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Abstract 
 
BACKGROUND: Individuals at high risk schizophrenia may benefit from early intervention but 
few validated risk predictors are available. Genetic profiling is one approach to risk stratification 
that has been extensively validated in research cohorts, but its utility in clinical settings remains 
largely unexplored. Moreover, the broad health consequences of a high genetic risk of 
schizophrenia are poorly understood, despite being highly relevant to treatment decisions.  
 
METHODS: We used electronic health records of 91,980 patients from three large healthcare 
systems to evaluate the penetrance and pleiotropy of genetic risk for schizophrenia. Polygenic 
risk scores (PRSs) for schizophrenia were calculated from meta-analysis summary statistics and 
tested for association with schizophrenia diagnostic codes and 1338 code-defined disease 
categories in a phenome-wide association study. Effect estimates were meta-analyzed across 
sites, and follow-up analyses evaluated the effect of a schizophrenia diagnosis.  
 
RESULTS: PRSs were robustly associated with schizophrenia (odds ratio per standard deviation 
increase in PRS = 1.65 [95% confidence interval (CI), 1.5-1.8], p = 1.25 x 10-16) and patients in 
the highest risk decile of the PRS distribution had a four-fold increased odds of schizophrenia 
compared to those in the bottom decile (95% CI, 2.4-6.5, p =	4.43 x 10-8). PRSs were also 
associated with other psychiatric phenotypes, including anxiety disorders, bipolar disorder, 
depression, substance use disorders, personality disorders, and suicidal behavior. Non-
psychiatric associations included heart palpitations, urinary syndromes, obesity, and nonspecific 
somatic symptoms. Most associations remained significant when conditioning on a diagnosis of 
schizophrenia, indicating genetic pleiotropy. 
 
CONCLUSIONS: We demonstrate that an available measure of genetic risk for schizophrenia is 
robustly associated with schizophrenia in healthcare settings and has pleiotropic effects on 
related psychiatric disorders as well as other medical symptoms and syndromes. Our results 
provide an initial indication of the opportunities and limitations that may arise with the future 
application of PRS testing in healthcare systems.  
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Psychiatric disorders are common and responsible for an enormous burden of suffering1,2. 
Approximately 18% of individuals globally suffer from mental illness every year3, 44.7 million 
of whom live in the US4. Early detection and intervention for serious mental illness is associated 
with improved outcomes5–10. However, few reliable predictors of risk or clinical outcomes have 
been identified, limiting the ability to offer early intervention or targeted treatment strategies. 
Given the substantial heritability of many psychiatric disorders11 and their polygenic 
architecture12, there is increasing interest in using quantitative measures of genetic risk for risk 
stratification13. Polygenic risk scores (PRSs), in particular, are easy and inexpensive to generate 
and can be applied well before illness onset, making them a promising candidate for clinical 
integration14. In fact, a recent study investigating the clinical utility of PRSs for several common, 
non-psychiatric diseases found that PRS can identify a larger fraction of high risk individuals 
than are identified by clinically-validated monogenic mutations, and called explicitly for 
evaluations of these scores in clinical settings15. 

To date, PRSs for neuropsychiatric disorders have primarily been validated in highly 
ascertained research samples. Typically, cases have obtained a diagnosis through expert clinician 
interviews standardized across the study, and controls have no psychiatric history (i.e., “clean” 
cases and controls). In order to bring PRSs to the clinic, however, they must first be validated as 
predictors of clinical diagnoses in real-world clinical settings, where data are often much 
messier. Among psychiatric disorders, schizophrenia is perhaps the best candidate for clinical 
integration of PRS profiling as it is highly heritable and a PRS for schizophrenia has been shown 
to explain a greater proportion of phenotypic variance (7%)16 compared to those for other 
psychiatric disorders. Accordingly, we selected the schizophrenia PRS for the present study as it 
is currently the most viable test case for clinical validation of a psychiatric PRS.  

We recently established the PsycheMERGE consortium within the NIH-funded 
Electronic Medical Records and Genomics (eMERGE) Network17,18 to leverage electronic health 
record (EHR) data linked to genomic data to facilitate psychiatric genetic research19. In this first 
report from PsycheMERGE, we evaluate the performance of a schizophrenia PRS generated 
from summary statistics published by the Psychiatric Genomics Consortium16 using EHR data on 
more than 90,000 patients from three large healthcare systems (Partners Healthcare System, 
Vanderbilt University Medical Center, and Geisinger Health System). We assessed the relative 
and absolute risk for schizophrenia among individuals at the highest level of genetic risk and 
considered the clinical utility of the PRS for risk stratification. We also examined pleiotropic 
effects of the schizophrenia PRS with real-world clinical data by conducting a phenome-wide 
association study (PheWAS) of 1338 disease categories. To our knowledge this is the first effort 
to combine PheWAS effects across multiple hospital-based biobanks.  

Finally, we conducted follow-up analyses to characterize the nature of the pleiotropic 
effects of the schizophrenia PRS. Cross-phenotype associations of polygenic liability to 
schizophrenia may occur in at least two scenarios20. In the first (“biological pleiotropy”), the 
PRS contributes independently to multiple phenotypes. In the second scenario (“mediated 
pleiotropy”), the PRS increases liability to a second disorder that occurs as a consequence of 
schizophrenia itself. For example, an association between schizophrenia polygenic risk and 
diabetes could occur because individuals diagnosed with schizophrenia are more likely to have 
both elevated schizophrenia PRS and to be prescribed antipsychotic medications which may 
result in weight gain and increased liability to diabetes. In this case, the observed relationship 
between schizophrenia risk and diabetes is mediated by the use of antipsychotic medication to 
control clinical symptoms. These scenarios may be difficult to completely disentangle. However, 
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it is possible to use EHR data to determine whether associations with genetic risk for 
schizophrenia persist after conditioning on a clinical diagnosis of schizophrenia or related 
psychosis.  
 
Methods 
 
Hospital-based Biobanks 
 Patients that consented to participate in one of three large healthcare system-based 
biobanks – the Vanderbilt University Medical Center (VUMC) biobank (BioVU)21, the MyCode 
Community Health Initiative at the Geisinger Health System (GHS)22, or the Partners Healthcare 
System (PHS) biobank23 – and had available EHR and genotype data were included in these 
analyses. Only patients of European-American ancestry with genetic data that met standard 
quality control thresholds were retained to reduce any effects of population stratification or 
genotyping error on the subsequent analyses (see Quality Control of Genetic Data). Our final 
sample included 18,370 patients from VUMC, 56,926 patients from GHS, and 16,684 patients 
from PHS (91,980 total participants). All patients gave informed consent for biobank research 
and IRB approval was obtained at each site.  
 
Quality Control of Genetic Data 
 Samples were genotyped, imputed, and cleaned at each site individually, the details of 
which are described in Supplementary Methods. However, quality control procedures at each site 
followed a similar standard pipeline. DNA from blood samples obtained from biobank 
participants were assayed using Illumina bead arrays (OmniExpress Exome, MEGA, MEGAEX, 
or MEG BeadChips) containing approximately one to two million markers. Samples at each site 
were genotyped in multiple batches, and in some cases, batches used different arrays. Indicators 
for genotyping platform and batch were included as covariates in the analyses. As described in 
Supplementary Methods, single nucleotide polymorphisms (SNPs) were excluded using filters 
for call rate, minor allele frequency, violations of Hardy-Weinberg equilibrium, batch effects, 
and heterozygosity. Individuals were excluded for excessive missing data or sex errors; a random 
individual from any pair of related individuals was also excluded. Principal components were 
used to identify individuals of European ancestry. SNPs that passed this initial phase of quality 
control were imputed using a 1000 Genomes reference panel and then converted to best guess 
genotypes where only high-quality markers were retained (INFO > .9). Ten principal 
components were generated within the European sample to use as ancestry covariates in all 
subsequent analyses.  
 
Polygenic Risk Scores 
 In order to quantify genetic risk for schizophrenia, we calculated PRSs using summary 
statistics from the most recent available genome-wide association study (GWAS) of 
schizophrenia from the Psychiatric Genomics Consortium16. These summary statistics included 
odds ratios (ORs) for 9,444,230 variants; we excluded variants from this list on the X 
chromosome and, at each site, clumped SNPs based on association p-value (the variant with the 
smallest p-value within a 250kb range was retained and all those in linkage disequilibrium, r2 > 
.1, were removed). The resulting SNP lists included 117,774 variants at VUMC, 166,477 at PHS, 
and 247,698 at GHS. Using all available variants (i.e., using a p-value threshold of 1.0 for 
inclusion), we generated PRSs for each individual by summing all risk-associated common 
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variants (minor allele frequency >1%) across the genome, each weighted by the log(OR) for that 
allele from the GWAS. PRSs were converted to z-scores within each healthcare system to 
standardize effects across all sites. All analyses were run in R, version 3.4.3; LD clumping and 
PRS generation were done using PRSice24. 
 
EHR-derived Phenotypes 
 EHRs contain thousands of diagnostic billing codes from the International Classification 
of Diseases, 9th and 10th editions (ICD-9/10) which are arranged hierarchically. For example, 295 
is ‘schizophrenic disorders’, 295.1 is ‘disorganized type schizophrenia’, and 295.12 is 
‘disorganized type schizophrenia, chronic state’; in total, the 295 category contains 71 individual 
ICD-9 codes. To define case status for a variety of diseases, we extracted all ICD-9 codes 
available for participating subjects and grouped codes into 1645 disease categories (called 
‘phecodes’) using a hierarchical structure previously developed and validated25,26. For 
“schizophrenia and other psychotic disorders”, for example, 89 individual ICD-9 codes were 
mapped to this disease category – all 71 ICD-9 295 codes and 18 related codes (e.g., 298.9, 
unspecified psychosis). Because a validated structure that incorporates ICD-10 codes has not yet 
been developed, we restricted our analyses to ICD-9 codes.  

Cases and controls were designated for each phecode. Individuals with two or more 
relevant ICD-9 codes were considered a case, those with zero relevant codes were considered a 
control, and individuals with only one code were excluded27. To enable analyses of phenome-
wide diagnoses that may have varying ages of onset, we did not restrict the age range of 
participants. The number of patients (cases and controls) included in the PheWAS varied 
depending on the prevalence of single-code individuals, but ranged from 79.0%– 99.9% of total 
patients at each site. Phecodes for which there were fewer than 100 cases were excluded from the 
PheWAS.  
 
Statistical Analyses 

Penetrance of schizophrenia PRS in healthcare systems. To assess the penetrance of 
schizophrenia PRS, we calculated case prevalence for schizophrenia (phecode 295.1) and 
psychotic disorders (phecode 295) as a function of PRS. At each site, we estimated the odds 
ratios for both phecodes in the highest decile relative to the lowest, as well as to the remaining 
sample. Cross-site odds ratios were calculated by combining the log(OR) across healthcare 
systems through fixed-effect inverse variance-weighted meta-analysis using the metafor R 
package (https://cran.r-project.org/web/packages/metafor/). Finally, we calculated the median 
PRS percentile for cases and controls across all patients.  

Schizophrenia PRS PheWAS. We conducted a PheWAS in each of the three healthcare 
systems using all phecodes with sufficient sample size. Logistic regressions between 
schizophrenia PRSs and each phecode were run with 10 ancestry principal components, median 
age across the EHR, sex, genotyping platform, and batch when available, included as covariates 
using the PheWAS R package26. We used a Bonferroni correction for establishing statistical 
significance based on the number of phecodes tested at each site. We then meta-analyzed 
PheWAS effects across healthcare systems using a fixed-effect inverse variance-weighted model 
implemented using the PheWAS R package, which calls the meta R package (https://cran.r-
project.org/web/packages/meta/). Phecodes significantly associated with schizophrenia PRS in 
the PheWAS meta-analysis were carried forward for a follow-up analysis in which we quantified 
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the risk of the phecode at the extremes of the PRS distribution at each site. Effects were 
combined across sites through meta-analysis using the metafor R package.  

PheWAS Conditioning on Schizophrenia. To explore whether pleiotropic effects of the 
schizophrenia PRS were mediated by the diagnosis of schizophrenia itself, we also conducted 
PheWAS analyses using psychotic disorders (phecode 295; the broadest schizophrenia-related 
phecode) as an additional covariate.  
 
Results 
 
 Our sample comprised of 91,980 patients (58% female) across three large healthcare 
systems that had collectively received over 10 million ICD-9 billing codes. At each healthcare 
site, the median electronic health record length was 9-13 years, included 50-110 unique visits, 
and over 100 ICD-9 codes (Table 1).  
 
Table 1. Demographics and Clinical Characteristics  
 

 GHS PHS VUMC 

N 56,926 16,684 18,370 

Mean age, years (SD) 58.6 (17.3) 57.7 (16.1) 60.7 (17.2) 

Females, n (%) 35,111 (59%) 9,003 (54%) 9,350 (51%) 

Total number of ICD-9 code days 4,958,475 3,856,860 2,474,372 

Number of unique ICD-9 codes 11,433 10,347 13,801 

Median number of visits per patient 110 52 50 

Median EHR length, days 4,811 3,910 3,568 

Median code days per patient 238 133 153 

 
Mean age is the average age of the patient at their most recent hospital visit in which they received an ICD-9 code. 
A visit is both patient- and date-specific, but may include many individual ICD-9 codes. A code day is ICD-9-, 
patient-, and date-specific.  
 
Penetrance of Schizophrenia PRS in Healthcare Systems 

Overall case prevalence in our sample was 0.5% for schizophrenia (phecode 295.1) and 
1.3% for schizophrenia and related psychotic disorders (phecode 295). Polygenic risk scores 
were robustly associated with schizophrenia in the cross-site meta-analysis (OR per standard 
deviation increase in PRS = 1.65 [95% confidence interval (CI), 1.5-1.8], p = 1.25 x 10-16) (Table 
2); similar effects were observed in each individual healthcare system (Table S2). Patients in the 
highest risk decile had a four-fold increased odds of schizophrenia (phecode 295.1) compared to 
those in the bottom decile (95% CI, 2.4-6.5, p = 4.43 x 10-8) and a 2.1-fold increased odds of 
psychotic disorders (phecode 295) (95% CI, 1.6-2.7, p = 6.40 x 10-8; Figure 2). For the 
distribution of schizophrenia PRSs, the median schizophrenia case (phecode 295.1) was in the 
66th PRS percentile, the median psychotic disorder case (phecode 295) was in the 59th PRS 
percentile, and the median control for both was in the 51st PRS percentile. Case prevalence in the 
top decile was 0.9% for schizophrenia (vs. 0.2% in the bottom decile) and 1.9% for psychosis 
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(vs. 0.9% in the bottom decile). Those in the top decile also had a 2.1-fold increased odds of 
schizophrenia compared to those below the 90th percentile (95% CI, 1.6-2.6, p = 4.69 x 10-9) and 
a 1.5-fold increased odds of psychotic disorders (95% CI, 1.3-1.8, p = 1.66 x 10-7).  
 
Schizophrenia PRS PheWAS 

After excluding codes for which fewer than 100 cases were present at any site, we 
conducted PheWAS using 1338 disease categories across more than 90,000 patients. Phenome-
wide significant associations with schizophrenia PRSs at each site were reported in Table S1. In 
total, the cross-site PheWAS meta-analysis yielded significant associations between 
schizophrenia PRSs and 26 medical phenotypes including schizophrenia (Table 2; Figure 1). As 
shown, the strongest associations were with psychiatric phenotypes for which positive genetic 
correlations with schizophrenia have been reported, including bipolar disorder, depression, 
substance use disorders, and anxiety disorders11. We additionally found associations with two 
other psychiatric phenotypes, personality disorders and suicidal behavior. Many other syndromes 
were also significantly associated with schizophrenia PRS including obesity, heart palpitations, 
urinary syndromes and nonspecific somatic symptoms. Odds ratios for these phenotypes 
comparing the top versus bottom deciles ranged between 0.8 [95% CI, 0.7-0.8] for morbid 
obesity and 2.0 [95% CI, 1.5-2.7] for posttraumatic stress disorder (Figure 2). Case prevalence 
for all phenotypes across the PRS distribution was plotted in Figure S1.  

 
PheWAS Conditioning on Schizophrenia 

We explored whether some of the observed associations might be mediated through a 
clinical diagnosis of schizophrenia itself by conditioning the PheWAS on the broadest 
schizophrenia-related phecode (phecode 295). Nearly all associations remained significant and 
two novel associations met phenome-wide significance, diabetes mellitus and type 2 diabetes 
(Table S2; Figure S2). More specifically, associations remained significant with all five 
categories of anxiety disorders (anxiety disorder; anxiety, phobic and dissociative disorders; 
generalized anxiety disorder; posttraumatic stress disorder; and agoraphobia, social phobia, and 
panic disorder), all categories of mood disorders (mood disorders; bipolar disorder; depression; 
and major depressive disorder), 3 of the 4 categories of substance use disorders (substance 
addiction and disorders; tobacco use disorder; alcohol-related disorders), all obesity phenotypes 
(morbid obesity; obesity; bariatric surgery), malaise and fatigue, dysuria, and other urinary 
system symptoms. Associations with suicidal ideation, suicidal ideation or attempt, alcoholism, 
personality disorders, palpitations, and dysphagia no longer survived Bonferroni correction, 
although they remained top phenotypes (with p’s between 6.73 x 10-5 and 9.18 x 10-4). 
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Table 2. Top Phenotypes from Schizophrenia PRS PheWAS Meta-Analysis  
 

Phecode Description Beta OR SE p Total Cases Controls Sites 

300 Anxiety, phobic and 
dissociative disorders 0.098 1.103 0.009 4.20 x 10-26 82,431 22,558 59,873 3 

300.1 Anxiety disorder 0.101 1.106 0.010 1.62 x 10-25 82,915 19,602 63,313 3 

296.1 Bipolar 0.195 1.215 0.023 2.60 x 10-17 90,529 2,529 88,000 3 

295.1 Schizophrenia 0.499 1.647 0.060 1.25 x 10-16 72,848 367 72,481 2 

295 Schizophrenia and other 
psychotic disorders 0.267 1.306 0.033 4.02 x 10-16 89,452 1,197 88,255 3 

296 Mood disorders 0.072 1.074 0.009 7.33 x 10-16 84,499 24,395 60,104 3 

316 Substance addiction and 
disorders 0.168 1.183 0.022 1.24 x 10-14 89,409 2,843 86,566 3 

296.2 Depression 0.063 1.065 0.009 4.55 x 10-12 84,544 22,683 61,861 3 

318 Tobacco use disorder 0.068 1.070 0.011 1.30 x 10-10 86,156 14,783 71,373 3 

278.11 Morbid obesity -0.068 0.934 0.011 1.47 x 10-10 87,738 15,415 72,323 3 

300.9 Posttraumatic stress 
disorder 0.208 1.231 0.036 8.93 x 10-9 90,819 993 89,826 3 

296.22 Major depressive disorder 0.085 1.088 0.015 2.34 x 10-8 85,895 6,177 79,718 3 

317 Alcohol-related disorders 0.113 1.120 0.020 3.09 x 10-8 89,392 3,212 86,180 3 

599.3 Dysuria 0.083 1.086 0.015 3.22 x 10-8 82,015 6,684 75,331 3 

300.11 Generalized anxiety 
disorder 0.093 1.098 0.017 3.95 x 10-8 88,902 4,937 83,965 3 

301 Personality disorders 0.213 1.237 0.041 1.52 x 10-7 72,402 818 71,584 2 

798 Malaise and fatigue 0.048 1.049 0.009 1.74 x 10-7 74,628 22,033 52,595 3 

599 
Other 
symptoms/disorders or 
the urinary system 

0.049 1.050 0.010 2.84 x 10-7 78,757 20,594 58,163 3 

297.1 Suicidal ideation 0.251 1.285 0.050 5.96 x 10-7 72,236 534 71,702 2 

297 Suicidal ideation or 
attempt 0.156 1.169 0.031 6.62 x 10-7 89,321 1,359 87,962 3 

278.1 Obesity -0.044 0.957 0.009 6.88 x 10-7 84,574 27,976 56,598 3 

300.12 
Agorophobia, social 
phobia, and panic 
disorder 

0.115 1.122 0.025 2.80 x 10-6 89,738 2,270 87,468 3 

317.1 Alcoholism 0.110 1.116 0.024 3.55 x 10-6 89,465 2,373 87,092 3 

539 Bariatric surgery -0.086 0.917 0.019 6.67 x 10-6 90,784 3,818 86,966 3 

532 Dysphagia 0.068 1.070 0.016 1.99 x 10-5 86,191 5,438 80,753 3 

427.9 Palpitations 0.058 1.059 0.014 2.08 x 10-5 84,088 7,854 76,234 3 

 
All effects listed surpassed the Bonferroni significance threshold (3.7 x 10-5). 
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Figure 1. Schizophrenia PRS PheWAS Meta-Analysis. Manhattan plot for phenome-wide association with 
schizophrenia polygenic risk scores meta-analyzed across three healthcare systems (1338 phenotypes; 91,980 
patients). The x axis is phenotype (grouped by broad disease category) and the y axis is significance (–log10 P; 2-
tailed) of association derived by logistic regression. The red line shows phenome-wide level significance (3.7 x 10-

5). All significant effects were positive (i.e., higher polygenic risk scores resulted in higher incidence of the 
phenotype) with three exceptions: morbid obesity, obesity, and bariatric surgery.   
 
Discussion 
 

We investigated the impact of genetic risk for schizophrenia across the medical phenome 
in 91,980 patients from three, large healthcare systems. Several findings from our analysis are 
particularly noteworthy. First, in our cross-site meta-analysis, schizophrenia PRSs were highly 
statistically significantly associated with both “schizophrenia and related psychotic disorders” (p 
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= 4.02 x 10-16) – a broad category of multiple psychosis-related ICD-9 codes – and schizophrenia 
itself (p = 1.25 x 10-16), despite only 367 cases in the latter category. As expected, of the 1338 
diagnostic categories examined, the largest effect size we observed was for schizophrenia. These 
results demonstrate that externally-derived polygenic risk scores can robustly detect risk for 
diagnosis of schizophrenia in healthcare settings using readily-available structured diagnostic 
codes.  

At the same time, the effect size (an index of penetrance) was more modest than that 
reported in case-control cohorts ascertained for research purposes. For example, in the original 
report by the Psychiatric Genomics Consortium from which the risk scores were derived, 
individuals in the top decile of schizophrenia PRS relative to the bottom decile had a 7.8-20.3 
increased odds of schizophrenia16, whereas we observed an odds ratio of 4.0 (95% CI, 2.4 to 6.5). 
There are several potential reasons for this discrepancy, including differences in case and control 
definitions. Cases in the Psychiatric Genomics Consortium meta-analysis had to meet relatively 
stringent criteria based on clinical interviews by trained research personnel, and control 
ascertainment varied between studies, but often included screening for history of psychiatric or 
neurological disorders. This approach, typical for samples used for research, may maximize 
power for genetic discovery by extreme sampling from the tails of the genetic liability 
distribution. In contrast, our analysis was expressly designed to approximate use of a PRS in a 
typical clinical setting by applying a simple, easily-implementable definition for both cases (two 
or more schizophrenia-related ICD-9 codes) and controls (no schizophrenia-related codes). Thus, 
although the effect size we observed may have been attenuated due to some degree of 
misclassification, it may better reflect results that would be seen in real world clinical settings 
where PRS are applied to a broad healthcare population. In addition, we did not restrict the age 
range of cases and controls, which may have further reduced the apparent effect size of the 
schizophrenia PRS. This is because in our sample some fraction of high risk individuals who 
have not yet passed through the age of risk may have been misclassified as controls. Further 
research, including the application of natural language processing, may improve effect sizes by 
refining case and control definitions28,29.   

While the effect of the PRS we observed was not large enough on its own to stratify risk 
in a clinical setting (i.e., to discriminate between cases and controls on an individual level with 
high accuracy), it is comparable to those of non-genetic risk factors in established risk 
calculators. For example, two well-established coronary artery disease (CAD) risk factors – 
smoking and diabetes – were estimated in the Framingham Heart Study to have hazard ratios < 
2.030 – equivalent to the risk for the top schizophrenia PRS decile. Individuals in the top 5% of 
CAD PRS have risk of coronary disease (OR = 3.3 [95% CI, 3.1-3.6]) that is comparable to that 
seen among carriers of rare monogenic mutations causing hypercholesterolemia15. (Individuals in 
the top 5% of schizophrenia PRS had a 2.4 increased odds of schizophrenia, 95% CI, 1.8-3.3). 
The effects we observed were also similar to or greater than those seen in a recent PheWAS of 
PRSs for several common cancers (comparing top PRS quartile to bottom quartile; ORs = 1.3 - 
3.3)31. Additionally, in a risk calculator for the transition to psychosis among high-risk 
individuals – one of the few individualized risk calculators developed within psychiatry – the 
best predictor was a symptom severity index with a hazard ratio of 2.1, 95% CI, 1.6-2.732. While 
this risk calculator was not validated for clinical use, it does reflect effects of variables used by 
clinicians to assess risk. In light of this, we speculate that incorporating genetic risk could be 
impactful within psychiatry. In future research, enhanced performance may be possible as the 
precision of PRSs increases (through larger sample size in discovery datasets)14 and with 
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Figure 2. Odds ratios for top PRS decile. Odds ratios and 95% confidence intervals for phenotypes significant in 
meta-analysis were plotted for the top PRS decile with reference to both the remaining 90% (red squares) and the 
bottom decile (blue circles). The vertical red line reflects no change in risk (OR = 1).  
 
refinement of EHR-based case definitions. It remains to be seen whether combining PRS risk 
estimates with other clinical predictors can meaningfully contribute to individualized risk 
assessment in psychiatry. 

Besides increasing risk for schizophrenia, schizophrenia PRSs were associated with 
broader effects on mental health including increased risk for anxiety disorders, mood disorders, 
substance use disorders, personality disorders, and suicidal behavior. Anxiety disorders, mood 
disorders, and substance use disorders have all previously been linked to genetic risk for 
schizophrenia11,33–35 and results reported here confirm in a clinical setting that these disorders 
share genetic risk. Certain personality disorders have also been previously linked to genetic 
liability for schizophrenia36,37 (e.g., schizotypal or schizoid), although the phecode used here 
included all personality disorders. Personality disorders are common among patients with 
schizophrenia38,39 and there is some evidence that personality dimensions in adolescence predict 
future psychopathology, including schizophrenia40. Nonetheless, our sensitivity analyses did not 
confirm any shared genetic liability. Similarly, suicidal ideation and attempt rates are much 
higher among patients with schizophrenia41,42 and family history of schizophrenia has been 
associated with suicidal behavior43. However, our sensitivity analyses suggested that the 
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relationship between suicidal behavior and schizophrenia in our sample may not be due to shared 
genetic risk.  

Genetic liability for schizophrenia was associated with many non-psychiatric syndromes 
as well, including obesity and related phenotypes, urinary syndromes, palpitations, dysphagia, 
and malaise and fatigue. Most of these effects, while highly statistically significant, were not 
particularly large (ORs < 2). However, they may reveal interesting connections between 
schizophrenia genetic risk and other psychiatric and non-psychiatric diseases. For example, 
several obesity-related phenotypes, morbid obesity, obesity, and bariatric surgery were 
significantly negatively associated with schizophrenia PRSs (Table 2; Figure 1). Inverse 
phenotypic relationships between body mass index and schizophrenia have been observed 
previously in large studies44–46. Additionally, a recent report investigating bidirectional causal 
effects between these phenotypes (among others) found a significant genetic correlation using 
PRSs, but no evidence of causal effects, suggesting instead a shared genetic etiology47. 
Interestingly, there was also an inverse association between genetic liability for schizophrenia 
and diabetes, but only when conditioning on the diagnosis of schizophrenia. It may that this 
negative genetic correlation was masked in the primary analysis (i.e., when not conditioning on 
schizophrenia diagnosis) due to the opposing diabetogenic effects of antipsychotic medications48.  

We also found that dysuria – painful urination associated with a variety of causes 
including urinary tract infections (UTIs), sexually transmitted infections, yeast infections, and 
others – and a broader urinary system symptom category remained significantly associated with 
schizophrenia PRSs after conditioning on schizophrenia. In line with this, some epidemiological 
research has suggested rates of UTIs were higher in schizophrenia inpatients, relative to 
outpatients and controls49, as well as in patients with non-affective psychosis relative to patients 
with psychotic and non-psychotic major depressive disorder50. However, the mechanism 
underlying this association is unclear; shared genetic risk is one possibility, but there could be 
other explanations as well that warrant further investigation. These pleiotropic effects may have 
implications for risk communication if PRS testing is deployed in clinical settings in the future. 

Our results should be interpreted in light of several limitations. First, due to small 
numbers of patients of other ancestries, our analyses were restricted to patients of European 
descent, and the generalizability to other groups remains to be determined. Second, our 
phenotype definitions relied on very simple rules and disregarded many variables of potential 
importance including medical history of related disorders, ICD-10 diagnoses, setting of diagnosis 
(i.e., in- or outpatient; physician specialty), and treatment for the disease of interest. This was by 
design in order to mimic a real-world clinical population where PRSs may be implemented for 
clinical decision support. Future work incorporating these variables or expanding the case and 
control definitions to incorporate natural language processing algorithms may improve the 
predictive performance of PRSs and other risk factors for clinically-derived phenotypes. Third, 
specific associations within healthcare systems varied to some degree (Table S1), suggesting that 
results may vary according to the demographic and disease distributions in any given healthcare 
system. Relatedly, we noted disease prevalence was often lower in all patients in the healthcare 
system relative to the participants enrolled in the biobanks (a subset of those patients) across 
sites (Table S3). In general, case prevalence in the biobanks was more representative of 
population-level prevalence than was that in the healthcare systems51, suggesting that the 
discrepancies may be due to biobank patients generally having a longer duration of EHR follow-
up and therefore more opportunity to receive a diagnosis than patients in the overall healthcare 
system (Table S3). Finally, although our analyses comprise the largest test of a schizophrenia 
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PRS in EHR data to date, additional phenotypes may show significant association in future, 
larger-scale PheWAS.  

In conclusion, we demonstrate that an available measure of polygenic risk for 
schizophrenia is robustly associated with schizophrenia across three large healthcare systems 
using EHR data. While the observed penetrance of this schizophrenia PRS is attenuated in these 
settings compared to prior estimates derived from research cohorts, effect sizes are comparable 
to those seen for risk factors commonly used in clinical settings. We also find that polygenic risk 
for schizophrenia has pleiotropic effects on related psychiatric disorders as well as several non-
psychiatric symptoms and syndromes. Our results provide an initial indication of the 
opportunities and limitations that may arise with the future application of PRS testing in 
healthcare systems.  
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