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Abstract 
Malaria control programs face difficult resource allocation decisions. Of particular concern for 
countries aiming for malaria elimination, the regular movement of individuals to and from 
endemic areas undermines local interventions by reintroducing infections and sustaining local 
transmission. Quantifying this movement of malaria parasites around a country has become a 
priority for national control programs, but remains methodologically challenging, particularly in 
areas with highly mobile populations. Here, we combined multiple data sources to measure the 
geographical spread of malaria parasites, including epidemiological surveillance data, travel 
surveys, parasite genetic data, and anonymized mobile phone data. We collected parasite genetic 
barcodes and travel surveys from 2,090 patients residing in 176 unions in southeast Bangladesh. 
We developed a genetic mixing index to quantify the likelihood of samples being local or 
imported. We then inferred the direction and intensity of parasite flow between locations using 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2018. ; https://doi.org/10.1101/421578doi: bioRxiv preprint 

https://doi.org/10.1101/421578
http://creativecommons.org/licenses/by/4.0/


an epidemiological model, and estimated the proportion of imported cases assuming mobility 
patterns parameterized using the travel survey and mobile phone calling data. Our results show 
that each data source provided related but different information about the patterns of geographic 
spread of parasites. We identify a consistent north/south separation of the Chittagong Hill Tracts 
region in Bangladesh, and found that in addition to imported infections from forested regions, 
frequent mixing also occurs in low transmission but highly populated areas in the southwest. 
Thus, unlike risk maps generated from incidence alone, our maps provide evidence that 
elimination programs must address ongoing movement of parasites around the lower 
transmission areas in the southwest.  

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2018. ; https://doi.org/10.1101/421578doi: bioRxiv preprint 

https://doi.org/10.1101/421578
http://creativecommons.org/licenses/by/4.0/


Introduction 
 
A global decline of malaria in recent decades has led to a push for complete national elimination 
of human malaria parasites in 21 countries by 2020 (1). In elimination and pre-elimination 
settings, malaria transmission is often highly heterogeneous geographically (2-4), and policy-
makers must focus on reducing transmission in remaining endemic foci, while protecting areas 
where malaria has been effectively controlled from imported infections that threaten to 
reintroduce parasites and reignite transmission (5, 6). These tasks require different interventions, 
so understanding how patterns of regular travel to and from malaria endemic regions of a country 
contribute to the spread of malaria is a critical component of elimination planning. Measuring the 
spatial spread of malaria remains technically challenging, however, due to frequent 
asymptomatic and undetectable infections (7), as well as the inherent challenges associated with 
epidemiological surveillance in rural areas among highly mobile populations.  
  
Decisions about how to allocate resources for malaria control and elimination are generally 
based on reports from hospitals, clinics, community health workers (CHWs) and non-
governmental organizations (NGOs) around the country, which provide a measure of the 
incidence of symptomatic cases (8, 9). In areas with high mobility, however, the reporting health 
facility may not accurately capture local transmission, instead detecting imported infections that 
have been acquired elsewhere. Traditionally, patient travel surveys have been the principal 
method for identifying imported cases, but surveys can be unreliable and limited in scope, and 
importation cannot always be confirmed even when a travel history is accurate (10). We and 
others have used spatially explicit epidemiological models– for example, parameterized using 
mobile phone data– to estimate “sources and sinks” of parasites and the impact of travel on the 
spread of malaria (11). These methods show promise, but do not provide highly spatially 
resolved estimates in regions with low cell tower density, such as in forested or sparsely 
populated regions.  
 
There is also a growing interest in the routine use of sequencing to genotype parasites, which 
may provide insights into the spatial spread of malaria, particularly in low transmission settings 
and in places where drug resistance poses a threat (12-20). However, in spite of decreasing costs, 
the use of genetic data is currently constrained by the lack of appropriate methods for analysis. 
Plasmodium falciparum infections are often composed of multiple different parasite clones, 
which undergo sexual recombination in the mosquito (21). As a result, phylogenetic and 
population genetic methods normally applied to the analysis of non-recombining organisms 
cannot be used. An emerging field of promising new approaches, such as THE REAL McCOIL, 
hmmIBD, or isoRelate, are being developed to explicitly address these characteristics of malaria 
infection (18, 22-24). 
 
Conceptually, genetic and epidemiological approaches should complement each other – genetic 
data encodes information about the relatedness of parasites and mixing patterns between 
different parasite populations, while epidemiological data provides insights into clinical cases 
and the patterns of transmission. For viral pathogens like the influenza virus, where 
recombination does not obscure relationships between lineages, phylodynamic frameworks have 
been developed for inferring migration patterns and identifying the factors contributing to the 
migration rate (25-28). Although it is possible to measure population differentiation on 
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continental scales for malaria (16), elimination programs often require inferences on smaller 
spatial scales, which are currently more  challenging because of frequent recombination and the 
complex epidemiological dynamics of the parasite. In particular, on local spatial scales genetic 
signals may not be easily resolved because parasites are likely to be highly related, and 
comparisons between many pairs of populations become computationally prohibitive (27-29). 
Developing methods that leverage insights from genomic data, epidemiological information, and 
mobility data sources such as travel survey or mobile phone data, is therefore an important goal 
for malaria, particularly if the collection of clinical samples for genetic analysis and travel data 
can be incorporated into routine surveillance workflows to support decision making for control 
programs. 
 
The National Malaria Elimination Programme (NMEP) in Bangladesh currently estimates the 
burden of malaria using symptomatic case counts aggregated at administrative level 3 (upazila) 
or 4 (union). Typical of malaria in Southeast Asian countries, much of the transmission is 
thought to occur in forests and forest fringes where the principal vectors abound (30). The 
difficulties of surveillance in hard-to-reach forested areas complicate decisions about where to 
target transmission-reducing interventions (often focused on vector control) and how to find and 
treat imported cases as Bangladesh moves towards elimination. Moreover, Bangladesh – one of 
the countries that plan to eliminate malaria nationally – borders the Greater Mekong Subregion 
(GMS) (31, 32), where evidence of resistance to first line treatment for malaria (artemisinin 
combination therapy, or ACT) has been found in all countries (33). Although resistance to 
artemisinin and to ACT partner drugs has not been found to date locally, Bangladesh is a 
potential point of passage in the spread of drug resistance out of the GMS, so monitoring drug 
resistance markers is crucial.  
 
Epidemiological models of malaria designed to understand spatial transmission are often based 
on clinical incidence and seroprevalence estimates; data and methods required for integrating 
insights about importation from other data sources, including genetic data, are currently lacking 
(34). Mobility patterns derived from mobile phone data are difficult to access, and rarely 
coincide temporally with epidemiological and genetic data, but could in theory provide real-time 
estimates of population movements. We collected and analyzed paired genetic, travel survey, and 
epidemiological malaria case data across the Chittagong Hill Tracts (CHT) region of Bangladesh, 
in combination with estimated population mobility patterns from mobile phone calling data. We 
developed a simple metric to quantify genetic mixing from parasite genetic barcode data. 
Geographic patterns of genetic mixing were then compared to estimates of malaria importation 
from a mathematical model, based on clinical epidemiological data and on mobility data from 
travel surveys and mobile phone records. We show that, taken together, these data sources 
provide evidence of heterogeneous transmission outside the high-incidence forested areas, and of 
substantial importation of parasites throughout the CHT. We propose that this type of data 
integration and analytical pipeline could help national control programs effectively target 
resources for malaria elimination. 
 
Results 
 
The map of clinical incidence from the NMEP for 2015 and 2016 shown in Figure 1A in the 
CHT supports the hypothesis that transmission is highest in the eastern, forested region, similar 
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to other countries in the GMS with forested border areas (Figure 1B). The location of the 
reporting health clinic may not reflect local acquisition of infection, however, particularly in 
regions like Bangladesh where laborers, forest-workers, and military personnel may travel 
frequently in and out of high transmission areas, but report to clinics in low transmission areas. 
We aimed to map remaining transmission foci in the CHT; in particular to identify areas outside 
forested regions where transmission is being sustained, rather than imported from the forest, 
since these areas should be targeted by transmission reduction interventions. To this end, we 
enrolled 2,090 patients with confirmed malaria, attending 57 hospitals and clinics across the 
malaria-endemic region (see fig. S1 for map of sample distribution). All patients answered a 
travel questionnaire and blood spots were collected on filter paper for a subset of patients 
(n=1,412), from which parasites were genotyped. These data were combined with reported 
incidence for the region, and data on aggregated daily movement patterns from 2.4 million 
mobile phone subscribers over 6 months across the CHT (see Materials and Methods).  
 
Disparate data sets identify broad division of transmission foci 
 
We first analyzed each type of data separately, focusing on quantifying signals of spatial 
connectivity and on measuring transmission intensity (Figure 1C, D, E). Given the importance of 
distinguishing between the forested border regions – where most malaria is thought to occur – 
and less forested areas elsewhere, for clarity we defined forested areas as those with >50% forest 
coverage. In the travel survey, 31% (N=654) of malaria positive individuals reported living 
outside forested areas. Of these individuals, the majority did not report any travel to forested 
areas (66%, N=434), suggesting that either individuals were acquiring infections outside these 
areas, or that the travel survey did not capture all forest travel. The survey indicated a general 
separation between the north and south portions of the endemic region, with fewer people 
traveling between these two regions. Within the regions, however, substantial travel was reported 
between the high incidence forested areas and the lower incidence ones (Fig. 1D). Similarly, by 
simply connecting those pairs of unions where we identified parasites with identical genetic 
barcodes, a broad north-south division of the CHT region clearly emerged, as did connections 
between forested and non-forested areas (Fig. 1C). Conversely, we found that other genetic 
diversity metrics, except for drug resistance-related markers, showed limited spatial resolution 
(see fig. S2, S3, table S1, and S2). Roughly consistent with the north-south divide, mobility 
estimates derived from mobile phone calling data suggested a high amount of travel in the 
coastal areas around the cities of Chittagong and Cox’s Bazar, with little travel between these 
areas (Fig. 1E). This separation into two main transmission foci was consistent with the larger 
geographic distance between these areas of the CHT, but provided little insight into the extent of 
transmission heterogeneity on more local spatial scales.  
 
To assess whether patterns of genetic relatedness among parasites showed signals consistent with 
survey- or mobile phone-based estimates of mobility, we analyzed all parasite pairs, along a 
continuum of genetic similarity, with respect to mobility outcomes. As expected, genetically 
similar parasites (fewer differences in genetic barcode comparisons) were more likely to come 
from the same residence unions (Fig. 2A). For parasites from different unions, more related 
parasites were more likely to come from unions where direct travel had been reported in the 
survey (Fig. 2B; see Supplementary Materials and Methods). To ensure this signal was not 
obscured by local effects, since both travel and genetic similarity is expected to be high between 
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neighboring unions, we separated the data into unions less than 20km apart and unions more than 
20km apart (Fig S4). The association shown in Fig. 2B was mainly driven by unions that were ≥ 
20 km apart, indicating that travel is responsible for closely related parasites in more 
geographically separated unions. Remarkably, closely related parasites that were neither from the 
same location nor from locations with direct travel reported were more likely to come from 
unions with indirect travel reported to a shared third location (Fig. 2C). Using the travel survey 
data at the individual patient level instead of population level, we found that individuals infected 
with closely related parasites were significantly more likely to report living, working, or 
traveling to the same locations, confirming the correlation between the genetic and travel survey 
data (fig. S5). Comparing the genetic data to travel measured using mobile phone data, we found 
that genetically similar parasites that were not from the same locations were more likely to come 
from locations with greater inferred connectivity between them (Fig. 2D), even though the 
majority of travel measured was in less forested areas. Therefore, although the travel survey and 
mobile phone data represent different geographic and population coverage, and disparate sample 
sizes (fig. S6), spatial signatures of connectivity were generally consistent with the genetic data.  
 
Genetic and model-based evidence of transmission in low incidence areas 
 
To map transmission heterogeneities on smaller spatial scales, these rich data sources can be 
analyzed using more sophisticated approaches. We developed a metric designed to quantify the 
amount of parasite genetic mixing – indicative of frequent parasite importation and 
recombination between different parasites from different locations – in different regions. This 
index was calculated for each location with respect to all other locations as an odds ratio; 
specifically, the odds that parasites shared similar barcodes over and above what would be 
expected for that geographic separation. We use the empirical relationship between genetic 
similarity and geographic distance for this region, so the thresholds defined would be setting-
specific if rolled out routinely as part of surveillance programs (see Materials and Methods). In 
brief, we quantified the decline of parasite genetic similarity with geographic distance, 
uncovering a robust signal; pairs of parasites sampled from unions that are geographically closer 
were more likely to be genetically similar (fig. S7). Using this empirical relationship, we 
calculated the probability of “local” transmission given different levels of genetic similarity 
between samples, where local is defined on various spatial scales (Fig. 3A). This allowed us to 
define a CHT-specific “genetic mixing index” to identify higher-than-expected sharing of 
parasite barcodes between samples from relatively distant locations, indicative of high gene flow 
or importation (Fig. 3B; see Materials and Methods). Fig. 3B maps this index across the CHT, 
showing heterogeneous patterns of mixing in the southwestern region, with high mixing regions 
indicating frequently imported infections, and low genetic mixing suggesting predominantly 
local transmission. In contrast, we did not observe elevated genetic mixing in the north (see 
robustness analysis in fig. S8).  
 
Genetic measures based on SNP barcodes were able to identify unions with a high likelihood of 
importation events, but not the origin of imported infections since sharing genetic similarity did 
not provide information about the direction of movement. Epidemiological models that describe 
directional travel patterns may be used to combine reported incidence with data from travel 
surveys or mobile phone data to reconstruct routes of importation. We used mobility estimates 
from the survey and from mobile phone data to infer the amount of travel between locations in a 
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simple epidemiological model that predicts the rate of infections moving between unions, and 
mapped the resulting malaria source and sink locations (see Materials and Methods, Fig. 4A, B, 
and fig. S9). We compared the relative contribution of imported infections to local transmission 
in each union, and predicted that locations in the southwestern area of the CHT had the highest 
proportion of imported cases, using both the travel survey and mobile phone data (Fig. 4A, B). 
The mobility patterns derived from mobile phone data suggested more infections were being 
imported overall, however qualitatively both mobile phone data and travel surveys identified 
overlapping areas of the country where the top locations of importations were occurring. The 
genetic mixing index therefore provides an independent confirmation that extensive parasite flow 
is occurring in the highly populated southwestern region of the CHT, while the epidemiological 
model – parameterized using travel survey data and mobile phone data – provides insights into 
the sources of imported infections. 
 
Generating combined transmission maps  
 
Combining unions with a high genetic mixing index together with unions with a high proportion 
of imported cases estimated from the epidemiological models, we created an updated risk map 
for malaria transmission in the CHT (Fig. 5D). Both the genetic mixing index and the 
epidemiological models suggest frequent mixing in the southwest of the CHT, in Cox’s Bazar 
district (Fig. 3B, 4A, B). The epidemiological model predictions were roughly consistent with 
the unions exhibiting a high genetic mixing index (Fig. 4C; see Supplementary Information for 
additional comparisons). Additionally, we identified frequent importation within the southwest 
region from epidemiological models parameterized using both travel survey and mobile phone 
data. In the model parameterized using travel survey data, parasites were predicted to be 
frequently imported from the forested areas of the CHT to the more populated, lower 
transmission areas, particularly unions within Cox’s Bazar district (Fig. 5A and fig. S10). The 
model parameterized by mobile phone data also identified the forested areas as a source, and in 
addition, suggested that parasites were imported from more populated, lower transmission areas 
in the west (Fig. 5B). Since travel surveys and mobile data had quite different geographic 
coverage (Fig. 1C, D), some discrepancies are expected. Nevertheless, these analyses support the 
idea that forested areas are an important source of imported infections. However, human 
movement around densely populated regions with relatively low transmission appears to 
contribute substantially to heterogeneous transmission across the southwest of the CHT (Fig. 5C). 
The updated map (Fig. 5D) highlights regions which were not identified in the incidence map 
(Fig. 1A), suggesting that additional regions which should be targeted to achieve malaria 
elimination nationally. 
 
Discussion 
 
Routine surveillance for malaria among control programs is primarily based on prevalence 
estimates and/or clinical incidence reported by hospitals, clinics, community health workers and 
non-governmental organizations. The geographic distribution of clinical cases may not reflect 
patterns of transmission, particularly in areas hosting highly mobile populations, where 
importation of parasites is common. Identifying the true foci of transmission is particularly 
important in elimination settings, such as Bangladesh. A number of approaches have been 
suggested to augment risk maps based on incidence data, including molecular surveillance and 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2018. ; https://doi.org/10.1101/421578doi: bioRxiv preprint 

https://doi.org/10.1101/421578
http://creativecommons.org/licenses/by/4.0/


epidemiological models parameterized by new data streams, such as mobile phone data. Here, 
our goal was to assess whether a combination of these approaches could provide actionable 
insights for control programs. As a complement to a simple map of clinical incidence, or model-
based geospatial maps based on incidence and prevalence estimates (https://map.ox.ac.uk), this 
combined approach illustrated that, while the eastern forested regions are indeed contributing 
imported infections to the lower transmission areas in the southwest, substantial local 
importation and genetic mixing is also occurring in these highly populated areas along the 
southwestern part of the CHT. This suggests that, while targeting interventions to forested areas 
is a key strategy for elimination, it might not be successful unless the mixing between low 
transmission settings in the southwest region is also addressed. We propose that, with 
appropriate sampling strategies, parasite genetic analysis could provide actionable insights for 
national control programs, and help evaluate the success of elimination programs.  
 
Our samples came from symptomatic patients who presented at a health facility, which would be 
the norm for routine reporting to the NMEP. We therefore did not include asymptomatic or 
subclinical infections, and it is unknown to what extent the parasite in symptomatic patients are 
representative of the entire parasite population in this area (35). Although we were able to enroll 
patients at 57 health facilities that covered a wide geographic area, these study sites represent 
59% of all CHT health facilities which report data to the NMEP. In several health facility 
catchment areas, non-government organizations provide malaria treatment, testing, and education 
outside health facilities as part of a malaria outreach initiative. In these areas, we may be under-
estimating true incidence, since fewer people seek malaria treatment at the government health 
clinics. Although these biases may impact epidemiological modeling results, the genetic mixing 
index – which may lack power when sample size is small, but is not biased by underestimating 
incidence –  can provide complementary insights.   
 
In this transmission setting and geography, genetic differentiation based on genetic barcodes 
between parasite populations cannot be easily distinguished by commonly used methods, such as 
average pairwise difference or FST (fig. S3). Consistent with our previous studies showing that 
the proportion of nearly identical genetic sequences is more sensitive to recent migration of 
pathogens (18, 36), in our data the proportion of parasites with nearly identical genetic barcodes 
was highly associated with geographic distance. This allowed us to develop a genetic mixing 
index, which may provide context-specific information about gene flow. However, the thresholds 
used for calculating this index would need to be determined in each setting independently, 
because the association between geographic distance and genetic similarity can vary between 
settings. This index could also be used at the individual level, to identify infections that are likely 
to be imported. We found three cases with a genetic mixing index greater than 1, suggesting that 
they were likely to be imported and, consistently, there was reported travel between their 
residence unions and the unions they shared similar barcodes with. Because few pairs of samples 
were nearly identical, the reliance of these and other spatial approaches on nearly-identical 
parasites means that small sample sizes may pose significant hurdles to appropriate analysis, 
which must be addressed if this approach is to be applied routinely.  
 
Mobile phone data and travel surveys are different from each other in terms of scale, geographic 
coverage, and granularity of data about human mobility in this context (37). Our travel survey 
provides detailed, individual-level information about infected individuals, although its quality is 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2018. ; https://doi.org/10.1101/421578doi: bioRxiv preprint 

https://doi.org/10.1101/421578
http://creativecommons.org/licenses/by/4.0/


dependent on the respondent’s ability to accurately recall their travel over the past two months. 
Although we included specific questions to help with recall bias, such as asking explicitly about 
travel to the forested areas, these biases likely still exist and may have limited our ability to infer 
parasite movement. Overall, travel survey data were sparse at the union level, and many 
individuals reported no travel (287 out of 2,090), or only travel within a single union (1240 out 
of 2,090). In contrast, mobile phones provide large volumes of data about the connectivity of the 
general population, but no individual-level information, and only in locations where cell towers 
exist. While mobile phone coverage was biased towards more populated and less forested areas, 
travel estimates in these areas provide insight into the general population connectivity. Given the 
biases in the incidence data (discussed above), in the epidemiological model, we chose a simple 
approach without having to estimate the underlying transmission or directly incorporating 
vectoral capacity. Remarkably, travel patterns from both data sources were consistent with 
results from parasite genetic analyses, confirming their complementarity. 

Every epidemiological and genetic data set has inherent limitations and biases, but multiple data 
layers can complement each other effectively to provide insights into different components of 
malaria transmission. This study represents a first example of the utility of combining these 
sources of information in the context of identifying imported infections, and we believe it shows 
that cost-effective sequencing approaches can be combined with simple epidemiological models 
to provide a more complete picture of malaria transmission on a subnational level. 
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Figure Legends 
Fig. 1. The incidence of malaria and spatial connectivity in the Chittagong Hill Tracts 
(CHT) Region. (A) The average monthly incidence per 1000 population of P. falciparium 
malaria from 2015-2016 as reported by the NMEP. Incidence was highest in the eastern portion 
of the CHT (shown in relation to the country borders) and decreased westward. (B) The forest 
coverage (%). (C) Unions sharing at least one parasite with identical genetic barcodes. (D) Top 
50% of most traveled routes reported between pairs of locations from the travel survey data. (E) 
Top 1% of routes traveled between pairs of locations from the mobile phone data. Unions were 
colored grey where data was collected on genetic (C), travel survey (D) or mobile phone data (E). 

Fig. 2. The association between genetic data, travel survey, and mobile phone data. (A) 
Sample pairs with smaller SNP differences were more likely to be from the same union; (B) if 
they did not live in the same union, they were more likely to be from unions with direct travel; 
(C) if these were not true, they were more likely to be from unions with indirect travel. (D) If 
sample pairs were from the same union, those with a smaller SNP difference were more likely to 
be from unions with higher direct travel (>0.1%) estimated from mobile phone data. Red lines 
are data and grey lines represent 100 permutation results.  

Fig. 3. The relationship between genetic and geographic distance. (A) The probability that 
parasites were sampled from locations within a specified geographic distance (red – purple) 
given different levels of SNP differences. The probability of coming from nearby locations 
decreased with the SNP difference. For example, if the SNP difference is smaller than 17.5%, the 
probability of residing at unions that were within 20km was higher than 0.95. (B) The genetic 
mixing index for each location. Unions were colored white if they did not include genetic data 
and grey if they included genetic data, but had an insufficient sample size. 
 
Fig. 4. The estimated non-locally acquired cases from the epidemiological modeling using 
travel survey and mobile phone data. (A)–(B) The estimated proportions of non-locally 
acquired parasites. We estimated the percentage of infections in each union that were acquired in 
other, destination unions (blue) versus locally acquired (red). For each union where travel data 
was available from the travel survey (A) or mobile phone data (B), the percentage was shown. 
Unions were colored according to their forest coverage (light green for low, dark green for high). 
(C) We classified genetic mixing index >0.1 as high and ≤0.1 as neutral. The estimated 
proportion of imported infections from the travel survey data (top panel) or mobile phone data 
(bottom panel) was higher for unions classified as a high genetic mixing index.  
 
Fig. 5. The estimated routes of parasite importations. (A)–(B) We estimated parasite flows 
between unions using epidemiological models parameterized by the travel survey (A) or mobile 
phone data (B). The top routes of parasite flows (the top 25% for travel survey and the top 1% 
for mobile phone) and their origins and destinations were shown by lines and dots, respectively. 
Unions were colored grey if they included travel survey (A) or mobile phone data (B). (C) The 
combined map showing top parasite importation routes from the travel survey (nodes colored 
blue), mobile phone data (nodes colored purple), or both (nodes colored black with a yellow 
outline). Unions were shown in red if they had a high genetic mixing index. (D) An updated risk 
map for malaria transmission in the CHT: unions with high genetic mixing index (>0.1) or a high 
proportion of imported cases estimated from the epidemiological models (blue: top 25% from the 
travel survey, top 1% from the mobile phone data), high incidence areas (red: the average 
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monthly incidence per 1000 population >4), and unions that have both high incidence and a high 
importation level (purple).  
 
Materials and Methods 
 
Malaria epidemiological and mobility data 
  
Confirmed malaria cases were enrolled at health facilities across Bandarban, Khagrachari, and 
Rangamati hill districts and adjacent hill fringe districts Chittagong, Cox’s Bazar, in Bangladesh 
(see fig. S1). In total, 2,090 individuals were included in the travel survey. The majority of these 
individuals were infected with P. falciparium (N=1,540), followed by P. vivax (N=332), mixed 
infections (N=215), and unknown (N=3). Trips from an individual’s residence village were 
quantified for work, frequent, infrequent, forest, and international travel including the destination 
(geocoded to the union level, 176 unions in total were included in the analysis), number of nights 
spent on the trip, frequency of travel (number of trips), and timing (when did the trip occur). 
Travel survey questions are listed in table S4. We also analyzed mobile phone calling data to 
estimate population-level mobility within the CHT. Mobile phone call data records were 
analyzed from 1 April – 30 September 2017 where individuals were assigned their most 
frequently used mobile phone tower per day. Tower locations were aggregated to the 
corresponding union. Travel between unions was calculated when subscribers’ most frequently 
used tower location (aggregated to the union) changed between consecutive days. Subscribers 
who did not change their locations were assumed to have remained in the same location on these 
days. Over this time period, we calculated the average number of daily trips between unions 
within the CHT using previously developed methods (38). Over half of the unions included in 
the travel survey included at least one mobile phone tower (N=147, 64%), however coverage was 
limited in the eastern most unions of the CHT.   
 
The total number of confirmed (by microscopy and RDT) Plasmodium falciparum cases is 
reported monthly to the NMEP (39). These data were aggregated to the corresponding upazila 
(N=95) per month from January 2015 to August 2018, and were used to calculate the average 
monthly malaria incidence using the estimated population sizes from the most recent census (40). 
For a subset of unions (N=141), monthly incidence data was available for unions and was used in 
lieu of the upazila level incidence data (Fig. 1A). The percent of forest coverage was calculated 
using estimates by Hansen et al. (41). 
 
Genetic analysis 
 
Of the 2,090 malaria positive patients enrolled, we obtained genetic barcodes of parasite samples 
from 1,412 individuals who resided in 134 separate unions. Barcodes were formed from 
genotypes at 101 SNPs at locations across the genome known to be highly differentiating. These 
SNPs are variable in all major global geographic regions and have moderate minor allele 
frequencies in these populations, as well as above average levels of between population FST. 
Genotypes were produced using the mass-spectrometry based platform from Agena (Jacob CG, 
in preparation). In addition, samples were genotyped for known drug resistance-related markers 
(table S5). We included both monoclonal and polyclonal samples in the analysis. 
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We defined a genetic mixing index as follows: 
 

Genetic mixing index =	

Prob	 far | genetically similar 	
Prob	 close | genetically similar

Prob	 far | not genetically similar 	
Prob	 close | not genetically similar

 

 
For each sample, we assigned it to the residence union and identified which other samples that 
were either genetically similar or dissimilar, and calculated the proportion of these samples that 
were geographically far or close. The proportions were then aggregated across individuals within 
each union. Since the majority of small SNP differences were between individuals who have 
physically nearby residences, if a sample had a higher-than-expected probability of sharing 
genetic similarity with samples far away, it is likely that it was imported. We used samples that 
were “not genetically similar” to control for the effect of sample sizes. This index is expected to 
increase with the proportion of imported cases and the number of “sources” (see examples in fig. 
S12). In this study, ≤17.5% SNP difference was chosen as the threshold for genetic similarity 
and ≥ 20km was chosen as the threshold for geographically far because the empirical probability 
of having ≤17.5% SNP difference above 20km was smaller than 0.05; the threshold of >30% 
SNP difference was used to determine “not genetically similar” parasites because the probability 
of observing >30% SNP difference varied minimally with geographic distance in Bangladesh 
(Fig. 3A and fig. S7). For each union, if Prob(close | genetically similar) was 0, we assumed that 
there was one pair that were genetically similar to prevent the index from being non-identifiable, 
and this made the index more conservative. Genetic mixing index >0.1 and ≤0.1 were classified 
as “high” and “neutral”, respectively.  
 
Other measures of genetic similarity and genetic differentiation between unions that were used 
are described in Supplementary Materials.  
 
Modeling parasite flow using travel survey and mobile phone data 
 
We calculated the number of trips between all pairs of unions from either the travel survey or 
mobile phone data. For the travel survey data, all individuals self-reported a residence union. We 
aggregated the trips to all other destinations by individuals for each residence union. For 
individuals who did not report any travel, we assumed they remained in their residence union. 
Based on the design of the travel survey, individuals could report travel for four separate reasons 
from their residence location (work, forest, frequent, and infrequent trips) (table S4). For 
individuals who reported travel for fewer options, we assumed that a non-report was equivalent 
to remaining in their residence union (i.e. if they only reported a travel destination for work, then 
for the remaining travel questions – forest, frequent, and infrequent – we assumed that the 
individual was at their residence location). We further normalized the number of trips between 
unions by the total number of trips originating from each residence union had, and obtained the 

proportion of trips from union i to union j for all pairs of unions, Tij, where 

€ 

Tij
j
∑ =1 for each i.  

 
Among 176 unions which had travel survey data, 104 of them (59%) had at least one mobile 
phone tower. We calculated the number of trips between unions with mobile phone towers 
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between consecutive days and used the average number of trips over 6 months. Similar to the 
travel survey, Tij was calculated by normalizing the number of trips each union made. 
 
Epidemiological estimates of parasite importations 
 
We estimated the parasite flow based on travel from the residence union scaled by the relative 
incidence in the destination union versus the residence union. The proportion of infections in 
union i coming from union j, Pij, was calculated as follows: 
  

 

€ 

Pij =
Tij

incidence j
incidencei

Tij
incidence j
incidenceij

∑
=

Tij incidence j
Tij incidence j

j
∑

. 

 
Pii and (1–Pii ) were the estimated proportion of local transmission and importations, respectively. 
We calculated a population-level measure of parasite flow, the number of cases in union i from 
union j (Mij), based on the number of clinical cases in each residence union as follows: 
 
 

€ 

Mij = Population size in union i( ) incidencei( )Pij . 
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