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Can machine learning assess trunk alignment directly from raw 

video? 

 

Abstract 

Background: Current physical therapy assessments of head and trunk control status in children with 

cerebral palsy are subjective. Previous work has established that objective replication of an existing 

clinical test (Segmental Assessment of Trunk Control (SATCo)) can be made using a 2D video-based 

method with semi-automated tracking of the video sequences. A markerless full automation of the 

analysis of live camera data would provide an objective and clinically-friendly tool for both assessor and 

patient. The use of high-definition depth (HD+D) cameras would also address the limitations of 2D 

video, such as body movement out of camera plane. 

Research question: This study was to examine whether HD+D analysis is suitable for the classification 

of the alignment of given head and trunk segments in sitting by comparing expert opinion (labelling) to 

machine learning classification. 

Methods: Sixteen healthy male adults were recruited and a SATCo was conducted for each participant 

and recorded using a Kinect V2. Two different trials were collected (Control and No-Control) to simulate 

the physical therapy test with children. Three of the seven SATCo segmental levels were selected to 

perform this feasibility analysis. Classification of alignment obtained with the machine learning 

classification (convolutional neural networks) of all frames was compared to an expert clinician’s 

labelling, and to a randomly selected reference aligned frame.  

Results: At the optimal operating point of Receiver Operating Characteristics the neural network 

analysis correctly classified alignment and misalignment with an accuracy of 79.15%; with 64.66% 

precision and 76.79% recall. 

Significance: This communication demonstrates, for the first time, an automated classification of trunk 

alignment directly from raw images (HD+D) and which requires minimal operator interaction. This 

demonstrates the potential of machine learning to provide a fully automated objective tool for the 

classification of the alignment component of head/trunk control in sitting that is suitable for clinical use.  

 

Keywords  

Alignment; Kinect; Clinical assessment; Objective measure; Machine learning 

 

 

 

1. Introduction 

Poor or absent head and trunk control is a 

frequent consequence of 

neurodevelopmental conditions such as 

cerebral palsy; it can compromise a child’s 

ability to sit independently and lead to 

functional limitations [1]. The therapeutic 

objective is usually towards independent, 

unsupported sitting with the child maintaining 
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a vertically aligned (neutral) head and trunk 

posture [2]. Current physical therapy 

assessments are generally based on tests 

that evaluate control status from the 

observation of functional abilities [3-6]. 

These assessments, although reliable, are 

subjective and most consider the head/trunk 

as a single unit, ignoring its multi-segmental 

composition [3-6].  

Previous work has established that objective 

replication could be made of a clinician’s 

subjective ability to identify the separate 

trunk segments and make a judgement of 

their position in space relative to a defined 

aligned posture. This work was based on the 

Segmental Assessment of Trunk Control 

(SATCo) [2] and used a 2D video-based 

method [7]. This previous study used semi-

automated tracking of the video sequences: 

a markerless full automation of the analysis 

of live camera data would provide an 

objective and clinically-friendly tool for both 

the assessor and the patient [7-9]. The use 

of high-definition depth (HD+D) cameras has 

potential to address these issues while 

bringing the analysis closer to the clinical 

judgement [7-9].  

The first stage towards automated analysis 

is for an experienced SATCo clinician to 

identify whether given trunk segments are 

aligned during a SATCo (i.e. labelling). This 

pilot study used a Kinect V2 (Windows®, 

Microsoft®) camera to record grayscale 

HD+D images during SATCo testing of 

healthy adult males that simulated the 

clinical test. State of the art machine learning 

methods were then applied to reproduce the 

clinical labels (classification) [10, 11]. This 

enabled examination of whether automated 

analysis of raw HD+D images is suitable for 

the classification of the alignment 

component of head and trunk control in 

sitting by comparing the expert’s labelling to 

the machine learning classification. 

 

2. Methods 

Ethical approval was obtained from the 

Manchester Metropolitan University Ethics 

Committee. The participants were 16 healthy 

adult males (mean age 31.39 ±5.21 years, 

mean height 1.78m ±0.07, and weight 77.7kg 

±11.1). Participants sat on a bench free of 

back or arm support; the height of the bench 

ensured that participants’ feet were flat on 

the floor and the knees and hips were flexed 

at 90o. A Kinect camera was set at a distance 

of 1.60m and height of 0.90m on the left side 

of the participants and both grayscale HD 

and depth images were recorded at 15Hz 

(asynchronous recording software was 

written by the authors in c++). The SATCo 

was conducted; a tester provided manual 

support to the participant’s trunk to test six 

discrete trunk segmental levels following the 

published guidelines [2]. Two different trials 

were collected, Control and No-Control, to 

simulate the physical therapy test with 

children. For the Control trials, participants 

were asked to remain still for 5s in upright 

sitting with the arms and hands free in the air; 

for the No-Control trials a verbal cue was 

given for participants to simulate lack of trunk 

control; this was done by making large 

movements of the unsupported segments of 
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the trunk (segments above the tester’s hand 

support) away from the aligned position (e.g. 

falling forwards). 

This feasibility analysis was conducted using 

three segmental levels (Head, Lower-

Thoracic and Free-sitting). Figure 1 shows 

the process followed: i) training labels 

(classification of each image) for the neural 

network were provided by an experienced 

clinician who identified the frames when all 

unsupported segments in the trunk were 

aligned, and the frames when one or more 

unsupported segments were misaligned; ii) 

using raw depth information from the Kinect, 

the background was automatically 

subtracted from the image to reveal the 

participant and tester; iii) four identical 

multilayer convolutional neural networks 

were trained to provide held-out test results 

for all 16 participants, each network using 

approximately 8,000 images from 12 

participants and each tested on 

approximately 3,000 images from four 

participants not used for training; iv) the 

neural network was trained to predict the 

clinical labels, from an individual image at 

time t, and a randomly selected (at neural 

network training time) reference image for all 

images in the data set. The reference image 

is any image within the same trial where the 

person was labelled as ‘aligned’ by the 

clinician; v) after training, the neural network 

output for all 16 participants was compared, 

by receiver operating characteristics (ROC), 

to the clinical labels. At the optimal operating 

point of the ROC a neural network threshold 

was selected maximizing the ratio of true 

positive to false positive classifications. 

 

 

Figure 1 Network architecture. 

Showing the deep neural network architecture consisting of 5 convolutional and down-sampling (max-

pooling) layers, followed by a fully connected layer, and a logistic regression output layer. The current 

image, and reference image (far left) each represent 2 data streams, a grayscale image and a depth 

map. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 19, 2018. ; https://doi.org/10.1101/421172doi: bioRxiv preprint 

https://doi.org/10.1101/421172


4 
 

3. Results 

At the optimal operating point of the ROC, 

the neural network analysis correctly 

classified alignment and misalignment with 

an accuracy of 79.15% (Figure 2). The data 

were biased towards alignment, therefore, 

more representative results in the form of 

precision is given, 64.66%, and recall 

76.79%. Using precision and recall the F1 

score was calculated, 𝐹1 = 2((𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×

𝑟𝑒𝑐𝑎𝑙𝑙) × (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙)−1) = 70.21%, 

which gives balanced measure of 

performance, accounting for the bias in the 

data/labels. The F1 score is best at 100% and 

worst at 0%.

 

 

 

 

4. Discussion 

This method used a single Kinect camera 

and an analysis that is markerless. The 

results (Figure 3) depict the quality of data 

that can be collected with this method, the 

ability to automatically remove background 

to reveal the participant showing that there is 

very little noise in both images, and to 

differentiate the left and right limbs. These 

features are essential for correct 

classification and contributed to the strong 

evidence, shown by the F1 score, for the 

feasibility of the method presented in this 

study. The proposed method only requires 

an operator to identify one aligned frame, 

Figure 2 Receiver operating characteristics (ROC). 

This figure shows the true positive classification rate versus false positive classification rate for neural 
network (CNN) output thresholds between 0 and 1, compared with the clinical labels of alignment. At 
the optimal operating point (Optimal OC) this network correctly classifies 79.15% of all frames 
(precision: 64.66%, recall: 76.79%, F1: 70.21%). 
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and thereafter the neural network can 

provide fully automatic analysis of alignment. 

Participants simulated lack of trunk control 

by moving away from the aligned posture; 

movement displacement occurred in all three 

planes of motion. Previous studies used a 2D 

video-based method to track markers in the 

sagittal plane [7, 9]; participant’s movement 

in planes other than the sagittal would 

generate movement artefacts reducing the 

accuracy of the method. The introduction of 

depth images to this analysis, unlike 2D 

feature tracking, enables the accurate 

classification of postural misalignment, even 

in situations where motion occurs orthogonal 

to the sagittal plane. 

This preliminary work affirms that HD+D 

analysis is suitable for the classification of 

the alignment component of head and trunk 

control in sitting. Beyond this study, accuracy 

and robustness will almost certainly improve 

with additional data, additional cameras, 

more detailed labelling, and as the neural 

network architecture is tuned and refined. 

This work demonstrates the potential of 

machine learning to provide an objective and 

clinically-friendly assessment of seated head 

and trunk control. 
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Figure 3 Representative trial example of Static control when testing at the Lower-Thoracic segmental level. 

In all grayscale and depth images, the background was subtracted using the information in the 
depth image. Showing A) Reference grayscale (top) + depth (bottom) image classified by the 
expert as ‘aligned’; B) a grayscale (top) + depth (bottom) image to be classified by the neural 
network; and C) distribution of grayscale + depth images, correctly classified by the neural 
network as aligned (top) or misaligned (bottom). 
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