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ABSTRACT  

Motivation  

Long non-coding RNA expression data has been increasingly used in finding diagnostic and prognostic 

biomarkers in cancer studies. Existing differential analysis tools for RNA sequencing does not effectively 

accommodate low abundant genes, as commonly observed in lncRNA. We propose a novel and robust 

statistical method lncDIFF to detect differential expressed (DE) genes without assuming the true density 

on normalized counts.  

Results  

lncDIFF adopts the generalized linear model with zero-inflated exponential quasi likelihood to estimate 

group effect on normalized counts, and employs the likelihood ratio test to detect differential expressed 

genes. The proposed method and tool is suitable for data processed with standard RNA-Seq 

preprocessing and normalization pipelines. Simulation results illustrate that lncDIFF detects DE genes 

with more power and lower false discovery rate regardless of the data pattern. The analysis on a head 

and neck squamous cell carcinomas study also confirms that lncDIFF has better sensitivity in identifying 

novel lncRNA genes with relatively large fold change and prognostic value.    

Availability and Implementation 

lncDIFF is an R package available at https://github.com/qianli10000/lncDIFF. 

Supplementary Information  

Supplementary Data are available at Bioinformatics online.  
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INTRODUCTION 

Long noncoding RNAs (lncRNAs) are transcripts longer than 200 nucleotides with no or limited protein-

coding capability. It is estimated that, in the human genome, there are at least four times more lncRNA 

genes than protein-coding genes [1]. Currently, there are more than 14,000 human lncRNAs annotated in 

GENCODE (https://www.gencodegenes.org/).  Overall, lncRNA genes have fewer exons, lower 

abundance and are under selective constraints compared to protein-coding genes. LncRNAs are involved 

in diverse regulatory mechanisms and in some critical pathways. For example, they can act as scaffolds 

to create higher-order protein complexes, as decoys to bind sequester transcription factors, and as 

guides of protein-DNA interactions [2-4]. Emerging evidence suggests that lncRNA serve as essential 

regulators in cancer cell migration and invasion, as well as in other cancerous phenotypes [5, 6]. 

Therefore, lncRNAs are becoming attractive potential therapeutic targets and a new class of biomarkers 

for the cancer prognosis and diagnosis. For example, the lncRNA PCA3 (prostate cancer antigen 3) is a 

FDA-approved biomarker for prostate cancer prediction. The overexpression of lncRNA HOTAIR in breast 

cancer patients is reported to be associated with patient survival and risk of metastasis [7]. Another 

important lncRNA ANRIL (CDKN2-AS1) is one of the most frequently alerted genes in human cancers 

and has been reported to increase cancer risks in diverse cancers.  

 Although a large number of lncRNAs have been identified, only a very small proportion of them 

have been characterized for cellular and molecular functions. Similar to protein-coding genes, the 

biomarker discovery of lncRNAs can start from a genome-wide differential expression (DE) analysis. One 

advantage of lncRNAs research in cancer is that we can leverage the large collection of previously 

published RNA-seq data and perform secondary analyses. Unlike the miRNAs counterparts, the 

expression of a large number of lncRNAs can be detected by standard RNA-seq with sufficient 

sequencing depth.  Through downloading RNA-seq BAM files and recalling using GENCODE genomic 

coordinates, more than 8,000 human tumor samples across all major cancer types in The Cancer 

Genome Atlas (TCGA) and other published studies have been re-analyzed for the lncRNAs expression 

profile [8, 9]. There is a limited number of non-tumor samples sequenced for RNA-seq in TCGA. If 

necessary, the database such as the GTEx (http://gtexportal.org) can serve as additional tissue-specific 

controls, which provides over 9,600 RNA-seq samples across 51 tissues.  

 lncRNAs expression data have several features that pose significant challenges for the data 

analysis, including low abundance, large number of genes, and rough annotations.  To ensure detection 

reliability, a common practice is to filter out lncRNA genes with low average Reads Per Kilobase per 

Million mapped reads (RPKM), e.g. <0.3. We recommend using the two-step filter proposed in [9]: in the 

first step eliminates genes with 50th-percentile RPKM =0, and in the second step only keep genes whose 

90th-percentile RPKM <0.1. About two-thirds of lncRNAs are excluded after this filtering procedure. 

Interestingly, excess zeros or low expression values are still observed in the downsized dataset. It is well 

known that excess zero read counts in RNAseq data can distort model estimation and reduce power in 

differential expression analysis. The popular R packages DESeq2 and edgeR assume a negative 
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binomial (i.e. over-dispersed Poisson) distribution for the count data. Methods based on zero-inflated 

negative binomial (ZINB) and zero-inflated GLM have been proposed to explicitly address the issue of 

excess zeros in RNA-seq data [10]. These methods have been recently applied to single-cell RNA-seq 

(scRNA-seq) data, which has high dropout rates. Since the difference in gene expression variance is 

biologically interesting, multiple methods have been developed to incorporate the testing of variance in 

the differential model. However, for biomarkers in clinical settings, genes with pronounced group contrast 

in mean expression level usually have more translation value. Gene wise expression variability can 

generate from different sources and varies widely from study to study, especially with different 

normalization methods. Hence, we focus on the group comparison of mean gene expression level 

regardless of variability in this study.   

In a large-scale secondary analysis of expression data such as in lncRNA studies, only 

normalized data (such as RSEM or RPKM) are available [11, 12]. Certain packages such as DESeq2, 

however, cannot be applied because they do not accept normalized expression and zero as input. In this 

case, a common practice is to round continuous expression values into integers and shift it to be nonzero. 

Another commonly-adopted approach is using 𝑙𝑜𝑔! (𝑥 + 1) transformed normalized data in R package 

like limma [13], i.e., assuming a log-transformed Gaussian distribution as in microarray intensity levels. 

The core function in limma, which basically runs a moderated t-test after an empirical Bayes correction, is 

more generic and more suitable for the differential expression of processed lncRNA expression data. In a 

very recent study, a total of 25 popular methods for testing differential expression genes were 

comprehensively evaluated with special emphasis on low-abundance mRNAs and lncRNAs [14]. It was 

observed that linear modeling with empirical Bayes moderation (implemented in limma with variance 

stabilizing transformation [15], voom [16] or trend), and a non-parametric method based on Wilcoxon rank 

sum statistic (implemented in SAMSeq) showed overall good balance of false discovery rate (FDR) and 

reasonable detection sensitivity. However, none of the methods compared can outperform all other tools 

and all tools exhibited substandard performance for lncRNAs in terms of differential testing, often with 

higher FDR and true positive rate (TPR) than for mRNAs. This study also concluded that accurate 

differential expression inference of lncRNAs requires more samples than that of mRNAs. Even methods 

like limma can exhibit an excess of false discoveries under specific scenarios, making these methods 

unreliable in practical applications.  

 In this paper, we present the lncDIFF, an efficient and reliable toolset based on a zero-inflated 

exponential quasi-likelihood strategy without the need to fully specify a parametric model. The quasi-

likelihood model provides unbiased and efficient estimators even under erroneous assumptions about 

density. It thus provides a simple and versatile approach to model gene expression data without making 

strong distributional assumptions about the underlying variation, but still being compatible with existing 

RNA-Seq quantification and normalization tools. The flexibility in allowing for the estimation of calibration 

and variance parameters is especially important for lncRNAs differential analysis. The lncDIFF is thus 

able to integrate desirable features from the aforementioned two top-performing methods (limma and 
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SAMSeq [14]) for lncRNA differential analysis. The lncDIFF is compared with existing tools using an 

extensive simulation study and real data analysis on TCGA head and neck squamous cell carcinomas 

(HNSC). Results suggest that lncDIFF is powerful and robust in a variety of scenarios and identifies DE 

lncRNA genes of low expression with more accuracy.  

 

METHOD 

RNA-Seq Counts Distribution Based Variation 

In RNA-Seq gene expression analysis, the type of RNAs and the selected alignment, 

quantification and normalization tools usually have substantial impact on the distribution pattern of 

transcript abundance as discussed in [17], especially on the level of gene expression dispersion, i.e. the 

mean-variance relation. Most of the existing RNA-Seq tools, such as DESeq [18], edgeR [19], and 

baySeq [20] estimate gene-wise counts dispersion to perform raw counts normalization or differential 

expression analysis. However, this technique may not be suitable for low-abundance mRNA or lncRNA. 

The analysis tools such as limma [13, 21] with data transformation become superior for lncRNA instead 

[14]. In other words, the underlying mean-variance relation distinguishes different types of RNA-Seq 

counts and determines the tools for downstream analysis.  

Let 𝑋!" represent RNA-Seq read counts mapped to gene 𝑔 in sample 𝑖,𝑔 = 1,… ,𝐺, 𝑖 = 1,… ,𝑁. 

The existing analysis on RNA-Seq data usually assumes Negative Binomial (NB) or the Log Normal (LN) 

distribution for raw or normalized counts [14, 16], with mean-variance relation summarized as a quadratic 

form 𝑉𝑎𝑟(𝑋!") = 𝑐 ∙ 𝐸(𝑋!")!. The positive constant 𝑐 is the ‘variation’ parameter, i.e., the square of 

coefficient of variation (CV) and depends on the density, i.e. 𝑐 = 𝜙 + !
!!

 for NB and 𝑐 = exp 𝜎! − 1 for LN 

[18]. The parameters 𝜇!,𝜙 are the mean and dispersion of NB, and 𝜎 is the log standard deviation of LN, 

not affected by the log mean.  

We use the lncRNA and mRNA data in the TCGA HNSC study to investigate the variation 

patterns for different types of sequencing counts. If the quantified RNA-Seq reads follow a NB distribution, 

the gene-wise variation or CV changes inversely with mean expression level, as revealed by the violin 

box plots for mRNA normalized counts in Figure 1. In contrast, the CV level for lncRNA normalized 

counts in the same study presented by Figure 1 does not change along with gene-wise mean at 20th-50th 

percentiles, similar to the LN distribution in which CV is independent of (log) mean.  

For mRNA read counts, NB density is a valid assumption and provides robust estimate for the 

mean expression, dispersion and DE analysis. However, the scale and distribution of lncRNA counts 

varies across genes, some of which are extremely low and similar to LN, or have a mixture distribution of 

NB and LN. The differential analysis for a large number of lncRNA genes with mean expression ranging 

from less than 1 to over 100 can be severely biased, if one uses NB model to account for dispersion 
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across all genes, or transformation such as log2 [22], voom [16] and variance stabilizing transformation 

(VST) [15] to remove the skewness for all genes. In the light of fewer statistical assumptions and 

parameters, it is worth to investigate the plausibility of utilizing Exponential density in RNA-Seq analysis, 

for which the quadratic mean-variance relation is CV = 1. 

 

Exponential Quasi-Likelihood  

In this study, we only consider the normalized lncRNA expression data, i.e. Reads Per Kilobase 

per Million mapped reads (RPKM) [23] or Fragments Per Kilobase per Million mapped reads (FPKM), as 

the aim is to improve hypothesis testing of treatment or biological group effect on lncRNA expression 

regardless of the latent variation pattern. The common normalization methods, such as UQ, TMM [24, 25] 

are also compatible with lncDIFF, but not assessed in the simulation study and real data analysis, due to 

limited publically available lncRNA raw counts. We will demonstrate that the choice of normalization 

method does not affect the validity and accuracy of parameter estimation and DE analysis results in 

lncDIFF. See the last subsection of Method.  

Let 𝑌!" be the lncRNA RPKM for gene 𝑖 in sample 𝑗, belonging to phenotype or treatment 

group 𝑘, 𝑘 = 1,… ,𝐾. The generalized linear model (GLM) for 𝑌!" with the Exponential family is 

𝑌!"  ~Exponential 𝜆!" , 𝜆!" = 𝐸(𝑌!") 

Identity link: 𝜆!" = 𝛽!"𝑤!"!
!!! + 𝛾!𝑣!"!

!!!   

Logarithmic link: log (𝜆!") = 𝛽!"𝑤!"!
!!! + 𝛾!𝑣!"!

!!!  

𝑤!" and 𝛽!" are design matrix elements and unknown coefficients for groups, 𝑣!" and 𝛾! are the 

covariates and corresponding coefficients. Since 𝑌!" has been normalized for library size, this model does 

not include the RNA sequencing normalization factor, although it is a common parameter in existing tools 

based on NB assumption [18, 19, 26, 27].   

In the absence of zero expression, lncDIFF uses the Exponential GLM to lncRNA RPKM DE 

analysis regardless of the true density of 𝑌!" as a quasi-likelihood approach, which uses a distribution-free 

statistics to estimate group-wise mean RPKM, similar to the pseudo likelihood (PL) and quasi likelihood 

(QL) for dispersion estimate in [27]. Let 𝛽! = (𝛽!!,…,𝛽!") and 𝛾 = (𝛾!,…,𝛾!), for gene 𝑖 with negligible zero 

occurrence (<1%), the GLM likelihood based on the exponential density 𝑓(𝑌!") =
!
!!"
𝑒
!
!!"
!!"  with identity or 

log link function is 

Identity link: 𝐿 𝛽! , 𝛾 = 𝑙 𝛽! , 𝛾  !
!!! = −

!!"
!!"!!"!

!!!
+ log ( 𝛽!"𝑤!" + 𝛾!𝑣!"!

!!!
!
!!! )  !

!!!   (1) 
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Logarithmic link: 𝐿 𝛽! , 𝛾 = 𝑙 𝛽! , 𝛾  !
!!! = − 𝑌!"𝑒!( !!"!!"

!
!!! ) + 𝛽!"𝑤!"!

!!! + 𝛾!𝑣!"!
!!!  !

!!!    (2) 

The exponential quasi likelihood estimate for mean RPKM in lncDIFF is the maximizer of 𝐿 𝛽! , 𝛾 , 

that is (𝛽! , 𝛾) = 𝑎𝑟𝑔𝑚𝑎𝑥 𝐿 𝛽! , 𝛾 . This estimate does not require prior knowledge about the statistical 

distribution of RPKM values, and accommodates the genes with a wide range of expression, i.e. having 

both extremely low (RPKM<1) and regular (RPKM>10) abundance in a large proportion of samples. The 

commonly adopted statistical assumptions like Poisson, NB or LN densities about RNA-Seq counts are 

still allowed in lncDIFF. However, the specified density does not affect the estimation of mean RPKM (𝛽!) 

and the corresponding DE analysis results, as illustrated in the Supplementary Methods and simulation 

study.   

 

Zero-Inflated Exponential Quasi Likelihood 

In lncRNA expression data, it is common to observe zero value for a gene in a non-negligible 

proportion (i.e., at least 1%) of samples. The excess zeroes in lncRNA RPKM cannot be addressed by 

integer models like Poisson and Negative Binomial (or Gamma-Poisson), since RPKM for most lncRNA 

genes are non-integer and fall in the range of (0, 2). Rounding decimals to integers and then applying 

Poisson or NB density [22, 28]  or using data transformation, e.g. log2, voom, or VST [15, 16, 22] with 

limma [13, 21] may lead to errors in DE analysis. Therefore, we propose the zero-inflated quasi likelihood 

for the GLM of 𝑌!" to account for the inflation of zeros in lncRNA expression.  

In order to incorporate the zero-inflated pattern, we first re-specify the RPKM for gene 𝑖 in 

sample 𝑗 by a multiplicative error model [29-31] with random error 𝜖!", that is 

𝑌!" = 𝜆!"𝜖!",  𝐸(𝜖!") = 1   (3) 

The random errors 𝜖!" also have the occurrence of excess zeros with a prior probability mass 𝑃 𝜖!" = 0 =

1 − π, 𝑃 𝜖!" > 0 = π, and a continuous density at positive value with 𝐸(𝜖!"|𝑌!" > 0) = γ, similar to [30, 32, 

33]. If the positive RPKM 𝑌!"|𝑌!" > 0 follows the Exponential distribution (so does 𝜖!" 𝑌!" > 0 , then the 

density functions for 𝑌!" including zero occurrence is 

𝑓(𝑌!") = (1 − π)!(!!"!!)(!
!

!!"
𝑒!!!!"/!!")!(!!"!!)   (4) 

Equation (4) is derived in the Supplementary Methods. See supplementary data files. Similar to the 

aforementioned Exponential quasi-likelihood for GLM, lncDIFF applies the zero-inflated density in 

equation (5) to GLM as a quasi-likelihood approach to perform DE analysis of zero-inflated lncRNA 

expression. The corresponding quasi-likelihood function is 

𝐿∗ π,𝛽! , 𝛾 = 𝑙!
∗ π,𝛽! , 𝛾!

!!!            (5)  
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𝑙!
∗ π,𝛽! , 𝛾  is defined according to the selected link function as  

Identity link: 

𝑙!
∗ π,𝛽! , 𝛾 = 𝐼 !!"!! log 1 − π + 𝐼 !!"!! (2 ∙ log π −

!!!"
!!"!!"!

!!!
− log ( 𝛽!"𝑤!" + 𝛾!𝑣!"!

!!! ))!
!!!   

Logarithmic link: 𝑙!
∗ π,𝛽! , 𝛾 = 𝐼 !!"!! log 1 − π + 𝐼 !!"!! (2 ∙ log π − π𝑌!"𝑒! !!"!!"

!
!!! ! !!"!!"!

!!! −

𝛽!"𝑤!" − 𝛾!𝑣!"!
!!!

!
!!! )  

The zero-inflated quasi-maximum likelihood (ZI-QML) estimate for group-wise mean RPKM is the 

maximizer of 𝐿∗ π,𝛽! , 𝛾  in equation (6), that is 

(π,𝛽𝒊, 𝛾)!"!!"# = 𝑎𝑟𝑔𝑚𝑎𝑥 𝐿∗ π,𝛽! , 𝛾           (6) 

It is worthwhile to note that the likelihood function 𝐿∗ π,𝛽! , 𝛾  in equation (5) reduces to equations (1) and 

(2) if the proportion of zero expression is negligible, i.e. no more than 1%.  

 

Likelihood Ratio Test 

For differential analysis in lncDIFF, we apply the Likelihood Ratio Test (LRT) to the zero-inflated 

exponential likelihood function 𝐿∗ π,𝛽! , 𝛾  to test hypothesis: 𝐻!: 𝛽! = 𝛽!"## vs 𝐻!: 𝛽! = 𝛽!"##, where 𝛽!"## is 

the design matrix coefficients with some equal to zero and 𝛽!"## is the coefficients without zero. The test 

statistic of LRT is 𝐷 = −2𝐿∗ 𝛽!"## + 2𝐿∗ 𝛽!"##  with 𝛽!"## and 𝛽!"## being the design matrix coefficients for 

null and alternative models. Let 𝑚!"## and 𝑚!"## be the number of distinct coefficients in 𝛽!"## and 𝛽!"##. 

Test statistic 𝐷 asymptotically follows 𝜒! distribution with degrees of freedom 𝑚!"## −𝑚!"##. The p-values 

from LRT are adjusted for multiple testing using the procedure of Benjamin and Hochberg false discovery 

rate [34]. The choice of link function does not affect the power of LRT, as illustrated by simulation study.  

We also provide empirical distribution of LRT statistics 𝐷 to compute the p-values for DE analysis, 

similar to  [28]. The empirical distribution of statistics 𝐷 per gene can be generated by randomly shuffling 

the samples into K groups for P times and then calculate the LRT statistics for each permutation, that is 

𝐷!,… ,𝐷!. Let the test statistics for the true groups be 𝐷!,  then the empirical p-value is 
! !!!!!

!
!!!  

!
, and 

can be adjusted by Benjamin and Hochberg procedure. We implemented the LRT for lncRNA DE analysis 

based on ZI-QML with observed and empirical p-values.   

 

lncDIFF on Other Normalization Methods 
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lncDIFF adopts the estimator (π,𝛽! , 𝛾)!"!!"# in equation (6) to estimate the mean gene 

expression level, based on a likelihood function that captures zero-inflation pattern without assuming the 

true density of non-zero RPKM. We can theoretically prove that this estimate is asymptotically unbiased, 

i.e., (π,𝛽! , 𝛾)!"!!"# converges to the true value of (π,𝛽! , 𝛾) as sample size increases. 

According to [35, 36], (π,𝛽! , 𝛾)!"!!"# is asymptotically unbiased as long as 𝐿∗ π,𝛽! , 𝛾  converges 

to 𝐸[𝑙!
∗ π,𝛽! , 𝛾 ] and 𝐸[𝑙!

∗ π,𝛽! , 𝛾 ] is uniquely maximized at the true value, i.e. π!,𝛽!!, 𝛾!. Suppose 

𝛽!! = 𝛽!!",… ,𝛽!"! ,  𝛾! = (𝛾!",…,𝛾!!), for identity link function, the true expectation of 𝑌!" 

is 𝜆!"! = 𝛽!"!𝑤!"!
!!! + 𝛾!!𝑣!"!!

!!! . By law of large numbers, it is not hard to show that 𝐿∗ π,𝛽! , 𝛾  

converges to 𝐸[𝑙!
∗ π,𝛽! , 𝛾 ], where 

𝐸[𝑙!
∗ π,𝛽! , 𝛾 ]  = 𝐸[𝑙!

∗ π, 𝜆!" ] = 1 − π! log 1 − π + π! (2 ∙ log π −
!!!"!
!!!!"

− log (𝜆!"))                                                                                                                     

𝐸[𝑙!
∗ π,𝛽! , 𝛾  being uniquely maximized at (π!,𝛽!!, 𝛾!) is demonstrated by maximizing the term 

𝐸[𝑙!
∗ π, 𝜆!" , 𝛾 ] + π!log (𝜆!"!), which does not depend on the distribution assumption about non-zero 

lncRNA RPKM. Detailed proof for unbiased estimate in either link function is elaborated in the 

Supplementary Methods. The use of Exponential family quasi likelihood in lncDIFF guarantees the 

accuracy of mean expression estimate under unknown distribution of RPKM 𝑌!". Thus, lncDIFF mean 

expression estimation on other normalized counts, (i.e., normalized by TMM or UQ) is also asymptotically 

unbiased, as long as the normalized counts are non-negative.  

In order to illustrate normalization method having no impact on lncDIFF performance, we simply 

applied lncDIFF DE analysis to three different types of normalized counts (i.e., FPKM, TMM and UQ) of 

low abundance mRNA in TCGA HNSC tumor-normal samples (N=546). The low abundance genes are 

selected with mean FPKM in the range of (0.3, 2) and no more than 20% zero expression, similar to the 

majority of lncRNA genes. The Pearson correlation of log10 adjusted p-values between the three 

normalization methods are FPKM vs TMM 0.82, FPKM vs UQ 0.92, TMM vs UQ 0.96, implying similar DE 

analysis results. Therefore, we only use RPKM of lncRNA in TCGA HNSC study to illustrate the 

application and performance of lncDIFF in Results.  

In addition to TMM and UQ, the distribution-free parameter estimation and LRT in lncDIFF are 

also compatible with model-based RNA-Seq quantification and normalization tools, such as RSEM [37], 

baySeq [20], and QuasiSeq [38]. Hence, the lncDIFF DE analysis can be incorporated into existing RNA-

Seq quantification and normalization pipeline, regardless of the models employed in the preprocessing 

tools.   

 

RESULTS 
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Simulation study to assess lncDIFF performance 

We conducted a comprehensive simulation study to demonstrate the performance of ZI-QML with 

observed p-value of LRT and compare to existing common tools DESeq2, edgeR and limma (with log 

transformation). We rounded decimals to integers as input for DESeq2 and selected the quasi-likelihood 

estimation method in edgeR. The testing methods for DE genes were LRT in DESeq2 and edgeR, F-test 

in limma. We considered NB and LN as true densities for data sampling, and used the gene-wise 

estimate for dispersion or log variance from a real lncRNA RPKM dataset to determine the values of 𝜙 

(NB) and 𝜎! (LN) in data generating functions. Based on the dispersion and log variance estimate for the 

data in TCGA head and neck squamous cell carcinomas (HNSC) study [39], we adopted 𝜙 = 1, 2, 10, 20, 

𝜎! = 0.01, 0.25, 1, 2.25, and then used fixed 𝜙,𝜎! values to generate RPKM of each genes across all 

samples in the same simulation scenario. Each scenario is defined by the unique gene-wise nonzero 

proportion π = 0.5, 0.7, 0.9, 1, sampling density function (NB or LN) and value of 𝜙,𝜎!, with sample size 

varying at N=100, 200, 300.  

In order to generate data similar to lncRNA RPKM, we first obtain binary outcomes (0-1) for all 

samples in one scenario from the Bernoulli sampling, and then replace the 1’s by positive values 

generated by NB or LN densities. It should be noted that in our model with identity link function, the 

expectation of non-zero RPKM per gene per sample is 𝐸(𝑌!" 𝑌!" > 0 = 𝜆!"γ =
!!"
!

. Hence, the non-zero 

RPKM for gene 𝑖 in group 𝑘 are randomly generated from NB or LN densities with mean at !!"
!

 , where 

𝛽!" being the mean of gene 𝑖 (including zero expression) in group 𝑘. The HNSC study includes 40 pairs of 

matched normal-tumor tissues. We use the 40 normal samples to calculate the mean RPKM as baseline 

group parameter 𝛽!! in simulation. Similar to the common filtering criteria in existing lncRNA analysis, we 

remove the genes in the real data with mean RPKM <0.3 [40, 41] and zero expression in more than half 

of the samples, reducing to 1100 genes for simulation.   

 In the simulation study, we only considered two-group comparison to illustrate the contrast 

between different methods. RPKM of the first group is randomly-generated by the specified density 

function and the baseline parameter, while the second group has the mean parameter of the baseline 

times a shift, i.e., the tumor/normal fold change in TCGA HNSC data. We manually set the shift between 

two simulated groups at 1 if the absolute log2 fold change (LFC) for the corresponding gene is less than 

0.5. Simulated genes with between-groups shift at 1 are the null genes and the remaining are DE genes. 

For each simulated scenario, we generate 100 replicates to assess the performance of different methods 

by the mean of Type I error, false discovery rate (FDR), true positive rate (TPR), and area under the 

curve (AUC) of receiver operating characteristics (ROC) with FDR threshold 0.05.  

We order the scenarios by the level of variance (with 1-4 representing the smallest to the largest 

and determined by dispersion or log variance), proportion of nonzero expression, and sample size to 

investigate the impact of parameters on performance metrics. Figure 2 and Supplementary Figures S1-
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S3 present the AUC, FDR, TPR and Type I error (or false positive rate) of all scenarios, illustrating that ZI-

QML outperforms the other methods, especially for scenarios with LN density. AUC for all methods in 

Figure 2 decrease as the gene-wise variation increases, and it also shows that ZI-QML’s performance is 

close to the optimal method (DESeq2) for NB density. The change of AUC across different sample sizes 

implies that adding more samples improves the performance of ZI-QML and DESeq2, but does not have 

impact on edgeR and limma. Furthermore, the AUC of ZI-QML in NB density is equivalent to or slightly 

larger than that of DESeq2 at sample size N=400.  According to AUC and TPR, the outperformance of 

DESeq2 compared to lncDIFF for NB density is not as pronounced as the outperformance of ZI-QML 

compared to DESeq2 for LN density. On the other hand, the FDR and Type I error show that lncDIFF has 

similar performance of DESeq2 in most scenarios regardless of density and greatly outperforms the other 

two methods, although lncDIFF in large-variance LN scenarios presents performance close to edgeR and 

limma. In summary, lncDIFF is the optimal method for DE analysis of lncRNA RPKM with different 

distributions, and DESeq2 is an ideal tool if the non-zero abundance is relatively high and follow NB 

density. 

 

Application of lncDIFF to TCGA HNSC Data 

We first employed the same methods to perform DE analysis on the TCGA HNSC lncRNA data 

for matched tumor and normal samples. The Venn diagram in Figure 3 (A) shows the overlap and 

difference of the DE genes identified by four methods. In real data analysis, the proportion of genes with 

absolute log2 fold change >0.5 and identified as DE is an alternative metric for the true positive rate, while 

the false positive rate (FPR) can be approximated by the proportion of genes with absolute LFC less than 

0.5, 1, 1.5 but identified as DE. The significance threshold for tumor vs normal is set at FDR<0.05. We 

listed the alternative TPR and FPR in Figure 3 (B), and presented the contrast between lncDIFF and the 

other methods by boxplots in Figure 3 (C)-(E), with each panel showing the tumor vs normal group effect 

on the lncDIFF positive genes identified as negative by other methods. We only include the genes with 

upregulation for normal tissues and LFC>0.5 in the boxplots. The results in Figure 3 (B) confirms that 

lncDIFF provides ideal power or alternative TPR (75%) in DE analysis for LFC<0.5, with approximated 

FPR below 5%. The other methods either have TPR no more than 30% or generates false positives with 

an approximate probability 44%. The boxplots in Figure 3 (C)-(E) reveal that the group contrast on DE 

genes identified only by lncDIFF is larger than that identified only by the other methods. This also implies 

that lncDIFF is less likely to ‘miss’ the DE genes with large group contrast.  

We also applied the same analysis to the unpaired tumor (N=426) vs normal (N=40) samples in 

the TCGA HNSC study by lncDIFF, and compared the top significant genes in the paired and unpaired 

DE analysis results, listed in Table 1. There are 11 overlapped genes in the top-20 significant gene list of 

paired and unpaired analysis, some of which are associated with overall survival time. For each the 

overlapped significant genes, we divided the 426 HNSC tumor samples into two groups by the median of 
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RPKM per DE gene, and then apply Cox Proportional Hazard model to survival association analysis.  The 

Kaplan-Meier curves and the log-rank test p-values reveal marginal or significant association between 

genes ERVH48-1, HCG22, LINC00668, LINC02582 and the overall survival months, illustrated by Figure 

4. For the same set of HNSC tumor samples, we also used the mRNA RSEM normalized counts to select 

20 mRNA genes highly correlated with the 11 tumor-normal DE lncRNA genes by Spearman correlation, 

listed in the Supplementary Table 1. 

Secondly, we used 72 TCGA HNSC tumor samples with valid Human Papillomavirus (HPV) 

status (i.e. positive vs negative) to compare DE analysis results by different methods. The FDR threshold 

is set at <0.1 for this analysis, since the contrast between HPV positive and negative is less pronounced 

compared to tumor vs normal. The Venn diagram and table in Supplementary Figure S4 (A)-(B) show 

the overlap of DE genes between different methods along with the approximate power and FPR. lncDIFF 

still provides more power with FPR controlled at 0.02, while the other methods have DE analysis power 

close to either zero or FPR. Supplementary Figure S4 (C) are the PCA plots generated by the top 200 

significant genes in terms of the FDR of each method. Based on the distance between clusters, lncDIFF 

top significant genes differentiate the HPV status better than those identified by the other methods do.  

 

DISCUSSION 

lncDIFF is an efficient and powerful differential analysis tool for lncRNA RPKM or FPKM. The 

distribution of lncRNA RPKM is different from that of mRNA, as some genes in lncRNA may have low or 

even zero expression for a subset of samples, but also have normal expression for the remaining 

samples. Existing RNA sequencing analysis tools based on a unique density assumption ignore such 

characteristic and does not take excess of zeros into account. For example, DESeq2 does not allow zero 

counts and decimals as input data; hence, RPKM must be rounded and transformed to nonzero integers, 

which reduces the variation of low abundance genes across samples. Although edgeR handles non-

integer RNA-Seq expression data and allows zero values, the computation for group effect depends on 

the estimate of gene-wise dispersion, which can be severely biased for a gene having both normal and 

low expression occurrence.  

The Exponential likelihood function used in lncDIFF is not derived from the true density of lncRNA 

RPKM, but the group effect estimate based on that is valid and asymptotically unbiased, as demonstrated 

by the proof in Supplementary Methods. It is worth to note that this result does not hold for Poisson, NB, 

or LN likelihood function if the gene expression density is incorrectly assumed, since the demonstration is 

based on the unique structure of Exponential density function and not applicable to other distribution 

families. The choice of link function does not have any impact on the group effect estimate and LRT 

results as shown by Table 2, but the log link function can avoid NA values produced in numerical 

optimization of the likelihood function.   
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The distribution of p-values from lncDIFF is also investigated and compared with the other 

methods in TCGA HNSC tumor vs normal analysis, using simulated p-values from sample permutation. 
We randomly selected three genes with different RPKM density patterns to generate the null p-values and 

then visualized the p-values distribution via QQ plots in Figure 5. Figure 5 (B) shows that the p-values of 

lncDIFF and DESeq2 are similar and close to the expected distribution, while edgeR and limma tend to 

provide a large proportion of small p-values (<0.1). The histogram and density plot of RPKM presented in 

Figure 5 (A) imply that the null p-values of lncDIFF and DESeq2 follow the uniform distribution for 

normally or highly expressed lncRNA genes (ENSG00000130600.11), and may deviate from the 

theoretical distribution for low abundance genes (ENSG00000152931.7, ENSG00000153363.8).   

We implemented ZI-QML and LRT with either link function in lncDIFF, along with an option of 

simulated p-values and FDR generated from permutations. This package allows the input expression 

matrix to be either continuous or discrete and requires group or phenotype factor provided in design 

matrix format. This package does not contain raw counts normalization functions, but is compatible with 

non-negative normalized counts from existing RNA-Seq analysis tools. The group effect estimation is 

implemented in R function ZIQML.fit, separated from likelihood ratio testing included in function 

ZIQML.LRT.  

We also illustrated the computation efficiency of lncDIFF by running on the TCGA HNSC matched 

tumor-normal samples with ~1130 filtered genes. The processing time (in seconds) of this biological data 

analysis by lncDIFF, DESeq2, edgeR and limma are 3.17, 4.31, 3.37 and 0.02, respectively. If the option 

of simulated p-value is enabled, the running time of lncDIFF on this real dataset is prolonged to 267.86 

seconds for default 100 permutations, but the correlation between observed and simulated p-values or 

FDR’s is around 0.9. In future study, we will extend the lncDIFF to account for technical excess zeros 

from biological zeros [10], as well as apply it to lncRNA counts normalized by other methods, such as UQ 

and TMM.     

 

CONCLUSION 

lncDIFF is a novel method utilizing GLM with a distribution free estimator and LRT in differential analysis 

of lncRNA normalized counts. This is an efficient DE analysis method, being compatible with various 

RNA-Seq quantification and normalization tools.  
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TABLES AND FIGURES LEGENDS 

Tables 

Table 1: lncDIFF output for the top 20 significant genes for paired and unpaired tumor vs normal 

differential analysis for TCGA HNSC study. The overlap of genes are in bold. Likelihood Ratio Test 

statistics, p-value and FDR are output from lncDIFF. 

 

  Paired Tumor vs Normal       Unpaired Tumor vs Normal     

Gene  Ensembl ID Log2 Fold 
Change Statistics FDR Gene Ensembl ID Log2 Fold 

Change Statistics FDR 

ERVH48-1 ENSG00000233056.1 0.415 211.767 7.48E-45 HCG22 ENSG00000228789.2 -2.979 674.029 1.76E-145 

LINC02487 ENSG00000203688.4 -3.747 200.441 1.11E-42 LINC02487 ENSG00000203688.4 -3.470 625.994 2.46E-135 

HCG22 ENSG00000228789.2 -3.138 151.425 3.73E-32 MYHAS ENSG00000272975.1 -0.935 324.216 7.70E-70 

LINC00668 ENSG00000265933.1 2.189 148.534 1.20E-31 LINC01405 ENSG00000185847.3 -1.366 276.487 1.45E-59 

LINC02582  ENSG00000261780.2 1.027 144.294 8.10E-31 FALEC ENSG00000228126.1 -1.721 252.647 1.82E-54 

LINC00941 ENSG00000235884.2 2.450 138.020 1.59E-29 TMEM238L ENSG00000263429.3 -2.250 235.559 8.06E-51 

LINC00942 ENSG00000249628.2 1.105 128.195 1.92E-27 AC005392.2 ENSG00000231412.2 -2.342 198.936 6.73E-43 

LINC01234 ENSG00000249550.2 1.755 121.173 5.79E-26 AC140479.4 ENSG00000261760.2 -1.471 188.314 1.23E-40 

LINC02154 ENSG00000235385.1 2.099 120.529 7.12E-26 ERVH48-1 ENSG00000233056.1 0.444 185.507 4.47E-40 

AC134312.5 ENSG00000261327.3 2.064 115.828 6.85E-25 AC091563.1 ENSG00000254343.2 -2.185 174.352 1.10E-37 

AL365181.2 ENSG00000272068.1 1.191 111.605 5.24E-24 LINC02582  ENSG00000261780.2 1.009 161.008 8.19E-35 

DUXAP9 ENSG00000225210.5 2.868 110.895 6.87E-24 LINC00668 ENSG00000265933.1 1.626 154.270 2.23E-33 

DUXAP8 ENSG00000206195.6 2.422 105.798 8.30E-23 ACBD3-AS1 ENSG00000234478.1 -1.733 150.782 1.08E-32 

SFTA1P ENSG00000225383.2 1.676 103.239 2.80E-22 LINC00941 ENSG00000235884.2 2.090 150.692 1.08E-32 

AC010343.3 ENSG00000250697.1 1.838 101.397 6.63E-22 AC134312.5 ENSG00000261327.3 2.146 150.725 1.08E-32 

ELFN1-AS1 ENSG00000236081.1 1.590 101.238 6.74E-22 DUXAP9 ENSG00000225210.5 2.711 141.890 8.49E-31 

LINC00520 ENSG00000258791.3 1.570 98.359 2.71E-21 ABHD11 ENSG00000225969.1 -1.730 140.148 1.92E-30 

AC134312.2 ENSG00000260162.2 1.912 98.157 2.84E-21 AL365181.2 ENSG00000272068.1 1.008 138.932 3.35E-30 

AC114956.2 ENSG00000248554.1 3.038 96.948 4.95E-21 DUXAP8 ENSG00000206195.6 2.230 134.501 2.95E-29 

CASC9 ENSG00000249395.2 4.019 91.046 9.28E-20 AC134312.2 ENSG00000260162.2 1.982 129.028 4.42E-28 
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Table 2: Group effect estimates and likelihood ratio test results of TCGA HNSC tumor vs normal with 

logarithmic and identity link functions in lncDIFF. 

 

    Logarithmic link function     

Genes Ensembl ID exp(𝛽!) 
(tumor) 

exp(𝛽! − 𝛽!) 
(contrast) 

exp(𝛽!) 
(normal) p-value FDR 

ENSG00000005206.12 0.247 0.811 0.200 0.348 0.528 

ENSG00000100181.17 0.737 0.993 0.732 0.974 0.982 

ENSG00000126005.11 7.161 1.263 9.043 0.297 0.474 

ENSG00000130600.11 181.885 1.571 285.661 0.044 0.115 

ENSG00000131484.3 0.362 1.044 0.378 0.846 0.916 

 
  Identity link function     

Genes Ensembl ID 𝛽!  
(tumor) 

𝛽! − 𝛽! 
(contrast) 

𝛽! 
(normal) p-value FDR 

ENSG00000005206.12 0.247 -0.047 0.200 0.348 0.528 

ENSG00000100181.17 0.737 -0.005 0.732 0.974 0.982 

ENSG00000126005.11 7.160 1.887 9.047 0.297 0.474 
ENSG00000130600.11 181.852 103.833 285.684 0.044 0.115 
ENSG00000131484.3 0.362 0.016 0.378 0.846 0.916 
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Figures 

Figure1: Violin and box plots for gene-wise coefficient of variation (CV) based on normalized counts of 

mRNA and lncRNA. Genes are divided into ten groups by the percentile of mean normalized counts. The 

first panel is plotted on the log2 scaled normalized counts, while the data used in the second panel is not 

log transformed.      

Figure 2: AUC of ROC curve for DE analysis on simulated data. Scenarios are in the order of true density, 

proportion of non-zero expression values, variance level. The labels ‘Variance1’-‘Variance4’represent 

gene-wise variance levels from the smallest to the largest.  

Figure 3: Performance of lncDIFF, DESeq2, edgeR and limma on TCGA HNSC matched tumor-normal 

samples. (A) is the Venn diagram for DE genes identified by each method. (B) lists the proportion of 

genes with LFC greater or less than 0.5, 1.0, 1.5 being identified as DE by each method. (C)-(E) are the 

boxplots of log2 RPKM per gene for tumor vs normal. The genes in (C)-(E) are upregulated in normal 

tissue and LFC>0.5.    

Figure 4: Survival time association with DE genes identified in both paired and unpaired TCGA HNSC 

tumor vs normal analysis. The 426 tumor samples are divided into two groups by the median of RPKM 

per gene. (A)-(D) are the Kaplan-Meier survival curves for genes ERVH48-1, LINC00668, HCG22, 

LINC02582  individually.  

Figure 5: QQ plots of simulated null p-values for genes with different RPKM distributions in TCGA HNSC 

matched samples. (A) presents the histogram and density plot of RPKM for each genes. (B) shows the 

corresponding QQ plot of null p-values simulated by shuffling the samples.  
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Figure 1  
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Figure 2  
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Figure 3 
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Figure 4   
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Figure 5 
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Supplementary methods  

 

1. Zero-Inflated Exponential density for RPKM 𝒀𝒊𝒋 

For the multiplicative error model specified in equation (3), if the positive random error 𝜖!"|𝑌!" > 0 follows a 

distribution described by an Exponential density function ℎ 𝜖!"|𝑌!" > 0 = !
!
𝑒!

!!"
! , then the distribution of 𝜖!" 

including zero occurrence is  

𝑔 𝜖!" = 1 − π
!
!!"!!

π
𝛾
𝑒!

!!"
!

!
!!"!!

 

with 𝐸(𝜖!") = πγ. According to the unit mean assumption 𝐸(𝜖!") = 1 in equation (3), we have γ = !
!

 . That 

is,  

𝑔(𝜖!") = (1 − π)!(!!"!!)(π!𝑒!!!!")!(!!"!!)   

Since 𝜖!" = 𝑌!"/𝜆!", the semi-continuous distribution for 𝑌!" can be derived by 

𝑓 𝑌!" =  𝑔(𝑌!"/𝜆!") ∙
𝑑𝜖!"
𝑑𝑌!"

 

That is, 𝑓(𝑌!") = (1 − π)!(!!"!!)(!
!

!!"
𝑒!!!!"/!!")!(!!"!!). 

 

2. ZI-QML estimate (𝛑,𝜷𝒊,𝜸)𝒁𝑰!𝑸𝑴𝑳 is asymptotically unbiased. 

Proof: According to [1, 2], (π,𝛽𝒊, 𝛾)!"!!"# is a consistent estimator if 𝐿∗ π,𝛽! , 𝛾  converges almost surely 

to 𝐸[𝑙!
∗ π,𝛽! , 𝛾 ] and 𝐸[𝑙!

∗ π,𝛽! , 𝛾 ] is uniquely maximized at the true mean of RPKM, i.e. 𝛽!𝟎. Suppose the 

true value of 𝛽!, 𝛾 are 𝛽!𝟎 = 𝛽!!𝟎,… ,𝛽!"𝟎 , 𝛾𝟎 = (𝛾!𝟎,…,𝛾!𝟎) and the true value of π is π!.  

A. Identity link function: 𝜆!" = 𝛽!"𝑤!" + 𝛾!𝑣!"!
!!!

!
!!! .  

The true expectation of 𝑌!" is 𝜆!"𝟎 = 𝛽!"𝟎𝑤!"!
!!! + 𝛾!𝟎𝑣!"𝟎!

!!! . Since 𝐸 𝑌!"|𝑌!" > 0 = 𝜆!"/π with true 

value 𝜆!"𝟎/π!, it is not hard to show that 𝐸[𝑙!
∗ π,𝛽! , 𝛾 ] is 

𝐸[𝑙!
∗ π,𝛽! , 𝛾 ]  = 𝐸[𝑙!

∗ π, 𝜆!" ] = 1 − π! log 1 − π + π! (2 ∙ log π −
!!!"𝟎
!!!!"

− log (𝜆!"))          (7)    

which is a finite function. By law of large numbers, 𝐿∗ π,𝛽! , 𝛾 -the sample mean of 𝑙!
∗ π,𝛽! , 𝛾 -converges 

almost surely to 𝐸[𝑙!
∗ π,𝛽! , 𝛾 ]. Next, we need to demonstrate 𝐸[𝑙!

∗ π,𝛽! , 𝛾 ] being uniquely maximized at 

(π!,𝛽!𝟎, 𝛾𝟎).  
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We consider the maximizer of 𝐴(π, 𝜆!") = 𝐸[𝑙!
∗ π, 𝜆!" , 𝛾 ] + π!log (𝜆!"𝟎) instead of 𝐸[𝑙!

∗ π, 𝜆!" ].  

That is 

𝐴 π, 𝜆!" = 𝐸[𝑙!
∗
π, 𝜆!" ] = 1 − π! log 1 − π + π! (2 ∙ log π −

π𝜆!"𝟎
π!𝜆!"

− log (
𝜆!"
𝜆!"𝟎

))           

Let 𝑥 =
!!"
!!"𝟎

, then 

𝐴 π, 𝑥 = 𝐴(π, 𝜆!") = 1 − π! log 1 − π + 2π!log π − (
π
𝑥
+ π!log 𝑥 ) 

The first gradient of 𝐴 π, 𝑥  is 

𝜕𝐴 π, 𝑥  
𝜕π

= −
1 − π!
1 − π

+
2π!
π

−
1
𝑥
= 0          (8) 

𝜕𝐴 π, 𝑥
𝜕𝑥

=
π
𝑥!
−
π!
𝑥
= 0          (9) 

The solution to equations (8) and (9) is π, 𝑥 = π!, 1 . The second gradient gives the Hessian matrix  

𝐻 =

𝜕!𝐴 π, 𝑥  
𝜕π!

𝜕!𝐴 π, 𝑥  
𝜕π𝜕𝑥

𝜕!𝐴 π, 𝑥  
𝜕π𝜕𝑥

𝜕!𝐴 π, 𝑥  
𝜕𝑥! !!,!

=
1

1 − π!
−
2
π!

1

1 −π!
 

Since 𝐻 = !
!!!!

> 0, π!, 1  is the unique maximizer of 𝐴 π, 𝑥 . Hence, π!, 𝜆!"𝟎  is the unique solution 

maximizing 𝐸[𝑙!
∗ π, 𝜆!" ].  

Lastly, we need to validate that 𝜆!" = 𝜆!"𝟎 implies (𝛽! , 𝛾) = (𝛽!𝟎, 𝛾𝟎). According to definitions, the design 

matrix, (𝛽! , 𝛾) and 𝜆!"  can be written as  

𝑤!! ⋯ 𝑤!! 𝑣!! ⋯ 𝑣!!
⋮ ⋯ ⋮ ⋮ ⋯ ⋮

𝑤!! ⋯ 𝑤!" 𝑣!! ⋯ 𝑣!"

𝛽!
𝛾 =

𝜆!!
⋮
𝜆!"

          (10) 

When 𝜆!" = 𝜆!"𝟎, equation (10) becomes  

𝑤!! ⋯ 𝑤!! 𝑣!! ⋯ 𝑣!!
⋮ ⋯ ⋮ ⋮ ⋯ ⋮

𝑤!! ⋯ 𝑤!" 𝑣!! ⋯ 𝑣!"

𝛽!
𝛾 =

𝜆!!𝟎
⋮

𝜆!"𝟎
          (11) 

and (𝛽!𝟎, 𝛾𝟎) is a solution to equation (11). Since the design matrix is of full rank, the solution to equation 

(9) is unique. Therefore, 𝜆!" = 𝜆!"𝟎 implies (𝛽! , 𝛾) = (𝛽!𝟎, 𝛾𝟎), and (π!,𝛽!𝟎, 𝛾𝟎) is the unique maximizer of 

𝐸[𝑙!
∗ π,𝛽! , 𝛾 ]. The estimator (π,𝛽! , 𝛾)!"!!"# derived from 𝑙!

∗ π,𝛽! , 𝛾  is asymptotically consistent.  
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B. Logarithmic link function: log (𝜆!") = 𝛽!"𝑤!" + 𝛾!𝑣!"!
!!!

!
!!! .  

The true expectation of 𝑌!" is 𝜆!"𝟎 = 𝑒 !!"𝟎!!"
!
!!! ! !!𝟎!!"𝟎

!
!!! . Similarly, we can derive 𝐸[𝑙!

∗ π, 𝜆!" ] as 

equation (7) and 𝐿∗ π,𝛽!  converges almost surely to 𝐸[𝑙!
∗ π, 𝜆!" ], which is uniquely maximized at 

π!, 𝜆!"𝟎 . Similar to the above proof, 𝐸[𝑙!
∗ π,𝛽!!! , 𝛾 ] is uniquely maximized at (π!,𝛽!𝟎, 𝛾𝟎). Hence, 

consistency still holds for log link function. 
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