are inconsistent among graders according toMartinez-Martin et al. [4]. Therefore,
there is a need for an unbiasedmeasurement of speech changes in the research and clinical communities. Currently
themost common treatment of PD includes the use of L-DOPA, which helps ameliorate the symptoms. Unfortunately
long-term use of the drug results in symptom control fading out, resulting in fluctuation of medication states known as
"ON" and "OFF" states [5, 6].

Speech disorder resulting from neurological impairment such as PD is known as dysarthria. This condition affects
mainly the control and execution of movements related to speech production [7]. Previous studies have characterized
speech in PD as having the following attributes: reduced loudness, monopitch, monoloudness, reduced stress, breathy
and hoarse voice quality, and imprecise articulation [8]. Most recent approaches demonstrate that speech features can
help differentiate healthy controls from PDPwith high accuracy, in particular using vocal measurements of sustained
phonations [9, 10, 11, 12, 13]. There is also evidence of cognitive impairment as part of PD, which affects - or is reflected
in - language [14]. Yet another potential difference between PDP and healthy controls or PDP inON/OFF state is the
use of action verbs [15, 16, 17, 18]. Garcia et al. [19, 20] andmore recently Cotelli et al, [21] compared PDPwith healthy
controls reporting action verb deficit in PDP. Herrera and Cuetos [18] added evidence that PDP without adequate
dopamine levels have difficulties in naming action verbs from pictures.

However, there has not been enough research nor strong findings on the evaluation of the use of speech as a way to
monitor the medication states [22, 23, 24]. Among those articles, we found that Okada et al. [25], analyzed isolated
vowel articulation in PD subjects reporting that vowel space area was significantly expanded after L-DOPA treatment
contrary to previous findings by [26], where no changes in speech over L-DOPA cycle were found. A recent article [27]
analyzes a small cohort of late stage PD subjects using data from a L-DOPA challenge described in [28]. This work, which
was limited to the analysis of sustained vowel /a/ and the repetition of a 8-word simple sentence, did not find significant
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changes in speech.
Therefore, there is a need for objectiveways of evaluating PDpatients as away ofmonitor their disease progression,

as well as the effect and duration of their medication. Perhaps there is a prodromal signature in speech that could
inform subjects about the risk of PD so they could seek treatment to slow its progression.

In this paper we show that features extracted from speech are informative enough to distinguish themedication
state of a PD subject. In particular, we show that a simple and naturalistic task, namely the description of a picture,
provides for the highest accuracy, suggesting a potential use in high-frequency and remotemonitoring.

SUBJECTS AND METHODS

| Subjects
Twenty five subjects (6 females with age of 67 + 6 years; 19males with age of 69 + 7.5 years) with idiopathic Parkinson’s
disease. The study was approved by the Tufts University Institutional Review Board.

Inclusion criteria: subjects that respond to L-DOPA treatment, are able to recognize their “wearing off” symptoms,
can confirm that they usually improve after their next dose of PDmedication, have PDHoehn & Yahr Stage less than
or equal to 3 (assessed while the patient is “ON”), and a score of 26 or more on theMontreal Cognitive Assessment
Tool (MoCA) which is the normal range (i.e., no cognitive impairment). Exclusion criteria includes any current history of
neurological disease (except forParkinson’s disease), cognitive impairment, or psychiatric illness that in the investigator’s
judgment would interfere with subject participation, treatment with an investigational drugwithin 30 days, or 5 half
lives preceding the first dose of study treatment, whichever is longer, history of regular alcohol consumption exceeding
7 drinks/week for females or 14 drinks/week for males, subjects with cardiac pacemakers, electronic pumps or any
other implantedmedical devices (including deep brain stimulation devices). Each subject was evaluated by a neurologist
using the UPDRS. The differences of speech scores between "OFF" and "ON" states were 2 (1 subject), 1 (7 subjects), 0
(16 subjects), and -1 (1 subject).

| Design and Protocol
This study reflects the analysis of speech tasks from "Observational Study in Parkinson’s Patient Volunteers to Charac-
terize Digital Signatures Associated withMotor Portion of the UPDRS, daily living activities and speech", conducted by
IBM, Pfizer and Tufts. In this study, three different speech tasks were acquired for each subject at two different sessions:
before and after their L-DOPAmedication. The order of medication state across sessions was randomized to decrease
the learning effect that may influence the results. The first task is called "Picture description" (cookie theft [29, 30] or
description of another picture of similar characteristics). In this task, the participant is asked to provide a free-form
verbal description of a visual stimulus (the picture). For each session, a different picture was presented to the subject,
picture_1 for all subjects in visit_1 and picture_2 for all subjects in visit_2. The second task is a modification of a classic
test for mental state evaluation [31, 32] and its called "Reverse counting". Participants were asked to count in reverse
order starting from a different number in each of the sessions to keep the same level of cognitive load. The third task is
called "Diadochokinetic rate" and the subjects were asked to pronounce the sequence of three syllables "pa-ta-ka" as
rapidly as possible for 10 seconds. This test is widely used for assessing oral motor skills [33].
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| Data Acquisition
The speech tasks were recorded using Audacity software [34] in two channels, one for the analyzed subject and one for
the experimenter. The recording parameters were set to sampling frequency of 44.1 kHzwith 16 bits andwere saved
using ’wav’ format. Both the subject and the experimenter had to wear a headset with a low-impedance unidirectional
dynamic microphone.

| Feature Extraction
The characterization of the speech recordings is performed using two software tools: Python [35] and Praat [36, 37].
Three types of features, which are explained below, were extracted to find signatures of different medication states in
the three speech tasks.

| Mel Frequency Cepstral Coefficients (MFCCs)
ThirteenMFCCswere calculated using python_speech_features package [38]. Following common practice [39], the first
coefficient was replaced by the log of the total frame energy in order to analyze the overall energy in the speech of the
speaker. The parameters used to calculate the coefficients were windows of 25ms andwindows overlap of 10ms. To
only characterize the voice of the subject, pauses were removed from the recording. A pause is defined by a silence
threshold of -25 dB andminimum duration of 100ms as recommended by Griffiths [40]. To represent the distribution of
each coefficient, we computed 10 statistical descriptors, mean, variance, kurtosis, skewness, mode, percentiles 10th,
25th, 50th, 75th, and 90th. These features are used for all analyzed speech tasks.

| Nuclei syllable (NS)
As a proxy for fluency in speech (or speech rate), we used themethod proposed byDe Jong et al.[41], to estimate the
location of syllables. After locating the syllables, we computed the time lapse between them in the speech recording
with andwithout pauses being removed. To represent the distribution of syllable duration, we computed the following
statistical descriptors: mean, variance, kurtosis, skewness, mode, interquartile range (IQR, a measure of variability),
10th percentile, and 90th percentile for a total of 16 features. These features are calculated for the three speech tasks.

| Semantic features (SF)
Since the picture description task uses free speech, we analyzed the semantic content of the description provided by the
subjects. Aftermanually transcribing the recordings, we used the Stanford POS tagger [42] to get part of speech tags for
words uttered by subjects. For nouns and verbs we computed the similarity distance to the following seed words: action,
act,move, play, energetic, inaction, sleep, rest, sit andwait. The choice of words was aimed to check whether the use of
action vs. non action words was influenced by dopamine level ("ON" vs. "OFF" state of L-DOPA).Words are represented
using Gloval vectors for word representations (GloVe) [43]. Briefly, GloVe is an unsupervised learning algorithm for
obtaining vector representations for words. Training is performed on aggregated global word-word co-occurrence
statistics from a corpus, and the resulting representations showcase interesting linear substructures of the word vector
space. We usedGloVe version 1.2, using vector representation of 300 dimensions, trained on six billion word corpus
taken fromWikipedia 2015 and Gigaword 5 [44]. The distance similarity is computed between each verb and noun



R. NOREL ET AL. 5

uttered by the subject and each of the seed words. To represent the distribution obtained for each seed words, we
calculated the following statistical descriptors from the distances of the subjects words: median, 10th percentile, 90th
percentile, skewness, kurtosis, IQR. As an additional feature, we also compute the total number of words used in the
analysis.

| Statistical Analysis
Features are ranked based on p-values obtained after performing a two sample t-test. This procedure is applied
separately for the training sets generated in the validation procedure. To get an insight of how the features interact in
eachmedication state, we also computed the partial correlations among the top features for each speech task. Partial
correlation captures the pattern of covariation between a pair of features by removing the effect of the other analyzed
features.

| Classification
We evaluate the potential of our features to differentiate one medication state from another by applying different
classifiers. We chose 4 different classifiers: Nearest Neighbors (NN), Logistic Regression (LR) with l1-norm regulariza-
tion, SVMwith elastic regularization and Random Forests (RF). To avoid gender, age and education level confounding
effect, we use each subject as his/her own baseline. This means that instead of performing "ON" vs. "OFF" classification,
we performed ("ON" - "OFF") vs ("OFF" - "ON") classification. Before providing the features to the classifiers, the
features are standardized (mean = 0 and standard deviation = 1). Finally, accuracy rates are calculated using a two
nested cross-validation approach andwe provide their 95% confidence intervals (CI) after performing bootstrap with
1000 samples.

| Impact of Audio Duration
To evaluate whether a longer recording can providemore informative features, we analyze subjects with recordings
of more than 20 seconds in the picture description task (after removing pauses in "ON" and "OFF" states). For each
recording, we extract windows of 5, 10, 15, 18 and 20 seconds centered at half of the recording and calculate only
MFCC features. To evaluate the impact of the length of the recording on the accuracy rate, we perform 4-fold cross
validation based on 100 different data partitions.

RESULTS
| Statistical analysis
Table 1 shows the top 5 features for each speech task, where only acoustic features, specificallyMFCC #1 (total energy)
andMFCC #11, appear to be themost relevant for reverse counting and diadochokinetic rate tasks, respectively. On
the other hand top-ranked features for picture description shows SF, NS andMFCC features. For this reason, we only
evaluated patterns of co-variation using partial correlation among the top features for the picture description task,
which are shown in Fig. 1. It can be seen that the "OFF" state is characterized by a strong positive partial correlations
between SF (play) and acoustic (MFCC #2) and SF (act and play) and NS features.
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TABLE 1 Five top-ranked features for "ON" vs "OFF" states characterization for each speech task. Ranking is
calculated with all of the extracted features using two-sample t-test in each training set of our leave-subject-out cross
validation approach. Listed statistics are estimated in all samples for reference only. A positive t-statistic indicates
greater mean value for theON state.

Speech Task Feature p-value t-statistic

Picture description

PLAY (pct10) 5.92e-07 5.76
MFCC #2 (md) 1.50e-05 4.82
ACT (pct10) 2.79e-05 4.63
MFCC #12 (sk) 3.96e-04 -3.81
NS (pct90) 5.10e-04 3.73

Reverse counting

MFCC #1 (q50) 1.54e-07 -6.14
MFCC #1 (q25) 9.04e-07 -5.63
MFCC #1 (mn) 4.09e-06 -5.20
MFCC #1 (q75) 4.88e-06 -5.15
MFCC #8 (sk) 3.11e-05 4.60

Diadochokinetic rate

MFCC #11 (pct75) 2.46e-05 4.69
MFCC #11 (mn) 1.06e-04 4.24
MFCC #11 (pct50) 1.86e-04 4.06
MFCC #3 (pct75) 2.57e-03 -3.19
MFCC #11 (pct25) 2.74e-03 3.17

| Classification

As explained above, classification tasks are performed by subtracting features from one state to another state. Table
2 shows the classification accuracy using all features and feature selection for the different possible combinations of
features in each speech task. LRwith l1-norm regularization is the classifier that helps to improved performance for
several feature combinations. Fig. 2 shows the best performance among the combinations of features (highlighted in
Table 2). Results using ten-fold cross-validation are indicated in the barplots. The CI is shown, and all achieve results
higher than chance probability.

| Impact of Audio Duration

Figure 3 shows the effects in accuracy of fixing the duration of the speech recording before feature extraction. Median
accuracy value of 0.70 using 16 subjects in comparison of 0.88 using 25 subjects is achieved for recording length of 10
seconds ormore. For this experimentwe use exclusively the acoustic features and only one of the possible combinations
of classifier and number of selected features, chosen based on the results presented on Table 2 (LR - l1-norm using 130
features).
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F IGURE 1 Partial correlations for "ON" and "OFF" states were calculated using the top 5 features of the picture
description task described in Table 1. Positive correlations are displayed in red color while negative correlations are in
blue. "OFF" state shows a stronger correlation among features in comparison with "ON" state. In addition, new positive
correlations were found between SF features (play), NS andMFCC #2

D I SCUSS ION
High accuracy rates with values above chance (see Fig. 1) were achieved for all speech tasks, in particular for picture
description (1.0) and reverse counting (0.96). This is consistent with the work in [45], which suggests that information
extracted from running speech is better to detect PD signatures than information acquired using a diadochokinetic rate
task. Furthermore, Ackermann et al. [33] reported that for PD subjects theremay be a trade-off between amplitude of
articulator movement and rate of speech affecting the results of diadochokinesis tests.

The most predominant features for the three speech tasks were MFCCs. These features can make a better
characterization of the voice as they analyze it using different frequency bands. We observe in Fig. 1 thatMFCCs #1
and #11 are themost significant features for reverse counting and diadochokinetic rate tasks, respectively. MFCC #1
captures information from the total frame energy, meaning that in this task themain difference betweenmedication
states is characterized by changes in the speech energy. This speech energy variation is one of the characteristics of
hypokinetic dysarthria found in PDP and reported in [46]. On the other handMFCC #11 captures information in high
frequency [9.5kHz - 12.6kHz]. Recently researchers, supported by the advancements in equipment technology that
captures a broader spectrum [47, 48], have shown that there is perceptually relevant information on high frequency
speech, affecting speech intelligibility. Both [47, 49] concluded that high frequency speech characteristics are different
in dysphonic versus control subjects, suggesting that the hoarseness characteristic of PD subjects, or in our case, the
difference in hoarseness between "ON" and "OFF" states is what we are capturing with high coefficients of theMFCC.
There is a report on Parkinson’s rat models [50] that finds a similar trend of what is seen on Table 1. In the rat model,
the control rats had a highermaximum frequency than the dopamine-altered (reduced) rats for both the simple and
frequencymodulated calls.

In the picture description, the three type of features are informative and complement each other. By studying the
covariation pattern shown in Fig. 1, we observe that a very high positive correlation (red lines) occurs only in "OFF"
state between SF (play) and the other to types of features MFCC #2 and NS. This interaction observed in only one
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TABLE 2 Performance achieved in each task for different combinations of features. Accuracy rates are calculated
with andwithout feature selection. Only the classifiers with highest accuracy value are shown. The highest accuracy
rate is obtained for picture description with andwithout feature selection. MFCC features are relevant for achieving
good performance in the different speech tasks. LR - l1-norm achieves improved performance for several combinations
possibly due to the sparse nature of the features

Speech Task
(number of subjects)

Features Accuracy using
all features

Classifier for
all features

Best accuracy
(# features)

Classifier for
best accuracy

NS 0.64 (16) NN 0.76 (15) NN
SF 0.68 (61) LR - l1-norm 0.84 (1) NN
NS + SF 0.80 (77) LR - l1-norm 0.84 (1) NN
MFCC 0.88 (130) LR - l1-norm 0.88 (130) LR - l1-norm
MFCC +NS 0.80 (146) LR - l1-norm 0.84 (27) LR - l1-norm
MFCC + SF 0.76 (191) LR - l1-norm 1.0 (5) LR - l1-norm

Picture description
(25 subjects)

MFCC + SF +NS 0.72 (207) LR - l1-norm 1.0 (5) LR - l1-norm
NS 0.76 (16) NN 0.76 (16) NN
MFCC 0.76 (130) RF 0.88 (82) NNReverse counting

(25 subjects) MFCC +NS 0.84 (146) SVM - elastic 0.96 (15) LR - l1-norm
NS 0.71 (16) RF 0.71 (15) RF
MFCC 0.67 (130) LR - l1-norm 0.83 (1) NNDiadochokinetic rate

(24 subjects) MFCC +NS 0.63 (146) SVM - elastic 0.83 (1) NN

state between features help to achieve 12% improvement with respect to use onlyMFCC features (see Table 2). It is
interesting to note on Table 1 that distance to seedwords play and act, which both denote activity aremore prominent
in theON state than theOFF state (positive sign on t-statistic).

SF are informative; however they require the context from the speaker for these to be understood. Therefore, this
task needs to be designed properly. On the other hand, acoustic features are more flexible for the analysis as any part of
the speech recording can be used to characterize the voice.

In addition, we also perform an extra experiment with the picture description task data to evaluate the impact
of duration of the analyzed recording in the accuracy. The accuracy values are reduced from 0.88 to 0.70 as only 16
out of 25 subjects were used and 4-fold cross validation was implemented instead of leave-one-out. Nevertheless, we
observe in Fig. 3 that the accuracy results are very stable when 10 ormore seconds of recording are analyzed. This small
durationmakes feasible the implementation in mobile applications that can be used as part of a daily task tomonitor PD
subjects.

The experimental design balanced the visit order ("ON" in first visit 50% of the cases) to avoid interferencewith
the classification results and the visit order. Nevertheless we tested classification using the visit order as the class. For
syllable repetition where the task is exactly the same in both visits the accuracy rate is 0.52 (just acoustic features) and
0.50 (acoustic plus prosody features), thus we can assume that there is not much to learn from one visit to the next. For
the reverse counting task, the accuracy rates are 0.68 (just acoustic features) and 0.64 acoustic plus prosody features;
even though the task is not identical in both visits since the initial number is different, in both cases is a reverse counting
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F IGURE 2 Classification performance for each task using all features (left figure) and after performing feature
selection (right figure) using leave-one-subject-out cross validation. Confidence intervals at 95% aremarkedwith black
vertical lines. Chance probability is calculated for each speech task and displayedwith a horizontal black line. We also
indicate the accuracies obtained for ten-fold cross validation with horizontal purple lines. Results obtainedwith
leave-one-subject-out and ten-fold cross validation surpass chance probability.

using 3 as decrement unit, we interpret the results as the second time the task should bemore familiar than the first
time thus some learningmay occur. Better accuracy rates are obtained for the picture description task, 0.84 both when
using just acoustic features andwhen using acoustic and prosodic features; we can speculate on two reasons for this
fact, there could be some learning effect, you are describing a picture both times or themedicine state is confounded
with the picture used in each visit; for example the picture used for visit one, regardless of perceived L-DOPA state
(ON/OFF) is easier (harder) to describe with respect to the picture used for the second visit. The conclusion from this
experiment is that ourmodels, which are different when classifying visit order ormedicineON/OFF state, are robust
enough to overcome any learning effect or confounding effect with visit order and are able to distinguish L-DOPA state
differences.

To find the possible causes for misclassification, we inspected the most frequently misclassified subjects. We
observed, among the top reasons, that misclassified subjects present in their recordings high level of saturation and
background noise produced by variation in the settings of the preamplifier. Further workwill address these technical
limitations, and potentially better performancemay be achieved.

Finally, we want to mention that in our dataset, there is not much variation in UPDRS speech scores between
medication states even though the subjects present plenty of variation in their speech. In fact, for 64% of the subjects
the difference is 0, while for one case there is an improvement in speech score in OFF state. When we compared
the correlation between the UPDRS total score difference and the UPDRS speech score difference, we obtained a
low value of R2 = 0.247 with p-value of 0.01. Therefore, we want to emphasize that a new quantitative metric to
monitor the patient are promising to see both disease progression and the effect on themedication(s) used. Mathemati-
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F IGURE 3 Accuracy while fixing the recording time after pause removal for 5, 10, 15, 18 and 20 seconds. Only 16
subjects were used for this analysis since we used recordings of 20 ormore seconds of duration after removing pauses.
The features used in this analysis wereMFCC given the independence of context. Boxplots were created based on
4-fold cross validation on 100 random samples. Whiskers of boxplots show 5th and 95th percentiles. Median accuracy
rate is stable around 0.70 for different recording lengths except for 5 seconds.

cal/computational analysis of speech can increase the granularity in the assessment and also avoid the human biases
that results in inconsistencies between graders.

CONCLUS IONS AND L IM I TAT IONS
Our study explored different speech tasks that are easy to implement as a daily routine for monitoring PDP, obtaining
high accuracy rates in detectingmedication states. Our best results are obtained in the picture description task, which is
a type of free speech. MFCC features are well known for capturing emotions [51, 52] and we believe that this fact may
helped improving the classification accuracy since subjects can express emotions while describing the picture. Overall,
our accuracy results range from 83% to 100% on naturalistic speech tasks demonstrate the potential of our analyses to
be used as proxy tomonitor subjects on a daily basis.

Given that this study involves a small cohort of PD subjects, a large studywhere different sites to enroll patients
are involved will be required for further validation. In addition, the study will need to include higher variability in levels
of speech score as well as higher differences of score betweenmedication states.

To the best of our knowledge, this is the first paper to combine acoustic and semantic features of speech tomonitor
PDmedication state. This opens the real possibility for continuous, unobtrusive, remote patient statemonitoring.
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