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Abstract 

We present a publicly available, expandable proteome signature library of 

anticancer molecules in A549 adenocarcinoma cells. Based on 287 proteomes affected 

by 56 drugs, the main dataset contains 7,328 proteins and 1,307,859 refined protein-

drug pairs. By employing the specificity concept in partial least square modeling, 

deconvolution of drug targets and mechanistic proteins is achieved for most 

compounds, including some kinase inhibitors. We built the first protein co-regulation 

database that takes into account both protein expression and degradation. A surprising 

number of strong anti-correlations is found, underscoring the importance of protein 

repression in cell regulation. Our analysis uncovered a group of proteins with extremely 

steady expression which are likely essential for core cellular functions. These findings 

bring about deeper understanding of cell mechanics. Extension of the dataset to novel 

compounds will facilitate drug design. The introduced specificity concept and modeling 

scheme are beneficial in other analysis types as well.  

 

Statement of Significance 

ProTargetMiner is the first of its kind library of proteome responses of human cancer 

cells to anticancer molecules. This expandable resource facilitates the deconvolution of 

drug targets, action mechanisms, and cellular effects. It reveals death modalities, 

uncovers protein co-regulation and anti-correlation networks and defines the 

“untouchable” proteome essential for core cellular functionalities.  
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Introduction 

Deciphering the targets, action mechanisms, resistance factors, and the 

modalities of cancer cell death for novel compounds, especially for those derived from 

phenotypic screenings, are all challenging tasks in drug discovery. These tasks can be 

addressed by connecting the affected cellular phenotypes to small molecules by so-

called connectivity maps (1-3). Such an approach explores the similarities of the cell 

response signatures produced by the compound of interest to other responses in the 

database. However, majority of studies published so far are based on gene expression 

(mRNA) profiles. Since proteins are the targets of most drugs, proteome responses can 

be more specific to drug action. One recent effort has focused on building a connectivity 

map based on phosphoproteomic and chromatin signatures, measuring the abundances 

of 100 phosphopeptides and 59 histone modifications for treatments with 90 drugs (4). 

There is no reason why protein abundances cannot serve a basis for connectivity maps; 

after all, biological systems are defined by their proteome status. Also, protein 

abundances are in general as much determined by expression as by degradation (5), 

both reflected uniquely in proteomics data. In several studies, no strong correlation 

between mRNA levels and protein concentrations has been found even at the steady 

state (6). In dynamic situations where degradation processes play an important role, 

such as programmed cell death (7), the relationship between the transcriptome and 

proteome should become even less direct.  

Here we use chemical proteomics to study the relationship between the 

anticancer drug molecules and the dying cell phenotype induced by these molecules. 

Chemical proteomics has traditionally been defined as the use of small molecules 

(which are considered known entities) in studying the unknown functions of proteins (8). 

Recently, chemical proteomics began to designate also the opposite approach, in which 

proteome analysis is applied to studying functions of small molecules (9).   

We have previously shown that, when sensitive cell lines are treated with the 

compound of interest, drug targets are consistently found among the most regulated 

proteins and mapping these proteins on protein networks can reveal the drug action 

mechanism. This observation served as a basis for a new chemical proteomics method 
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called Functional Identification of Target by Expression Proteomics (FITExP) (10). In 

many cases, the affected target and other mechanism-related proteins are found 

upregulated. This can be explained by a feedback effect when inhibition of certain 

proteins activates their (over)production. The alternative effect, involving target protein 

down-regulation, can be caused by protein translocation followed by proteolysis (11).  

To increase the specificity of analysis for a given compound, a panel of known 

drugs is added to the experiment. The specificity parameter reflects the protein 

regulation in the treatment by a given compound versus all other compounds. FITExP 

could successfully identify the targets of several chemotherapeutics (10), and probe the 

targets and mechanisms of metallodrugs (12) and even toxic nanoparticles (13). We 

have also shown that combining the proteomic data from treated matrix-attached cells 

with matrix-detached cells can improve the deconvolution of drug targets and action 

mechanisms, and identify proteins involved in cell life and death decisions (14). 

Achieving a high level of specificity in analysis usually requires the use of several 

compounds and cell lines. We hypothesized that the equivalent increase in specificity 

can be obtained with a single cell line when a multitude of “contrasting” drugs is used.  

 While specifically regulated proteins help to identify the drug targets and the 

action mechanisms, mapping the whole proteome, and even the set of ≥1000 most 

abundant proteins, may help to determine the cell death modality (15). Assuming that 

the hypothesis on the molecule-specific nature of the obtained dataset holds, 

interrogating a cell line with an extensive (>50 molecules) drug panel was expected to 

probe most cell death pathways. Each pathway can be represented by a cell death 

trajectory in a space encompassing all possible cell states. Therefore, we could hope to 

determine the number of orthogonal death modalities – the subject that has generated a 

significant debate and even controversy in the cell death community (16).  

We define a death trajectory caused by a toxic agent, to be a track in the 

proteome space, passing from a normal living state that the untreated cells occupy and 

explore during cell division, circadian and metabolic cycles, to a particular death state. 

The proteome space and death trajectories are schematically shown in Fig. 1. The first 
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crossing beyond the normal state defines the molecular action mechanism of the toxic 

agent.  

We selected A549 human adenocarcinoma cells originating from lung cancer as 

a model system, because it is well covered in the literature, and it showed the highest 

sensitivity to the compounds among other tested cell lines (MCF-7 and RKO) in a pilot 

experiment. Viability measurements were performed for 118 clinical molecules cherry-

picked for cancer from Selleckchem FDA-approved drug library and several 

experimental compounds with unknown targets. A collection of 56 compounds were 

chosen to treat the cells at LC50 concentrations for 48 h (selection criterion was the 

induction of 50% cytotoxicity in 48h at concentrations below 50 µM). With the biological 

effect (cell death) being of the same magnitude, the differences in the proteome states 

could be attributable to the differences in targets, action mechanisms as well as 

modalities of cell death and survival. The selected compounds belong, according to 

available information, to 18 different classes with versatile targets and mechanisms, 

spanning 112 known drug targets curated from DrugBank (https://www.drugbank.ca/) in 

September 2018. These drugs and their known targets are listed in Supplementary 

Table S1. As standard drugs used for quality control, methotrexate, paclitaxel, and 

camptothecin were chosen and included in each TMT10 multiplexed proteomics 

experiment (labeling information for each experiment is given in Supplementary Table 

S2).  

The overview of the project’s objectives and the workflow is given in Fig. 1. 

Besides mapping the orthogonal death pathways, the obtained dataset allowed us to 

deconvolve compound targets and action mechanisms. We could also probe protein co-

regulation and anti-correlation networks, the untouchable proteome that is (almost) 

unchanged in all perturbations, as well as the variable proteome that exhibits large 

drug-to-drug variations. Here we present this dataset, called ProTargetMiner, as well as 

our most significant findings so far from its interrogation.  
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Figure 1. Objectives and workflow of ProTargetMiner. A, Interrogating a cell line with an 

extensive drug panel will probe most cell death pathways, each represented by a 

different cell death trajectory, which will allow us to build a global cell death map 

(multidimensional “Death globe”), for clustering of compounds. The extensive proteome 

dataset will also provide specific information on drug targets, mechanistic proteins, and 

other specifically regulated proteins. The proteome perturbation data will provide novel 

protein co-regulation and anti-correlation links, as well as define untouchable and 

variable proteomes. B, Workflow: determination of LC50 values for the compound 

library; cell treatment with 56 compounds and sample preparation for shotgun 

proteomics; sample multiplexing including control and standard treatments 

(methotrexate, paclitaxel and camptothecin); lysis, digestion and labeling with TMT-

10plex; combining the 10-plexed samples and fractionation of the pooled sample to 

increase the proteome coverage; analysis of individual fractions by LC-MS/MS; protein 

identification and quantification; data post-processing. 

 

Results  

Overview of the Proteomics data 

Overall, for the original dataset, 287 cell lysates were prepared and 229 LC-

MS/MS analyses were performed. In total, 144,075 peptides attributed to 7,328 proteins 

were quantified in all experiments, with at least 2 unique peptides per protein. After 

selecting only proteins quantified in at least one replicate in each treatment, the list was 

reduced to 4,557 proteins (Supplementary Table S3) that were used in all subsequent 

analyses. The final resource therefore, contains 1,307,859 (287x4557) filtered high 

quality drug-protein data points.  

 

Number of independent dimensions 

Using factor analysis of the whole dataset, we identified at least 11 independent 

dimensions. Supplementary Table S4 lists the contribution of all proteins to each 
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dimension. The most contributing proteins to the first dimension were cyclin-dependent 

kinase inhibitor 1 (CDKN1A) and PCNA-associated factor (PCLAF), with opposite signs. 

While CDKN1A is involved in p53 mediated inhibition of cellular proliferation by blocking 

cell cycle progression, PCLAF is a cell cycle-regulated substrate that acts as a regulator 

of DNA repair during replication. The top 30 proteins of the first three dimensions map 

best to “p53 signaling pathway and cell cycle”, “focal adhesion and angiogenesis” and 

“chromatin assembly and fatty acid metabolism”, respectively. Some of the dimensions 

clearly correspond to classical cell death modalities, such as p53-dependent apoptosis 

(1st dimension), autophagy (4th dimension), and macromitophagy (6th dimension), while 

other dimensions were harder to ascribe to known modalities. Associating top proteins 

defining these dimensions with cell death modalities is a subject of future research. 

Supplementary Table S5 lists the top two KEGG and biological pathways for 30 most-

contributing proteins for all 11 dimensions.  

 

Drugs with similar mechanisms induce similar proteome changes 

We employed a nonlinear dimension reduction method t-SNE that is widely used 

for projection of molecular signatures in transcriptomics, to reduce the proteomic space 

to three dimensions (17). As a result, we obtained the “Death globe”, on which all drug-

induced proteome signatures are mapped as points. We used the proximity of these 

points in the 3D t-SNE projection to evaluate the similarity of the drug-induced 

signatures. As expected, drugs with similar mechanisms (e.g., tubulin depolymerization 

inhibitors paclitaxel and docetaxel, pyrimidine analogues 5-fluorouracil, floxuridine and 

carmofur, thioredoxin reductase inhibitors auranofin, TRi-1 and TRi-2 (18) and 

topoisomerase inhibitors camptothecin, topotecan and irinotecan) were proximate on 

the t-SNE plot, confirming that the Death globe approach can be used for evaluating the 

similarities between drug action mechanisms. Similar results were obtained with a 2D t-

SNE plot (“Death map”, Fig. 2A). We also employed a conventional correlation-based 

hierarchical clustering analysis to confirm the t-SNE findings (Fig. 2B). 

We found tomatine to be a gross outlier in the t-SNE and PCA plots and thus 

excluded it from the subsequent analyses. Tomatine is likely to act via proteasome 
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inhibition (19), along with unspecific membrane damage (20). These mechanisms may 

explain the extraordinary changes induced by tomatine in the cell proteome.  

 

Figure 2. Drugs with similar mechanisms induce similar proteome changes. A, The 

compounds with similar mechanisms (with the same colors) were found to be proximate 

on the 2D t-SNE plot (“Death map”). B, Correlation based heatmap with the hierarchical 

clustering analysis was used to support the findings from the t-SNE. 
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ProTargetMiner enables functional discovery 

Protein regulation is usually defined as a ratio of the protein abundances in the 

cells incubated with a drug and vehicle control. However, regulation is not a parameter 

specific enough in drug target deconvolution because of the proteins involved in generic 

cell responses to toxic agents (e.g., death or survival pathways). Instead, we introduced 

“specific regulation”, which was defined as the ratio of the regulation to a particular drug 

to the median regulation in all other drugs of the panel (10). Here, we also employ a 

sophisticated supervised classification method called orthogonal partial least square 

discriminant analysis (OPLS-DA), for the discovery of specifically regulated proteins 

(21). With this approach, different models can be easily built, contrasting a given 

compound, or a group of compounds, against either all other molecules or a selected 

subset. In these models, the proteins specifically up- or down-regulated in response to a 

given treatment are found on the opposite sides of the loading plot, with each protein 

represented by a dot (Fig. 3A). The position on the y-axis reflects the strength of the 

orthogonal components, and best target candidates are thus located near the x-axis 

extremities.  

As representative examples of drug target deconvolution, OPLS models for 

methotrexate, paclitaxel, and vincristine are shown in Fig. 3B-D, respectively. The 

methotrexate target DHFR is convincingly identified. Tubulins are found to be most 

specifically up-regulated proteins for paclitaxel and down-regulated for vincristine. 

These two drugs affect tubulin depolymerization and polymerization, respectively. 

Network analysis of the specifically regulated proteins on either side of the model 

highlights the compounds’ mode of action (right panel in Fig. 3).  

ProTargetMiner can also reveal a compound effect on protein complexes and 

organelles. The proteasome inhibitor Bortezomib demonstrates enrichment of the 

proteasome subunits among specifically up-regulated proteins (Fig. 3E). The sorafenib 

model shows the specific down-regulation of NADH dehydrogenases and mitochondrial 

ribosomal proteins (Fig. 3F). This latter finding is in line with the earlier report for human 

neuroblastoma cells (22); thus the ProTargetMiner results can be cautiously generalized 

to other cells.  
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As another example, pyrimidine analogues floxuridine and carmofur down-

regulated ribosomal proteins similar to 5-fluorouracil (23) (Supplementary Fig. S1A). A 

similar effect on ribosome was also observed for the alkylating agent oxaliplatin 

(Supplementary Fig. S1A). A very recent finding shows that oxaliplatin kills cells by 

inducing ribosome biogenesis stress, unlike its platinum analogues (24).  

In Supplementary Table S6, the specificity (extracted from OPLS models) of 

each protein in response to each compound (against all other compounds) is provided.  
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Figure 3. ProTargetMiner highlights the targets, action mechanisms as well as affected 

cellular complexes. A, A generalized OPLS-DA model contrasting a given compound 

against all others. B-F, Representative OPLS-DA models for five compounds. The right 

panel shows the mechanistically relevant pathway enrichment for the 30 most 

specifically up- or down-regulated proteins: KEGG pathways for methotrexate - “one 

carbon pool by folate” (p<0.001) and “pyrimidine metabolism” (p<0.002); paclitaxel - 

“tubulin” (p<2E-16); vincristine - “tubulin” (p<4E-08); bortezomib - “proteasome” (p<7E-

11). GO terms for sorafenib - “NADH dehydrogenase activity” (in red, p<4E-33) and 

“mitochondrial translation” (in blue, p<5E-07). MRP = mitochondrial ribosomal proteins, 

ND = NADH dehydrogenase.  

 

ProTargetMiner analysis of kinase inhibitors 

One could suspect that ProTargetMiner would be less sensitive to kinase 

inhibitors because this analysis doesn’t include assessment of the phosphorylation 

sites, while there are fewer reasons to expect for the kinase abundance to be affected 

by its inhibition than for metabolite-processing proteins or generally other targets. To 

investigate the efficiency of ProTargetMiner in the analysis of kinase inhibitors, we built 

a PCA plot solely based on the expression of 68 kinases with no missing values in the 

ProTargetMiner dataset. Both principal components 1 (18.8%) and 2 (10.5%) could 

crudely separate kinase inhibitors from other compounds, and especially topoisomerase 

and proteasome inhibitors (Supplementary Fig. S1B). Thus, with certain limitations, 

ProTargetMiner is also applicable to kinase inhibitors. 

ProTargetMiner yields unexpected findings for kinase inhibitors that could be 

mechanistically relevant. As an example, gefitinib and lapatinib up-regulated proteins 

involved in lipid synthesis and cholesterol metabolism, indicating potential inhibition of 

these pathways (Supplementary Fig. S2A). This finding may explain the reduction of 

serum cholesterol level in patients treated with gefitinib (25). Other kinase inhibitors in 

our library which affected proteins involved in lipid synthesis and cholesterol metabolism 

were bosutinib, crizotinib, sunitinib, and cabozantinib. The specific regulation of the 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 18, 2018. ; https://doi.org/10.1101/421115doi: bioRxiv preprint 

https://doi.org/10.1101/421115
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14

three up-regulated proteins involved in cholesterol metabolism in response to the 

mentioned compounds is shown in Supplementary Fig. S2B.  

Biochemical pathways affected by compounds are related not only to death 

pathways but also to cell survival (14). Therefore, the specifically regulated proteins 

could be potentially linked to drug resistance. For example, EGFR was specifically 

upregulated in the sorafenib model (Supplementary Fig. S2C) and is known to be 

involved in resistance to this drug (26). Another kinase upregulated in response to 

sorafenib (and regorafenib) was AXL (Supplementary Fig. S2C-D). AXL is a receptor 

tyrosine kinase regulating many aspects of cell proliferation and survival, and its 

overexpression induces resistance to EGFR targeted therapies (27). To investigate if 

AXL inhibition can rescue A549 cells from sorafenib and regorafenib, we combined 

these molecules with TP0903, a specific AXL inhibitor in non-cytotoxic concentrations 

(<100nM). The combination treatment significantly sensitized the cells to sorafenib and 

regorafenib in 24 h and 48 h (Supplementary Fig. S2D).  

 

The degree of drug-induced proteome changes  

The degree of proteome perturbation can vary likely due to a difference in the 

number of affected targets and pathways. To test this hypothesis, the drugs were 

ranked by the overall deviation of their molecular signatures compared to the untreated 

state (Fig. 4). Bortezomib induced the highest proteome variation, while tubulin 

inhibitors gave the least proteome perturbation potentially indicating the lack of off-

target effects. As an alternative deviation assessment, the number of up- or down-

regulated proteins was calculated for each compound at a 1.5 fold cutoff 

(Supplementary Fig. S3A). For proteasome inhibitors b-AP15 and especially for 

bortezomib, the number of significantly up-regulated proteins was much higher than 

down-regulated proteins (up/down ratio of 17.8 for bortezomib compared to the average 

of 2.9 for all other drugs). The variation induced by bortezomib was much larger than by 

b-AP15, likely indicating that bortezomib is affecting more targets/pathways. As another 

example, the proteome variation was larger for auranofin compared to other thioredoxin 
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reductase inhibitors TRi-1 and TRi-2, confirming the recent finding that auranofin has 

off-targets (18).  

 

Figure 4. The extent of variation at the proteome level induced by each compound. 

Total variation of proteome changes might be indicative of compound specificity. See 

also Supplementary Fig. S3. 

 

Complex-specific effects of compounds  

To investigate the drug effects on selected protein complexes, we plotted the 

mean specific regulations for 74 ribosomal proteins, 66 mitochondrial ribosomal 
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proteins, and 40 proteasome subunits (Supplementary Fig. S3B-E). 5-fluorouracil, 

floxuridine, carmofur, and oxaliplatin showed outstanding down-regulatory effects on the 

ribosome (Supplementary Fig. S3B). Mitochondrial ribosome down-regulation was a 

specific feature for sorafenib, regorafenib, everolimus, mitotane and b-AP15 

(Supplementary Supplementary Fig. S3C), most of which have documented effect on 

mitochondrial activity (22,28). The largest effects on proteasome were caused by 

bortezomib and b-AP15 (Supplementary Fig. S3D). The mean proteasome regulation 

was only 1.15 fold (Supplementary Fig. S3E), confirming the high specificity of the 

OPLS-enabled analysis and precision of measurements.  

 In PCA plots built using proteins with no missing values (74 ribosomal, 57 

mitochondrial ribosomal and 38 proteasomal proteins), the molecules that affect the 

respective complexes were well separated from other compounds (Supplementary Fig. 

S3F-H, respectively). Interestingly, auranofin was proximal to proteasome inhibitors 

(Supplementary Fig. S3H), in line with a recent work implicating auranofin in inhibition of 

proteasomal deubiquitinase (29).   

 

A protein correlation database 

As protein synthesis is a resource demanding cell function, protein expression is 

spatiotemporally controlled. Coordinated expression seems optimal for a set of genes 

involved in the same protein complex or biological pathway. Multiple studies have 

shown that co-expression can indicate functional relationships. Therefore, co-

expression has been extensively exploited for deduction of gene function (1) through 

association analysis (30). However, co-regulation databases are mainly available based 

on transcripts expression (30,31), while proteomics can capture co-regulation more 

accurately (32). Yet to the best of our knowledge, no large-scale proteome co-regulation 

database has been made public so far. 

ProTargetMiner provides an opportunity to build such a database of protein co-

regulation. We analyzed the pairwise correlations of proteins in a 4212 x 4212 matrix 

(Fig. 5A). At least 11 clusters can be discerned (Fig. 5A; the constituent proteins and 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 18, 2018. ; https://doi.org/10.1101/421115doi: bioRxiv preprint 

https://doi.org/10.1101/421115
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17

enriched pathways are presented in Supplementary Table S7). For example, cluster 8 

contains 129 proteins, of which 72 proteins are ribosomal and 10 are involved in 

ribosome biogenesis.  

At FDR<0.001, a high-confidence set of 103,928 positively and 51,137 negatively 

correlating protein pairs were found (Supplementary Table S8), representing 

approximately 1% of the total of 17,740,944 pairs. The less frequency of negative 

compared to positive correlations is in line with a previous study (33).  

Out of the 10 strongest correlating pairs (r>0.98), most belong to dense regions 

of protein interaction networks, e.g., protein complexes, such as MCM, condensin, 

ribosome, chaperonin-containing T-complex and mitochondrial respiratory chain 

complex, or to the same protein superfamily, such as tubulins. Supplementary Fig. S4A 

maps the top 2500 co-regulated pairs, mostly originating from the same complexes or 

pathways, showing functionally coherent groups of genes. The 128 proteins (3% of all 

proteins) exhibiting no strong correlation with any other protein (Supplementary Table 

S8) mapped to “RNA binding” (24 proteins, p<0.017) and “catalytic activity” (52 proteins, 

p<0.017).  

We also calculated the number of total co-regulating (and anti-correlating) 

partners for each protein, to reveal hub proteins (Supplementary Fig. S4B-C). 

Mitochondrial trifunctional enzyme subunit beta (HADHB) and alpha (HADHA) with 276 

and 271 co-regulation partners were on top. 

For network visualization and pathway analysis, we mapped the proteins to 

StringDB entities and generated a set of external payload data, which can be uploaded 

to the StringDB or its plugin in Cytoscape using personal configurations (nodes as well 

as positive and negative edges are available in Supplementary Table S9). This way, 

known interactions and ProTargetMiner co-regulations can be visualized on the same 

plot.  

The anti-correlation of protein abundances is often ignored, even though 

negative correlations are less likely than positive correlations to arise from technically 

induced artifacts (33), and can reveal opposing biological processes. For example, anti-
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correlations can reflect active regulatory transcriptional repression, activation or even 

canceling of such events (34). Therefore we investigated this aspect in more detail. 

Since TP53-inducible glycolysis and apoptosis regulator (TIGAR) was among the 

top anti-correlating proteins with many anti-correlating protein pairs, we chose to 

compare its expression pattern with its most anti-correlating pair NCAPG (r=-0.84) (Fig. 

5B). TIGAR and NCAPG, each one together with 5 most correlating proteins, were 

projected to protein networks (Fig. 5C). The TIGAR group mapped to p53 signaling 

pathway (3 proteins, p<0.002), while the NCAPG group mapped to condensin complex 

(5 proteins, p< 2.6E-13) and cell division (6 proteins, p<2.98E-07). This finding is in line 

with p53 mediated inhibition of entry into mitosis when DNA synthesis is blocked, and 

with TIGAR’s role in p53-mediated protection from the accumulation of genomic 

damage (35). CMBL strongly co-regulated with TIGAR (r=0.89), but was not part of the 

p53 signaling pathway in String. However, a microarray screen found CMBL to be a 

p53-inducible protein (36), confirming the predictive power of protein co-regulations.  

Analyzing in detail the TIGAR vs NCAPG dependence (Fig. 5D), we noticed that 

while the overall correlation coefficient was significant (r=-0.84), the slope -0.75 was far 

from -1, indicating an underlying complexity. A closer inspection revealed that, when 

TIGAR had an above-average regulation, its anti-correlation with NCAPG (r=-0.75, plot 

1 on Fig. 5D) was stronger than when it was relatively down-regulated (r=-0.52, plot 2). 

Also, with TIGAR up-regulated, its slope with NCAPG was close to -1 (-0.97), as in 

perfect association. However, when TIGAR was down-regulated, the slope declined as 

well (-0.56). In contrast, when NCAPG was up-regulated, its anti-correlation with TIGAR 

was weak (r=-0.23, plot 3), but when NCAPG was down-regulated, it anti-correlated with 

TIGAR very strongly (r=-0.80, slope -1.01, plot 4). These findings showed that the anti-

correlation can be bimodal, which led us to consider two pairs of correlation coefficients 

for every protein pair (Fig. 5E), with correlations calculated separately for above and 

below the median abundance of protein A. When these correlations were heat-mapped 

on a 2D plot with a cutoff of |r|>0.54 (Fig. 5F), five dense areas unexpectedly emerged 

(circles 1-5 in Fig. 5G) (the correlation data can be found in Supplementary Table S10). 

Fitting symmetric 2D Gaussian distributions confirmed the presence of 5 entities. The 
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positions of these Gaussians coincide with the centers of red circles in Fig. 5G, and 

their volumes are reflected in the areas of the circles.  

At first glance, the spots 2-4 look too symmetric in respect to the main diagonal, 

which raises a suspicion of an artifact. Indeed, if the spot produced by a single group of 

proteins had an elliptic rather than circular symmetry, then two symmetric Gaussians 

would fit to it instead of one. However, scrambled protein abundance data gave a single 

central spot with a circular rather than elliptic symmetry (Fig. 5H). Moreover, the spot 1 

doesn’t have a symmetric counterpart. Therefore, entities 2-4 appear to be real.  

Entity 1 (“highly co-regulated”) composes 12% of the total number of (anti-) 

correlating protein pairs, encompassing pairs with a high co-regulation (average r=0.52). 

The top 300 protein pairs (r≥0.90) mapped to ribosome, MCM and condensin 

complexes, chaperonin-containing T-complex, NADH dehydrogenases, pyruvate 

dehydrogenase, tubulin superfamily as well as some integrins and spectrins. This 

component is centered above the diagonal, meaning that co-regulation is higher when 

the proteins are down-regulated than when they are upregulated. One explanation for 

the asymmetry is that down-regulated abundances can reach zero, whereas up-

regulations cannot reach infinity. However, the asymmetry is so pronounced that a 

biological reason is a strong possibility. Indeed, upregulation of proteins, being caused 

by protein overexpression, has no natural stopper, while down-regulation is to a large 

extent driven by protein degradation, which stops or slows down when only strongly 

bound stoichiometric complexes are left in the system. Thus degradation can provide 

better correlation between the abundances of the constituent proteins in these 

complexes. 

Entities 2-5 are all represented by Gaussians with very similar widths. Positive 

and negative components comprise 55% and 33% of total protein pairs, respectively. 

Entity 2 (“co-down-regulated”) corresponds to protein pairs which have better co-

regulation when down-regulated (average r=0.5) than when upregulated (average 

r=0.3).  

Entity 3 (“co-upregulated” proteins) is centered below the diagonal and 

encompasses proteins correlating better when upregulated (average r=0.5) than when 
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down-regulated (average r=0.28). Entities 2 and 3 account for 23% and 32% of 

correlating pairs, respectively. 

Entity 4 (“anti-correlating”) has a higher anti-correlation when protein A is down-

regulated (average r=-0.29 vs r=-0.46), while the above-diagonal entity 5 (“negatively 

regulated”) shows higher anti-correlation when protein A is upregulated (average r=-

0.45 vs r=-0.29). The frequency of protein pairs in these two entities are also almost 

equal (16% and 17% for entity 4 and 5, respectively).  

On the 2D distribution in Fig. 5F, a few protein pairs showed high anti-correlation 

in one direction and near-zero correlation in the other. For example, in the 50 protein 

pairs located on the left side of the plot (region 1’), 28 proteins (both “A” and “B” type) 

mapped to negative regulation of cellular processes (p<0.03). In region 2’, 11 “A” 

proteins from 50 pairs mapped to “cell cycle” (p<0.005), 5 “B” proteins mapped to 

“nucleotide excision repair” (p<2.1E-06) and 7 “B” proteins - to “cellular response to 

DNA damage stimulus” (p<0.022), exposing the former and the two latter pathways as 

potentially opposing ones (37). The region 4’ mapped onto “ribosome” (16/50 protein 

pairs, p<2.3E-15) and “ribosome biogenesis” (14 proteins, p<1.0E-12). 

Highly anti-correlating pairs of a protein can provide useful information. For 

example, the upregulated TRIM28 strongly (r<-0.61) anti-correlates with 34 proteins. 

These proteins map to focal adhesion (7 proteins, p<8.1E-06), and a recent study has 

indeed shown the direct involvement of TRIM28 in cell adhesion (38). Furthermore, the 

34 anti-correlating proteins map on ErbB signaling pathway (4 proteins, p<0.001), in line 

with TRIM28 directly interacting with ErbB4 and suppressing its transcriptional activity 

(39). Thus, the anti-correlation data can be used in parallel with co-regulation data for 

deciphering protein function in a given context. 
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Figure 5. Analyzing protein pairwise correlations. A, The overall correlation matrix of 

4,212 protein across all treatments. Vertical axis: break-down to 11 clusters. Note that 

the abundance of blue color (anti-correlations) is comparable with that of yellow color 

(positive correlations). B, The anti-correlation of TIGAR with NCAPG. C, The proteins 

co-regulating with TIGAR anti-correlate with NCAPG co-regulating proteins. The blue 

color reflects information present in StringDB and the red color reflects newly 

established links. D, The anti-correlation of up or down-regulated TIGAR vs. NCAPG 

(plots 1 and 2) and up- or down-regulated NCAPG vs. TIGAR (plots 3 and 4). E, Any 

two proteins give two pairs of correlations considering separately their up and down-

regulation states. F, Map of pairwise correlations between proteins A and B, separately 

for up- and down-regulations of protein A. The red circles reflect the positions and 

volumes of 5 fitted 2D Gaussians. The green boxes encompass protein pairs that 

strongly correlate or anti-correlate only when protein A is up- or down-regulated. G, 2D 

Gaussian fitting is best with 5 components. H, Similar analysis as in F using scrambled 

protein abundances gives a single central spot. J, The expression of GAPDH across the 

treatments. K, Distribution of standard deviations of 6,032 protein abundances across 

the treatments. L, Representative examples of proteins showing lowest or highest 

expression variability across the treatments. Data are represented as mean±SD.  

 

“Untouchable” proteome reflects essential cell functions  

There has been an extensive debate on which house-keeping proteins (HKPs) 

can be used as steady-level controls in molecular biology experiments (40). Recent 

research has shown that classic HKPs may actually change their expression under 

specific conditions (41). For example in our dataset, GAPDH, a popular HKP, exhibits 

stable levels for most treatments, but could not be a good control for studies with 

bortezomib and few other compounds (Fig. 5J). To identify the best steady-level 

controls, we investigated the protein expression variations by calculating standard 

deviations across all perturbations (Fig. 5K and Supplementary Table S11). The typical 

expression profile of the most steadily expressed and most variable proteins are 

depicted in Fig. 5L. The 100 most stable proteins belonged to proteasome (9 proteins, 
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p<2E-10), spliceosome (8 proteins, p<3E-05), and mRNA surveillance pathway (6 

proteins, p<0.001). On the other hand, the 30 most variable proteins mapped to cell 

cycle (5 proteins, p<0.001), FoxO signaling pathway (4 proteins, p<0.004) and p53 

signaling pathway (3 proteins, p<0.012).  

 

Increasing the analysis sensitivity by ignoring proximate compounds  

Molecules proximate to a compound of interest on the 2/3D maps and/or in 

hierarchical clusters represent a potential problem for OPLS-DA analysis, as they may 

share common targets or action mechanism. Contrasting these proximate compounds 

along with all other molecules against the compound of interest would downplay the 

common mechanism-related proteins. Therefore, removing proximate compounds from 

OPLS-DA model would increase the analysis specificity. Indeed, in the model built for 

docetaxel removing 5 proximate compounds significantly elevated the rankings for 

tubulin subunits, the known targets of this molecule. When docetaxel was contrasted 

with all other compounds in the original ProTargetMiner dataset, TUBB6, TUBA4A, 

TUBA1B, TUBB4B, TUBB3 and TUBB were found on 2nd, 8th, 15th, 25th, 46th and 47th 

positions, while in the reduced model, TUBB4B, TUBA1B, TUBB, TUBA4A, TUBB6, 

TUBA1A and TUBB8 were found on positions 1-7 and TUBA1C, TUBB2A, TUBB3 were 

on 9th, 26th and 34th positions, respectively. 

 

Miniaturizing the ProTargetMiner methodology 

In drug development, detailed characterization of compound-induced effects in 

the most relevant biological setting and cell type is desirable. Thus it would be 

advantageous to build a dataset similar to ProTargetMiner but with a customized drug 

panel and cell type. This however, will be both time-consuming and expensive. 

Miniaturization of the experiment requires determination of the minimal drug panel size 

for deducing the target and action mechanism. To address this issue, PLS-DA models 

were built in R by including different numbers of contrasting compounds in the model (n 

= 1-54, 50 molecule combinations randomized for each n). The mean rankings of the 
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known drug targets for representative compounds camptothecin, methotrexate, OSW-1 

and paclitaxel were determined for each number of contrasting drugs n. As expected, 

with higher n the deconvolution process was more successful for drug targets but not for 

random proteins (Fig. 6). Encouragingly, already 8-10 molecules in the drug panel were 

in most cases enough for target rankings below 10. 

 

Figure 6. Miniaturization of ProTargetMiner. Determination of the optimal number of 

contrasting molecules for efficient target deconvolution by FITExP using ProTargetMiner 

data. Four compounds were contrasted against 50 random combinations of 1-54 

compounds by PLS modeling and the mean ranking was calculated for each number. 

NDUFV2 and CARS2 were randomly chosen. 

 

Deep proteome validation analysis 

A repeated, deep proteome analysis was performed to confirm the consistency of 

the deduced drug targets and action mechanisms. To provide maximum diversity of the 
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proteome responses, each of the 9 drugs used in this experiment was chosen from a 

separate cluster in Fig. 2. In total, 94,061 peptides were quantified belonging to 8,898 

proteins, of which 8,308 proteins were defined by at least two peptides. After removing 

the missing values, 7,398 proteins were used for analysis (Supplementary Table S12). 

Interestingly, PCA showed 10 principal components, explaining from 28% of the data for 

the 1st component to 2.7% for the last component (Fig. 7A-B). This result confirmed the 

orthogonality of the death trajectories induced by the chosen drugs. 

The OPLS-DA models built for bortezomib and vincristine (Fig. 7C-D) yielded 

nearly identical target/mechanistic proteins as the models built using the main dataset 

(Fig. 3). In an OPLS model for dasatinib, 10 known targets (among 23 known targets in 

DrugBank derived from different studies) were confirmed (Fig. 7E). Importantly, at least 

five kinases were among the most specifically changed proteins, with MAPK14 being 

the most specifically down-regulated protein. These findings show that ProTargetMiner 

methodology can be successfully miniaturized and that the scheme can be applicable to 

kinase inhibitors in the state-of-the-art proteomics depth. 
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Figure 7. A deep proteomics validation set confirmed the ProTargetMiner findings. A, 

OPLS plot showing that compound signatures can be reproducibly separated (7398 

proteins). B, The existence of 10 orthogonal dimensions in PCA data and the 

contribution of each component. C, OPLS-DA plots for bortezomib (C), and vincristine 

(D) showing the specific upregulation of proteasome subunits for bortezomib and down-
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regulation of tubulin subunits for vincristine. E, OPLS-DA modeling revealed 5 known 

targets among top proteins for dasatinib. F, The OPLS-DA model contrasting nultin 

against 8 drugs. The highlighted DNA repair proteins were specifically down-regulated. 

G, DNA repair proteins identified in the OPLS-DA model showed a specific dip in 

expression for nutlin vs other compounds. H, Plotting the expression of MDM2 and p53 

showed that these proteins are most specific to nutlin. Data are represented as 

mean±SD. 

 

Specificity helps to identify subtle but biologically significant changes 

The case of nutlin illustrates the importance of using the specificity parameter as 

opposed to conventional differential regulation in determining drug mechanism. Nutlin 

has been found to slow down the DNA repair, probably through MDM2 mediated stalling 

of double strand break repair (42). While the 30 most down-regulated proteins by nutlin 

mapped to “cell cycle” (20 proteins, p<2E-15), the 30 most specifically down-regulated 

proteins extracted from the OPLS-DA model (Fig. 7F) gave “DNA repair” (9 proteins, 

p<2E-5). The regulation of these proteins across the drug panel shows a dip for nultin 

(Fig. 7G). The top DNA repair related protein APEX1 ranked 10th among the most 

specifically down-regulated proteins out of the total 7398 proteins in the OPLS model, 

while it was the 520th most down-regulated protein, exhibiting only a -41% abundance 

change. As the majority of the DNA repair proteins were only marginally regulated by 

nutlin, these proteins would be difficult if not impossible to attribute to the action 

mechanism without contrasting nutlin against other compounds. Also, both p53 and its 

negative regulator MDM2, the known nutlin target (43), exhibited higher specific 

response to nultin than to other compounds (Fig. 7H). These results unravel a potential 

approach to study subtle but biologically meaningful changes. 

 

Discussion 

We generated the first installment of a proteomics signature library for anticancer 

molecules, and proposed a modeling scheme that could be employed for deconvolution 
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of drug targets, action mechanism, resistance factors, overall cellular effects and more. 

We consider ProTargetMiner as a complement for preceding drug deconvolution 

databases, such as CMap (2,3). The OPLS-DA modeling used in ProTargetMiner can 

be hypothetically applied to transcriptomics data or to non-anti-cancer treatments, as 

long as the biological endpoints for all used compounds are similar, as in 

ProTargetMiner. We limited our discussion to cases in which a single drug is contrasted 

against many others, but the same approach can also be applied to characterize 

features shared among a selected class of compounds, or between any combinations of 

drugs. Such a methodology can also be applied to a panel of cell lines, e.g., inquiring 

which proteins specifically respond to a compound in a given cell line but not in other 

cell types. 

The 11 dimensions discovered in the ProTargetMiner dataset by factor analysis 

represent orthogonal pathways, theoretical constructs that do not necessarily resemble 

the classical pathways known to biologists from textbooks (44). The 2012 report of the 

Cell Death Nomenclature Committee recognized 13 distinct death modalities, while the 

2018 updated report recognized 14 death modalities. These numbers are not far from 

the dimensionality we discovered. The orthogonal pathways uncovered here deserve a 

detailed bioinformatics analysis, as they may hide novel death modalities. 

Our analysis showed clearly that performing simple differential expression and 

focusing on the top hits obscures subtle but specific compound-induced regulations. 

These levels of regulation are only accessible to high precision technologies. In 

proteomics, precision comes not only from the instrumental parameters, but also from 

post-processing such as factor analysis (45). We showed that specific regulations as 

small as 15% can be reliably assessed as the most characteristic changes for a given 

compound. Such level of precision would have been impossible several years ago, 

when the standard practice in proteomics recommended disregarding the regulations 

less than a factor of 1.5 or even 2. Such subtle but specific regulations could be 

approached here using the specificity concept through building OPLS-DA models that 

automatically take into account reproducibility, missing values and the change 

magnitude.  
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ProTargetMiner can be used for a variety of exploratory studies, only a few of 

which we have so far performed. Among yet to be explored opportunities is the 

discovery of novel biological pathways or gene function elucidation at the protein level. 

These studies can be done based on the proteomics co-regulation database. Our 

analysis also revealed a host of anti-correlating protein pairs, which can be biologically 

meaningful. An unexpected discovery was the number of anti-correlations (spots 4 & 5 

on Fig. 5F), reaching 3/5 of that of positive correlations (spots 2&3). Being largely 

ignored currently in bioinformatics analysis, these anti-correlations represent an 

untapped wealth of important biological information. Furthermore, the dataset allows 

one to identify proteins that can serve as HKPs in molecular biology experiments. 

This resource is expandable in various dimensions, e.g., by incorporating more 

perturbations, time points, and profiling more cell lines. Although expansion of the 

compound library seems desirable, one must consider that for a comprehensive 

database, enough perturbations must be done to saturate all possible cellular states. 

Ideally, highly specific inhibitors of every cellular protein are required. But given the 

astronomical number of potential perturbants, building a truly comprehensive library is 

an open-end project.  

While precision medicine targets specific cell types with defined mutations, 

building a comprehensive proteome response database for every such cell type is 

impossible. Fortunately, as we have shown, ProTargetMiner approach can be easily 

customized and miniaturized. With top-of-the-line proteomics instruments reaching the 

depth of ≥10,000 proteins (46), a triplicate analysis of 9 perturbations can be performed 

in less than a week. 

The steady-expression part of the proteome represents one of the biggest 

puzzles uncovered in this work. Would targeting these proteins result in inevitable cell 

demise? In this case, this “untouchable” proteome may represent a collection of 

potential antiproliferation targets. As of April 2018, only PSMB1 and KHSRP are 

indicated as the target of FDA approved anticancer drugs in DrugBank among the top 

50 untouchable proteins, while PSMA1 and 5 as well as SF3A3 are targets for 
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experimental compounds. How many more potential targets does this enigmatic group 

of proteins hide? 

 Summarizing, ProTargetMiner is a novel tool with significant potential in drug 

discovery, which can be useful to broad community of cancer researchers.  
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Materials and Methods  

Compounds 

The initial drug library consisted of 118 molecules cherry-picked for cancer from 

Selleckchem FDA-approved drug library. AXL inhibitor TP-0903 was bought from 

Selleckchem (Cat#S7846) and auranofin from Sigma (Cat#A6733).  

A549 Cell culture 

Human A549 cells (Sigma, USA; RRID:CVCL_0023; Cat#86012804), established 

from lung carcinomatous tissue from a 58-year-old Caucasian male, were obtained in 

September 2015. Low passage numbers (n<10) were used in all the experiments from 

frozen aliquots of the same source (passage number 2). Cells were routinely tested for 

presence of mycoplasma every month using the MycoAlert Mycoplasma Detection Kit 

(Fischer Scientific; Cat#11650261). Cells were grown in DMEM medium (Fisher 

Scientific; Cat#11625200) supplemented with 10% FBS (Fisher Scientific; 

Cat#11560636), 2 mM L-glutamine (Fisher Scientific; Cat#BE17-605E) and 100 

units/mL of penicillin/streptomycin (Thermo Fisher; Cat#15140122) and incubated at 37 

°C in 5% CO2. In LC50 determination, cells were seeded at a density of 4000/well in 96 
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well plates and after a day of growth, treated with the molecules for 48 h. Thereafter cell 

viability was measured using CellTiter-Blue® Cell Viability Assay (Promega; 

Cat#G8081) according to the manufacturer protocol.  

Proteomics 

For proteomics analysis, the cells were seeded at a density of 250k per well and 

allowed to grow for 24 h in biological triplicates. Next, cells were either treated with 

vehicle (DMSO) or compounds at LC50 concentrations. Each 10 experiments included 

one vehicle-treated control, 3 control drugs and 6 library compounds. After treatment, 

cells were collected, washed twice with PBS (Fisher Scientific; Cat#11629980) and then 

lysed using 8 M urea (Sigma; Cat#U5378), 1% SDS, and 50 mM Tris at pH 8.5 with 

protease inhibitors (Sigma; Cat #05892791001). The cell lysates were subjected to 1 

min sonication on ice using Branson probe sonicator and 3 s on/off pulses with a 30% 

amplitude. Protein concentration was then measured for each sample using a BCA 

Protein Assay Kit (Thermo; Cat#23227). 50 µg of each sample was reduced with DTT 

(final concentration 10 mM) (Sigma; Cat#D0632) for 1 h at room temperature. 

Afterwards, iodoacetamide (IAA) (Sigma; Cat#I6125) was added to a final concentration 

of 50 mM. The samples were incubated in room temperature for 1 h in the dark, with the 

reaction being stopped by addition of 10 mM DTT. After precipitation of proteins using 

methanol/chloroform, the semi-dry protein pellet was dissolved in 25 µL of 8 M urea in 

20 mM EPPS (pH 8.5) (Sigma; Cat#E9502) and was then diluted with EPPS buffer to 

reduce urea concentration to 4 M. Lysyl endopeptidase (LysC) (Wako; Cat#125-05061) 

was added at a 1 : 100 w/w ratio to protein and incubated at room temperature 

overnight. After diluting urea to 1 M, trypsin (Promega; Cat#V5111) was added at the 

ratio of 1 : 100 w/w and the samples were incubated for 6 h at room temperature. 

Acetonitrile (Fisher Scientific; Cat#1079-9704) was added to a final concentration of 

20% v/v.  

TMT10 reagents (Thermo; Cat#90110) were added 4x by weight to each sample, 

followed by incubation for 2 h at room temperature. The reaction was quenched by 

addition of 0.5% hydroxylamine (Thermo Fisher; Cat#90115). Samples were combined, 

acidified by trifluoroacetic acid (TFA; Sigma; Cat#302031-M), cleaned using Sep-Pak 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 18, 2018. ; https://doi.org/10.1101/421115doi: bioRxiv preprint 

https://doi.org/10.1101/421115
http://creativecommons.org/licenses/by-nc-nd/4.0/


 32

(Waters; Cat#WAT054960) and dried using a DNA 120 SpeedVac™ concentrator 

(Thermo).  

Samples were then resuspended in 0.1% TFA, and separated into 8 fractions 

using High pH Reversed-Phase Peptide Fractionation Kit (Thermo; Cat#84868). After 

resuspension in 0.1% FA (Fisher Scientific), each fraction was analyzed with a 90 min 

gradient in randomized order.  

The deep proteome validation samples (tags assigned in Supplementary Table 

S2) were prepared according to the above protocol until the multiplexing, cleaning and 

drying steps, after which the samples were resuspended in 20 mM ammonium 

hydroxide and separated into 96 fractions on an XBrigde BEH C18 2.1x150 mm column 

(Waters; Cat#186003023), using a Dionex Ultimate 3000 2DLC system (Thermo 

Scientific) over a 48 min gradient of 1-63%B (B=20 mM ammonium hydroxide in 

acetonitrile) in three steps (1-23.5%B in 42 min, 23.5-54%B in 4 min and then 54-63%B 

in 2 min) at 200 µL/min flow. Fractions were then concatenated into 16 samples in 

sequential order (e.g. 1,17,33,49,65,81). After drying and resuspension in 0.1% formic 

acid (FA) (Fisher Scientific), each fraction was analyzed with a 90 min gradient (total 

method time = 110 min) in random order.  

LC-MS analysis 

Samples were loaded with buffer A (0.1% FA in water) onto a 50 cm EASY-Spray 

column (75 µm internal diameter, packed with PepMap C18, 2 µm beads, 100 Å pore 

size; Cat#ES803) connected to the EASY-nLC 1000 (Thermo; Cat#LC120) and eluted 

with a buffer B (98% ACN, 0.1% FA, 2% H2O) gradient from 2% to 35% of at a flow rate 

of 250 nL/min. Mass spectra were acquired with an Orbitrap Q Exactive Plus mass 

spectrometer (Thermo; Cat# IQLAAEGAAPFALGMBDK) in the data-dependent mode at 

a nominal resolution of 30,000, in the m/z range from 375 to 1400. Peptide 

fragmentation was performed via higher-energy collision dissociation (HCD) with energy 

set at 35 NCE.  

For deep proteomics validation set, samples were loaded with buffer A (0.1% FA 

in water) onto a 50 cm EASY-Spray column (75 µm internal diameter, packed with 

PepMap C18, 2 µm beads, 100 Å pore size) connected to a nanoflow Dionex UltiMate 
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3000 UPLC system (Thermo) and eluted in an increasing organic solvent  gradient from 

2% to 26% (B: 98% ACN, 0.1% FA, 2% H2O) at a flow rate of 300 nL/min. Mass spectra 

were acquired with a Q Exactive HF mass spectrometer (Thermo; 

Cat#IQLAAEGAAPFALGMBFZ) in data-dependent mode at a nominal resolution of 

60,000 (@200 m/z), in the mass range from 350 to 1500 m/z. Peptide fragmentation 

was performed via higher-energy collision dissociation (HCD) with energy set at 33 

NCE.  

Protein identification and quantification 

The raw data from LC-MS were analyzed by MaxQuant, version 1.5.6.5 

(RRID:SCR_014485) (47). The Andromeda engine searched MS/MS data against 

Uniprot complete proteome database (human, version UP000005640_9606, 92957 

entries). Cysteine carbamidomethylation was used as a fixed modification, while 

methionine oxidation was selected as a variable modification. Trypsin/P was selected as 

enzyme specificity. No more than two missed cleavages were allowed. A 1% false 

discovery rate was used as a filter at both protein and peptide levels. For all other 

parameters, the default settings were used.  

Statistical analysis 

After removing all the contaminants, only proteins with at least two peptides were 

included in the final dataset. Protein abundances were normalized by the total protein 

abundance in each sample. Data were processed by Excel, R, Python, and SIMCA 

(Version 15, UMetrics, Sweden; RRID:SCR_014688).  

Protein correlation analysis 

Relative protein abundances in log2-scale were reported by Diffacto (45) and subject to 

batch effect removal using the Limma package (48). We excluded 345 proteins that 

were quantified in less than 30 individual LC-MS/MS runs, and averaged the protein 

abundances from replicate experiments for each individual drug treatment. Afterwards, 

a 4212-by-4212 correlation matrix was calculated. Two-tail p-values associated with the 

Pearson’s correlation coefficients were calculated based on t-distribution, and were 

subjected to the Benjamin-Hochberg procedure for controlling false discovery rate 
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(FDR). A cutoff of FDR-adjusted p-value < 0.001 was applied to select strongly 

correlating or anti-correlation protein pairs. Considering the correction of in total 

17,740,944 (4212x4212) p-values, the FDR cutoff is rather stringent 

Network mapping 

STRING version 10.5 (http://string-db.org) tool was employed for protein network 

analysis (49). Medium confidence threshold (0.4) was used to define protein-protein 

interactions. Enrichment analysis with the whole genome as a background dataset was 

used to identify the enriched gene ontology terms and pathways. 

Data availability  

The LC-MS/MS raw data files are deposited in the jPOST repository of the 

ProteomeXchange Consortium under the dataset identifier PXD009775 (original 

ProTargetMiner data) and PXD009644 (deep proteomics validation set) (50). The 

extracted protein abundances data and relevant outputs of data analysis are provided in 

supplementary tables cited in the text. 
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Supplemental Figures  

 

Figure S1. ProTargetMiner reveals compound effect on protein complexes and might 

be applicable to kinase inhibitors. A, Pyrimidine analogues lead to ribosomal biogenesis 
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stress and cell death. Oxaliplatin, an alkylating agent produced a similar effect. B, PCA 

analysis demonstrating that the regulation data of 68 kinases can separate kinase 

inhibitors from the rest of the library to some extent, especially from proteasome and 

topoisomerase inhibitors. 
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Figure S2. ProTargetMiner yields molecular information for kinase inhibitors that could 

be mechanistically relevant. A, Upregulation of proteins involved in cholesterol and lipid 

metabolism in response to lapatinib and gefitinib. B, Representative examples of such 

upregulated proteins in the panel of drugs demonstrate that several kinase inhibitors 

upregulate proteins in these pathways. C, Models contrasting sorafenib and regorafenib 

against 44 other compounds, showing the specific upregulation of AXL upon treatment 

of A549 cells (note the upregulation of EGFR by sorafenib). D, Treatment of cells with 

non-cytotoxic concentrations of TP0903, a specific and nanomolar AXL inhibitor, 

sensitized A549 cells to the effect of sorafenib and regorafenib in 24 and 48h (*p<0.05, 

**p<0.005). Data are represented as mean±SD. 
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Figure S3. The extent of proteome deviation induced by each compound and complex-

specific effects of compounds. A, Simple calculation of the number of differentially 

regulated proteins shows the proteo-active compounds and the extent of proteome 

change for each molecule B, Mean specific regulation of 74 ribosomal proteins for 

compound panel, showing the effect of the highlighted compounds on ribosome 

biogenesis. C, Mean specific regulation of 66 mitochondrial ribosomal proteins for 

compound panel, showing the effect of highlighted compounds on this complex. D, 

Mean specific regulation of 40 proteasome subunits for the panel of compounds. 

Proteasome inhibitors have been highlighted. E, The average regulation of proteasome 

subunits in the panel of compounds, demonstrating that ProTargetMiner can detect 

effects as subtle as 15% fold change (the effect is even mitigated due to inclusion of all 

proteasome subunits). PCA analyses of compounds based on (F) 74 ribosomal 

proteins, (G) 57 mitochondrial ribosomal proteins and (H) 38 proteasome subunits with 

no missing values in the ProTargetMiner dataset. The analysis clearly shows the effect 

of selected compounds on these complexes and indicates that specific proteome 

subsets are useful in differentiating compound effects. Data are represented as 

mean±SD. 
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Figure S4. ProTargetMiner co-regulation database can pull out functionally coherent 

groups of genes. A, The association of top 2500 co-regulated pairs (many were 

redundant due to presence in the same complexes), mostly representing proteins from 

the same complexes or pathways. The number of (B) co-regulating and (C) anti-

correlating partners for each protein vs and their highest correlation. 
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Supplemental tables 

Table S1. Compounds, curated targets from DrugBank and class assignments.  

Drug name Targets Class 
Axitinib FLT1, FLT4, KDR Kinase inhibitor 
Lapatinib ERBB2, EGFR Kinase inhibitor 
Crizotinib ALK, MET Kinase inhibitor 
Regorafinib FLT1, KDR, FLT4, KIT, PDGFRA, PDGFRB, FGFR1, FGFR2, 

DDR2, TEK, NTRK1, RAF1, EPHA2, MAPK11, BRAF, FRK, 
ABL1, RET 

Kinase inhibitor 

Ruxolitinib JAK1, JAK2 Kinase inhibitor 
Afatinib ERBB2, ERBB4, EGFR Kinase inhibitor 
Cabozantinib  MET, RET, KDR kinase inhibitor 
Ponatinib BCR, ABL1, KIT, RET, TEK, FLT3, FGFR1, FGFR2, FGFR3, 

FGFR4, LCK, SRC, LYN, KDR, PDGFRA 
kinase inhibitor 

Sorafenib RAF1, BRAF, FLT4, KDR, FLT3, PDGFRB, KIT, FGFR1, RET, 
FLT1, 

kinase inhibitor 

Bosutinib LYN, BCR, ABL1, HCK, SRC, CDK2, MAP2K1, MAP3K2, 
MAP2K2, CAMK2G 

kinase inhibitor 

Sunitinib PDGFRB, FLT1, KIT, KDR, CSF1R, FLT4, FLT3, PDGFRA kinase inhibitor 
Dasatinib ABL1, SRC, EPHA2, LCK, YES1, KIT, PDGFRB, STAT5B, ABL2, 

FYN, BTK, NR4A3, BCR, CSK, EPHA5, EPHB4, FGR, FRK, 
HSPA8, LYN, ZAK, MAPK14, PPAT 

kinase inhibitor  

Apatinib KDR (VEGFR2) kinase inhibitor 
Gefitinib EGFR kinase inhibitor 
Vemurafenib BRAF kinase inhibitor 
OSI-420 EGFR kinase inhibitor 
Nilotinib KIT, ABL1 Kinase inhibitor 
Pazopanib  FLT1, KDR, PDGFRA, PDGFRB, FLT4, FGFR3, KIT, FGF1, ITK, 

SH2B3 
Kinase inhibitor 

Vismodegib SMO  Hedgehog signaling pathway 
Azacitidine DNMT1, nucleotide DNA methyltransferase inhibitor   
Everolimus mTOR mTOR inhibitor 
Temsirolimus mTOR mTOR inhibitor 
Fludarabine  POLA1, RRM1, DCK, nucleotide Antimetabolite 
Oxaliplatin Nucleotide Antimetabolite 
5-fluorouracil TYMS, Nucleotide Antimetabolite  
Methotrexate DHFR Antimetabolite 
Raltitrexed FPGS, TYMS Antimetabolite 
Carmofur TYMS and AC (acid ceramidase) inhibitor Antimetabolite 
Floxuridine TYMS Antimetabolite 
8-azaguanine PNP Antimetabolite 
Vincristine TUBB, TUBA4A Tubulin polymerization inhibitors 
2-
methoxyestradiol 

HIF1A, COMT, CYP1A1, CYP1B1, CYP19A1 Tubulin polymerization inhibitors 

Paclitaxel BCL2, TUBB1, NR1I2, MAP4, MAP2, MAPT Tubulin depolymerization inhibitors 
Docetaxel TUBB1, bcl2, MAP2, MAP4, MAPT, NR1I2 Tubulin depolymerization inhibitors 
Genistein ESR2, ESR1, TOP2A, PTK2B, NCOA2, NCOA1 Topoisomerase II inhibitor, protein kinase 

inhibitor 
Epirubicin CHD1, TOP2A, nucleotide Topoisomerase II inhibitor, DNA 

intercalation 
Doxorubicin TOP2A, Nucleotide Topoisomerase II inhibitor, DNA alkylating 
Etoposide TOP2A, TOP2B Topoisomerase II inhibitor 
Idarubicin TOP2A, Nucleotide Topoisomerase II inhibitor, DNA alkylating 
Lomustine STMN4, nucleotide Alkylating agent 
Teniposide TOP2A Topoisomerase II inhibitor 
Topotecan TOP1MT, TOP1, nucleotide Topoisomerase I inhibitor 
Irinotecan TOP1, TOP1MT Topoisomerase I inhibitor 
Camptothecin TOP1 Topoisomerase I inhibitor 
Mitotane CYP11B1, FDX1 Unknown, peripheral metabolism of 

steroids and adrenocortical steroid 
inhibitor 

RITA MDM2  MDM2 inhibitor 
Nutlin MDM2-p53 interaction MDM2 inhibitor 
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Enzalutamide AR (androgen receptor) Androgen receptor inhibitor 
Bleomycin LIG1, LIG3, nucleotide Induction of DNA strand breaks 
Bortezomib PSMB5, PSMB1 Proteasome inhibitor 
b-AP15 UCHL5, USP14 Proteasome deubiquitinase inhibitor 
Auranofin TrxR1, PRDX5, IKBKB, (USP14 and UCHL5 inhibition has also 

been seen) 
Thioredoxin reductase 1 inhibitor, 
proteasome deubiquitinase inhibitor 

TRi-1 TrxR1 Thioredoxin reductase 1 inhibitor 
TRi-2 TrxR1 Thioredoxin reductase 1 inhibitor 
Tomatine Acetylcholinesterase, membrane disruption Unknown, disruption of membrane, 

potential inhibition of the proteasome 
OSW-1 OSBP1 Unknown, OSBP binder 

 

 

 

 

 

Table S2. TMT-10 multiplexing information for the ProTargetMiner experiments.  

 Experiment 
1 

Experiment  
2 

Experiment 
3 

Experiment 
4 

Experiment 
5 

Experiment 
6 

Experiment 
7 

Experiment 
8 

Experiment 
9 

Deep 
validation 
experiment 

126 5-fluorouracil Regorafenib Vismodegib Cabozantinib Fludarabine - Idarubicin Carmofur OSW-1 Control 
127N Methotrexate Methotrexate Methotrexate Methotrexate Methotrexate Methotrexate Methotrexate Methotrexate Methotrexate 8-azaguanine 
127C Paclitaxel Paclitaxel Paclitaxel Paclitaxel Paclitaxel Paclitaxel Paclitaxel Paclitaxel Paclitaxel Raltitrexed 
128N Doxorubicin Afatinib Axitinib Ponatinib Sunitinib Etoposide  Temsirolimus Genistein Auranofin Topotecan 
128C Irinotecan Bortezomib Nilotinib Everolimus Dasatinib Gefitinib Enzalutamide Bleomycin TRi-1 Floxuridine 
129N Camptothecin Camptothecin Camptothecin Camptothecin Camptothecin Camptothecin Camptothecin Camptothecin Camptothecin Nutlin 
129C RITA Ruxolitinib Crizotinib Sorafenib Docetaxel Oxaliplatin  Vemuratenib 8-Azaguanine TRi-2 Dasatinib 
130N Nutlin Azacitidine Topotecan Bosutinib Lomustine Mitotane OSI-420 Floxuridine b-AP15 Gefitinib 

130C Raltitrexed Pazopanib Lapatinib Epirubicin Vincristine  Apatinib Teniposide 2-
methoxyestra
diol 

Tomatine Vincristine 

131 Control Control Control Control Control Control Control Control Control Bortezomib 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 18, 2018. ; https://doi.org/10.1101/421115doi: bioRxiv preprint 

https://doi.org/10.1101/421115
http://creativecommons.org/licenses/by-nc-nd/4.0/


 46

Table S5. The pathway analysis of most contributing proteins to 11 dimensions in the 

ProTargetMiner dataset. Top proteins contribute when up-regulated. Bottom proteins 

contribute when down-regulated.  

Factor 
number 

30 top proteins (KEGG, 
top 2 pathways) 

30 top proteins 
(Biological processes, top 
2 pathways) 

30 bottom proteins 
(KEGG, top 2 pathways) 

30 bottom proteins 
(Biological processes, 
top 2 pathways) 

1 -p53 signaling pathway 
-Cell cycle 

-Response to abiotic 
stimulus 
-Response to toxic 
substance 

-Progesterone-mediated 
oocyte maturation 
-Oocyte meiosis 

-Cell division 
-Mitotic cell cycle process 

2 -Focal adhesion 
-ECM-receptor interaction 

-Anatomical structure 
formation involved in 
morphogenesis 
-Angiogenesis 

-Oxidative 
phosphorylation 
-Pyrimidine metabolism 

-Cell division 
-Mitotic cell cycle 

3 - -Catalytic activity 
-Fructokinase activity 

-Biosynthesis of 
unsaturated fatty acids 
-Fatty acid metabolism 

-Nucleosome positioning 
-Chromatin assembly 

4 -Cholesterol metabolic 
process 
-Cholesterol biosynthetic 
process 

-Transmembrane amino 
acid transporter protein 
-Autophagy protein Atg8 
ubiquitin like 

- -Cellular component 
organization 
-Nucleosome assembly 

5 - 
Keratins present 

- 
Keratins present 

- - 

6 -Mitochondrial DNA 
metabolic process 
-Negative regulation of 
macromitophagy 
(Ferritin like superfamily 
present) 

-p53 signaling pathway 
-Proteoglycans in cancer 
(Ferritin like superfamily 
present) 

- -Cell division 
-Cell cycle process 

7 - - - - 
8 - -Positive regulation of 

metabolic process 
-Positive regulation of 
biological process 

- -Mitotic cell cycle 
-Nuclear division 

9 - - - -Centralspindlin complex 
-Pre-autophagosomal 
structure 

10 -p53 signaling pathway - -Systemic lupus 
erythematosus 
-Alcoholism 

-Chromatin assembly 
-Protein-DNA complex 
assembly 

11 -Steroid biosynthesis 
-Terpenoid backbone 
biosynthesis 

-Cholesterol biosynthetic 
process 
-Cholesterol metabolic 
process 

- -Cell division 
-Mitotic cell cycle 
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Supplementary Table legends: 

Table S1. Compounds, curated targets from DrugBank and class assignments.  

Table S2. TMT-10 multiplexing information for the ProTargetMiner experiments.  

Table S3. The original ProTargetMiner dataset with 56 drugs.  

Table S4. The contribution of all proteins to the 11 dimensions found in the ProTargetMiner 

dataset using Factor analysis.  

Table S5. The pathway analysis of most contributing proteins to 11 dimensions in the 

ProTargetMiner dataset. Top proteins contribute when up-regulated. Bottom proteins contribute 

when down-regulated.  

Table S6. The specificity of each protein in response to each compound against all other 

compounds in OPLS models.  

Table S7. The constituent proteins and enriched pathways in the 4212 x 4212 protein-protein 

correlation matrix.  

Table S8. The co-regulated and anti-correlating protein pairs below FDR<0.001 across the 

perturbations in ProTargetMiner. The second tab represents proteins with no strong correlation 

with any other protein.  

Table S9. The external payload data (nodes as well as positive and negative edges) for 

ProTargetMiner co-regulation and anti-correlation database which can be uploaded to the 

StringDB.  

Table S10. Protein A vs. B correlations calculated separately for above and below the median 

abundance of protein A, in ProTargetMiner.  

Table S11. Standard deviations of protein expression across all perturbations in ProTargetMiner 

(untouchable and variable proteomes).  

Table S12. The deep proteomics validation dataset with 9 drugs.  
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