
 

1 

 

Title: A non-spatial account of place and grid cells based on clustering models 

of concept learning 

Authors: Robert M. Mok1*, Bradley C. Love1,2* 

Affiliations: 

1Department of Experimental Psychology, University College London, 26 Bedford Way, 

London, WC1H 0AP, United Kingdom. 

2The Alan Turing Institute, United Kingdom 

*Correspondence to: robert.mok@ucl.ac.uk, b.love@ucl.ac.uk 

 

ABSTRACT 

One view is that conceptual knowledge is organized using the circuitry in the medial 

temporal lobe (MTL) that supports spatial processing and navigation. In contrast, we 

find that a domain-general learning algorithm explains key findings in both spatial and 

conceptual domains. When the clustering model is applied to spatial navigation tasks, 

so called place and grid cell-like representations emerge because of the relatively 

uniform distribution of possible inputs in these tasks. The same mechanism applied to 

conceptual tasks, where the overall space can be higher-dimensional and sampling 

sparser, leads to representations more aligned with human conceptual knowledge. 

Although the types of memory supported by the MTL are superficially dissimilar, the 

information processing steps appear shared. Our account suggests that the MTL uses a 
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general-purpose algorithm to learn and organize context-relevant information in a useful 

format, rather than relying on navigation-specific neural circuitry.   
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INTRODUCTION 

Concepts organize experiences to enable generalization and inference. For example, a 

traveler encountering an unfamiliar bird species would reasonably infer the bird was 

born from an egg. One longstanding question is the basis for people’s abstract 

conceptual knowledge. One intuitive idea is that concepts ground in a more basic and 

concrete substrate, such as sensory-motor experience1. For example, abstract concepts 

such as time may be represented in terms of experience of space2. Relatedly, 

conceptual knowledge may be organized using circuitry in the medial temporal lobe 

(MTL) that supports navigation3. 

 

This view is supported by recent studies that find the brain’s responses to conceptual 

tasks parallel those previously found in spatial tasks. Place cells in the hippocampus4 

typically have single firing fields at circumscribed locations in a spatial environment, and 

grid cells in the medial entorhinal cortex (mEC)5–7 display multiple regularly-spaced 

firing fields arranged in a hexagonal pattern covering the environment.  These spatially-

tuned cells in the MTL are thought to implement a spatial cognitive map for navigation8–

11, and recent work suggests these cells also represent conceptual12 and task spaces13. 

One key question is whether the same brain systems and computations support 

concept learning, memory, and spatial navigation. 

 

One neglected possibility is that the relation between spatial and conceptual 

representations has been framed backwards. Perhaps, rather than concepts grounding 

in the machinery of navigation, spatial concepts are a limiting case of a single, more 
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general, learning system. Such a learning system would be tasked with learning all 

relevant concepts, including those tied to physical space (also see14,15, and Discussion). 

This general learning system would support learning concepts, which are typically 

clumpy in that they consist of clusters of interrelated features in a high-dimensional 

space16. For example, animals that fly tend to be small and have wings (see Fig. 1A). 

Not all possible combinations of features are relevant and represented. In contrast, 

many spatial tasks5 and their conceptual analogs12 typically involve a uniform and 

exhaustive sampling of all possible combinations within a low (two-) dimensional space 

corresponding to locations in an environment (see Fig. 1C-D).  

 

We evaluate whether a domain general account is plausible by applying successful 

models of human concept learning to spatial contexts. In concept learning studies, 

these models learn to represent experience in terms of conceptual clusters, which are 

not uniformly distributed17. For example, in a simple case with two clearly separable and 

internally coherent sets of objects, a clustering model would use one cluster to 

represent each concept, each of which would be centered amidst its members in 

representational space (e.g. Fig 1A).  

 

When the model is presented with a novel item, the closest cluster in representational 

space is activated, which signals the category membership of the item. An error-

monitoring signal gauges how well an item matches this closest cluster in 

representational space. In these models, only the closest cluster maintains non-zero 

activation (winner-takes-all), so an error-monitoring signal (entropy term) ‘monitors’ 
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activation of all existing clusters which indicates how close or far away the current 

location was from any cluster, acting as a cluster match (or non-match signal)17,18.  

 

These clustering representations successfully capture patterns of activity in the MTL19,20 

and are in accord with the notion that the human hippocampus contains concept cells in 

which individual cells respond to a specific concept, much like how a cluster in a 

possibly high-dimensional space can encode a concept21. Analogously, place cells 

respond to a location in a particular two-dimensional spatial context. It is important to 

note that clusters are abstract entities in the model, and there need not be a one-to-one 

mapping to single concept or place cell (e.g. a cluster can be represented by a group of 

place cells with similar tuning (c.f.22) – a functional mapping of multiple place cells to 

one cluster, and the place cell population to the whole cluster representation; Fig 2C). 

Furthermore, clustering models explain how individual episodes give rise to conceptual 

knowledge over the course of learning23, consistent with both the hippocampus’s 

importance in memory24,25. We evaluate whether the same mechanisms also offer a 

general understanding of place and grid cells, and their relationship to concepts. 

 

To facilitate this evaluation, we simplified the clustering models to only include aspects 

necessary for this contribution. Clustering models that capture behavior on a trial-by-trial 

basis typically recruit a new cluster in response to a surprising error. These models also 

learn attention weights that accentuate task-relevant stimulus dimensions and associate 

clusters with behavioral responses (e.g., respond “bird”). Without loss of generality, we 

simplified the models by pre-seeding with a fixed number of clusters and limiting 
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learning to updating cluster positions. In particular, the cluster most similar to the current 

stimulus updated its position in representational space to be closer (more similar) to its 

newest member (see Methods for full details), much like cluster updating in Kohonen 

learning maps26 and k-means clustering27.   

 

Fig. 1. Cluster learning applied to conceptual and spatial examples. (A) The most similar 

cluster moves (i.e., adjusts its tuning) toward its newest member and becomes associated 

with a response (blue for bird, red for mammal). (B) Out of a pool of many randomly tuned 

clusters, a subset comes to represent the two concepts over learning. (C-D) The same 

learning system applied to an agent locomoting in a circular or a square environment 

gives rise to a hexagonal cluster organization. How the stimulus space is sampled affects 

how clusters are distributed in the representational space. 

 

RESULTS 

A common learning mechanism for space and concepts 
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As shown in Fig. 1A, the model when applied to categorizing animals as birds or 

mammals learns to segregate the items into two groupings. These clusters can be seen 

as concept cells, akin to place cells (Fig. 2A-B). Notice that the items (i.e., experiences) 

and the clusters only cover a select portion of the stimulus space. For example, no 

animal exists that is as massive as an elephant and can fly. Clustering solutions capture 

the structure of the environment, which enables generalization to novel cases. 

 

In contrast, the same model applied to an agent exploring a typical laboratory 

environment leads to clusters that uniformly cover the entire representational space in a 

hexagonal pattern (see Fig. 1B). In the spatial case, there is no salient structure present 

in the input to the model, which results in clusters covering the representational space, 

much like how a bunch of tennis balls dropped into a square box will self-organize into a 

grid-like lattice according to the mathematics of packing28–33. In the spatial case, the 

clusters function in a similar way to a population of place cells that code for (i.e., 

discriminate) locations. 

 

In our account, grid-like responses arise from monitoring the match (inverse error) of the 

clustering solution (Fig. 2). In unsupervised learning, error or uncertainty is simply the 

inverse of how similar an item is to the best matching cluster. Notice that matching 

clusters in the spatial case should display a hexagonal pattern because of the 

hexagonal clustering pattern in representational space, resulting in canonical grid-like 

receptive fields (see Fig. 2B). In the conceptual case, we predict that typical grid cell 

firing patterns should not be observed because the clusters (i.e., place cells) do not 
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form a hexagon pattern (Fig. 2A) in representational space. One might object that our 

account is inconsistent with conceptual learning brain imaging studies that find grid-like 

response patterns12. However, these studies are consistent with the model because 

they follow the design principles of typical spatial studies -- all feature combinations 

within a 2-dimensional stimulus space are sampled, which would lead to a hexagonal 

clustering solution (Fig. 2B). 
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Fig. 2. Cluster representations after learning for conceptual and spatial tasks. (A) 

Clusters clump into two groups. Thus, novel bird and mammal stimuli will strongly 

activate one or the other grouping, which does not lead to a grid response across 
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possible stimuli. (B) In contrast, for the spatial case, clusters form a hexagonal grid 

which leads to a grid-like response across possible stimuli when cluster activity is 

monitored. (C) Clusters determine the receptive fields for a population of place or 

concept cells, and the cluster-monitoring/error-monitoring mechanism (grid or spatial 

cells) reflect the distribution of the clusters. Abstract cluster representations are 

instantiated by multiple cells in the hippocampus and medial entorhinal cortex (mEC) 

with similar firing fields to represent the same location (or concept) in the case of 

hippocampal cells or cluster match in the case of mEC cells. 

 

Clustering solutions match grid patterns in mEC 

To relate our account to typical spatial studies, we simulated an agent moving through 

its environment as in a free-foraging rodent experiment. As expected, learning led to 

clusters forming a hexagonal pattern (see examples in Fig. 3A-B, left). To assess this 

quantitatively, we computed the spatial autocorrelograms of the cluster activation maps 

(Fig 3A-B, right) to obtain the grid score, which reflects the degree six-fold hexagonal 

symmetry in the cluster activation pattern across trials5 (see Methods). We computed 

grid scores for each time bin during learning and found that grid scores tended to 

increase over learning in both the square (see Fig. 3C for examples and Fig. S1 for all 

conditions; mean slope: 0.0044, bootstrap CIs: [0.0040,0.0048]) and circular 

environment (mean slope: 0.0042, bootstrap CIs [0.0038,0.0046]; see Tables S1 and 

S2). 
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Following learning, we evaluated the gridness of the clustering solution (see examples 

in Fig. 3A-B and Fig. S2 and S3). A substantial proportion of simulations satisfied the 

criterion for grid-like organization, with 45.3% in the square and 38.6% in the circular 

environment, which closely match the proportions in empirical results (45% and 38%, 

respectively; see Supplementary Note 1)34,35. The average grid score in both the square 

environment (mean: 0.277, bootstrap CIs [0.273,0.0.280]) and circular environment 

(mean: 0.313, bootstrap CIs [0.309,0.318]) were greater than zero; see Tables S3 and 

S4). 
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Fig. 3. Clustering leads to activation maps similar to spatial cells in medial entorhinal 

cortex. (A-B) Examples of activation maps with grid patterns in a square environment 

(A-left) and their corresponding spatial autocorrelograms (A-right), and activation maps 

in a circular environment (B-left), and spatial autocorrelograms (B-right). (C) Examples 

showing grid scores increasing over learning in the square (top) and circle (bottom). (D-

E) Univariate scatterplots showing grid scores for simulations in the square (D) and 

circle (E). Dashed line represents the most conservative threshold for a grid ‘cell’. 

 

 

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 19, 2019. ; https://doi.org/10.1101/421842doi: bioRxiv preprint 

https://doi.org/10.1101/421842
http://creativecommons.org/licenses/by/4.0/


 

13 

 

Cluster representations are shaped by environmental geometry 

According to the clustering account, grid-like responses should only arise under very 

specific conditions in which the environment is fairly uniform. The imposition of any 

structure, including changes to the overall geometry of the environment, should affect the 

clustering in a manner that makes it less grid-like. 

 

Related, Krupic et al.36 identified grid cells in rodent mEC in a square box, then placed 

the animals in a trapezoid environment. They found that activity maps of grid cells 

became less grid-like in the trapezoid and that the decline was greatest for responses 

elicited on the narrow side of the trapezoid. To simulate this experiment, the model was 

first trained in a square and then transferred to a trapezoid environment (see Fig. 4A-D 

for an example and Fig. S4 for more examples). As in the empirical studies, the model’s 

overall grid scores declined in the trapezoid environment (Fig. 4E; trapezoid mean grid 

score: 0.058, bootstrap CIs [0.054,0.061]; Fig. 4F; square minus trapezoid mean: 0.219, 

bootstrap CIs [0.214,0.224]) and the grid scores were higher on the wide than on the 

narrow side of the trapezoid (Fig 4G; wide minus narrow mean: 0.133, bootstrap CIs 

[0.127,0.139]; see Tables S5-S7). 
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Fig. 4. The clustering model captures declines in grid responses in trapezoid 

environments. (A-D) Example of distortion in a trapezoid environment. (A) Example of 

an activity map in a trapezoid environment with 18 clusters. The dotted line demarcates 

the wide and narrow halves of the trapezoid (B) Spatial autocorrelogram of the 

trapezoid. (C) Spatial autocorrelograms of the wide (left) and (D) narrow (right) portion 

of the trapezoid in (A). (E) Univariate scatterplot showing grid scores for simulations in 

the trapezoid enclosure after learning in a square enclosure. (F) The difference 

(positive) between grid scores in the square and trapezoid. (G) The difference (positive) 

between grid scores for the wide and narrow halves of the trapezoid.  

 

DISCUSSION 

Previous work has explained a wide array of learning and memory phenomena in terms 

of clustering computations supported by the MTL23. Here, this same basic account was 

shown to account for basic spatial navigation phenomenon, including place and grid 

cell-like response patterns. Specifically, we showed that a learning mechanism that 
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seeks to minimize error in the task-relevant feature space captures conceptual structure 

in concept learning tasks and spatial structure in two-dimensional navigation contexts, 

which lead to place and grid cell-like representations. Rather than spatial mechanisms 

providing a scaffolding for more abstract conceptual knowledge3,10, the current results 

suggest that key findings in the spatial literature naturally arise as limiting cases of a 

more general concept learning mechanism. Whereas concepts can be clumpy, 

structured, and high dimensional, typical spatial tasks involve exhaustive and uniform 

sampling of simple two-dimensional environments, which leads to degenerate clustering 

solutions that pack clusters into a hexagon lattice, giving rise to so-called grid cells (Fig. 

3). The clustering account correctly predicted how deviations from these unstructured 

learning environments should reduce grid-like cell responses (Fig. 4). 

 

Our proposal stands in contrast to other ideas that a dedicated, phylogenetically older 

spatial navigation system in the MTL supports the newer, higher-level cognitive 

functions3,10. In particular, we suggest there are no intrinsic ‘place’ or ‘grid’ cells, but 

instead a flexible system that will represent the relevant variables at hand, including 

physical space. Emerging evidence shows that cells in the MTL exhibit mixed-selectivity 

in that they response to multiple variables, such as place and grid cells that also code 

for task-relevant sound frequency13, routes37,38, objects and context 39, and time40, 

suggesting a flexible code. Clustering is a flexible mechanism and can learn 

representations in multi-dimensional space, and therefore is a strong candidate 

mechanism for organizing multi-modal, complex information for consolidation of 

knowledge for memories and concepts. A growing body of work supports the idea that 
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the MTL system is a key part of a general learning system for organizing knowledge into 

a useful representation, which can be used for effective behavior and for memory 

consolidation.  

 

Clustering models organize information and represent concepts in feature space to 

enable the identification, classification, and generalization of novel objects17,18. These 

models can be closely linked to episodic memory23 and accounts of hippocampal function 

including relational memory41, statistical learning42, and transition statistics (successor 

representation14,43–45), with objects or memories arranged in the form of a cognitive map.  

 

Several recent accounts have proposed different mechanisms for the hippocampal-

entorhinal cell circuit in organizing non-spatial information10,14,15. One major feature that 

distinguishes our account is the role of place and grid cells. In our account, the 

hippocampus plays a central role in organizing information about the current environment 

or task, and the mEC monitors these hippocampal representations. As such, mEC cells 

do not play a representational role, but play a role in learning – monitoring error from 

existing clusters in order to update the cluster representation. Both grid and non-grid 

spatial cells contribute to this function, and the high gridness of a subset of these cells is 

a result of the environment or space.  

 

Other accounts hold that grid cells are key representational units in the cognitive map. 

For example, Stachenfeld and colleagues14 suggested that place cells encode predictions 

of future states, and grid cells encode a low-dimensional decomposition of this 
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hippocampal predictive map that may be useful for stabilizing the map and representing 

sub-goals. In contrast, we suggest that place cells (clusters) are the key representational 

units which encode locations in representational space and its structure, whereas grid 

cells monitor place cell activity. Behrens and colleagues15,46 proposed that the 

hippocampal-entorhinal circuit learns and represents structural knowledge useful for 

generalization. This account assumes objects are represented in lateral EC (lEC), 

structure is represented in mEC, and the hippocampus encodes conjunctions of the two. 

The learnt structural information in mEC can be used to generalize to different contexts 

with shared structure. In our account, conceptual knowledge and its structure is 

represented in the hippocampus, and any generalization to new instances from existing 

structure is from hippocampal representations (as generalization is performed in 

clustering models of concept learning). In contrast to the view that hippocampal 

representations arise from interactions between mEC and lEC, we argue for a central role 

of prefrontal cortex (representation of the task or relevant features) for shaping 

hippocampal representations, in combination with sensory inputs arriving via entorhinal 

and perirhinal cortex, and from anterior inferior temporal cortex to prefrontal cortex47,48 to 

the hippocampus.  

 

Whereas our account holds that place and grid cells emerge from a general learning 

system, Bellmund and colleagues suggest that the population code of place and grid cells 

play a role in mapping the dimensions of cognitive spaces in cognitive tasks, and that 

spatial navigation could serve as a model system to understand cognitive spaces10 (also 

see3). Although there are commonalities, their proposal suggests that place and grid cells 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 19, 2019. ; https://doi.org/10.1101/421842doi: bioRxiv preprint 

https://doi.org/10.1101/421842
http://creativecommons.org/licenses/by/4.0/


 

18 

 

provide or a ‘metric’ or distance code for abstract spaces, and that there is a 

straightforward mapping from neural representations of physical space to abstract space. 

In our view, when the context involves a significant degree of selective attention to 

stimulus features or task variables, the representational space can be warped to a 

different, more effective representation of the context at hand (e.g. reducing 

dimensionality by attending to the task-relevant dimensions49), which does not simply 

map onto the two-dimensional spatial case.  

 

Our higher-level account provides a general theoretical framework applicable to a large 

range of tasks, in contrast to lower-level models of place and grid cells which make 

specific predictions in spatial contexts but have less explanatory power to generalize 

across contexts. Our model’s contribution is providing a general mechanism that could 

be used across domains. Here, we provided an algorithmic-level model50 that links 

across two different computational accounts of task descriptions (spatial and concept 

tasks), and connects learning mechanisms from concept learning to spatial 

representations found at the single-cell level. Specifically, we were able to link the 

model representations to neural measures reported in the spatial literature, closely 

matching a number of empirical observations.  

 

Our model showed a similar proportion of grid-like cells in found in mEC. Other models 

either do not capture the hexagonal code (14; 90 degree grids)  or need to build in 

additional constraints (32; non-negativity constraint changes the 90 degree grid patterns 

to 60 degree grid patterns). When they find a large proportion of grid cells, they are too 
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good in that all the simulated cells are grid cells32,51. Other work have modeled or 

analyzed mathematical properties of the grid code (e.g.31,33), but also do not account for 

variability in the grid score in mEC cells. Here, we used a simple model from a high-

level perspective based on ideas from concept learning and memory and matched the 

proportion of grid cells with empirical data, suggesting that the constraints of the 

clustering model matches the constraints the brain uses to build these representations.  

 

 Our model also captured the causal relation between place and grid cells. In our 

account, grid cells play a cluster-match or error-monitoring function where they monitor 

(connected to and receive input from) place cells, and self-organize over time to 

produce a hexagonal firing pattern. This is consistent with developmental work52,53, 

where place cells appear in baby rats very early in life, and grid cells develop shortly 

after, as they explore and learn about spatial environments during normal development. 

Furthermore, inactivation of the hippocampus (with place cells) leads to grid cells in 

mEC losing the periodicity of their firing fields54, whereas inactivation of the mEC (with 

grid cells) only mildly affect hippocampal place fields55. Our account provides a different 

way of thinking about hippocampal-mEC interactions, which makes predictions that can 

guide future experiments and analyses. 

 

Our account suggests that grid-like responses from the MTL should be the exception, 

not the rule, when encoding abstract spaces. Outside the typical laboratory study, 

representational spaces may be high dimensional and not all dimensions or values 

along dimensions will be equally relevant, nor will all combination of values across 
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dimensions (see Fig 1A). In support of this characterization, empirical work has shown 

that grid cells also lose their grid-like properties in more complex environments such as 

mazes56. 

 

Our account made several predictions that matched empirical data, where changes in 

environmental geometry lead to specific changes in the cluster representation. The model 

also provides further predictions. First, the mapping from place to grid cells within a 

context should be predictable. An mEC grid or spatial cell is assumed to receive input 

from multiple place cells in the hippocampus, and that mEC cell should have fields in the 

same location as the place cells it receives input from (Fig. 2A-B). Therefore, if place cells 

that represent a certain location are inactivated, the corresponding fields of the mEC cells 

that monitor those place cells should also disappear. Since an mEC cell may receive 

inputs from multiple place cells, a strict test would require inactivation of all (or at least a 

large proportion of) place cells that represent one location (a cluster in the model), 

predicting all mEC cells should also lose those fields. Future work with large-scale 

concurrent recordings in multiple brain regions with specific (e.g. optogentic) manipulation 

may allow these predictions to be tested. One novel prediction of our model is that when 

error is high early in learning for a particular location, mEC cells should show a low firing 

rate and that best matching place cells should update their tunings to more strongly 

respond at that location (i.e., cluster updating). Updating a cluster (or recruiting a new 

cluster) should result in adjustment to the tuning of neighboring clusters, leading to a 

cascade of changes across place cells. When error is low, this signifies a good match 

between the environment and one’s current knowledge (cluster representation) and 
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experience, and little or no update is necessary. Inactivating the mEC should disrupt the 

error signal, which should disrupt learning in new environments. Recent evidence 

suggests place and grid cells both move towards goals or rewards57–59, and there seems 

to be a greater number of place cells recruited near goal locations60,61 consistent with 

more clusters moving towards the goal or more clusters recruited at locations near the 

goal. Finally, our model predicts that both grid and non-grid spatial cells should perform 

the same function, in both concept and spatial tasks. There is some evidence in the spatial 

domain which showed that non-grid spatial cells in mEC contain as much spatial 

information as grid cells and could serve similar functions62. 

 

The primary strength of our account, namely that it offers an algorithmic account of 

spatial and concept learning tasks, serves to highlight the need for complementary 

lower-level accounts. There are various open questions such as how place cell 

remapping occurs across contexts and partial remapping effects with disruption to 

mEC63,64. Our hope is that our model can eventually link to lower-level models that 

incorporate biological details such as spiking neurons and incorporate knowledge from 

memory research that can explain more empirical findings and provide new insights to 

these questions. Accounts are needed at multiple levels of analysis. We view our model 

as intermediary (at the algorithmic level) and aim for it to serve as a bridge between the 

goal of the computation and its implementation. Our model can serve as a guide for how 

operations such as cluster updating are physically realized.   
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Building this integrative bridge between the concept, memory, and spatial literatures 

allows for findings from one domain to inform the other. For example, task goals and 

attentional mechanisms in the concept literature have been found to shape hippocampal 

representations19,20. Analogous tasks can readily be constructed to evaluate whether 

spatial cells support broader information processing functions (cf.13) and how general 

learning algorithms shape their response properties (cf.14). Likewise, the concept 

literature emphasizes the hippocampus’s interactions with other brain areas, such as 

medial prefrontal cortex, to assist in encoding task relevant information19. When richer 

spatial tasks are considered, there is a ready set of candidate mechanisms and neural 

systems that may offer domain general explanations that link across brain, behavior, 

and computation. 
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METHODS 
 

Simulations 

A simulation run comprised of a learning period with a million trials (training phase) 

where clusters updated their positions in relation to the agent’s position as it explored 

the environment. After learning, we quantitatively assessed the regularity of the cluster 

position arrangements (test phase). We ran 1000 simulation runs for each condition 

(number of clusters). 

 

Simulation procedure and model specifications 

At the beginning of the learning phase of each simulation run, we set the number of 

clusters, number of learning trials, the environment (square, circle), the learning rate, 

and the learning update batch size. The number of clusters were set (ranging from 10 to 

30) and were initiated at random locations in the environment. The shape of the 

environment was defined by a set of points that could be visited by the agent. The 

square environment was 50 by 50, where each point was a location specified by a value 

on the x- and y-axis. The circular environment was defined by drawing a circle in Matlab 

with a radius of 50, and selecting the points within the bounds of the circle. The starting 

position and movement trajectory of the agent was then determined as a random walk 

over one million trials. The agent started at a random position and steps in the 

horizontal and vertical axes were computed separately. On each trial, the agent could 

go up, down, or stay on the vertical axis, and left, right, or stay on the horizontal axis. 

The step was sampled from [-4, -2, -1, -1, 0, 1, 1, 2, 4], where negative values are steps 

to the left, positive steps are steps to the right, and zero means stay. Movement on the 
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vertical dimension was determined in the same way, but negative values were upward 

steps and positive values were downwards steps. If the generated step brought the 

agent out of the environment, the step was cancelled and a new step was generated as 

above. 

 

We considered a simple winner-take-all network in which only the cluster at position 

𝒑𝒐𝒔𝒊 closest to stimulus 𝒙  (agent’s location) had a non-zero activation. Bold type is 

reserved for vectors. The distance between 𝐩𝐨𝐬𝐢 and 𝐱 is defined as: 

𝐝𝐢𝐬𝐭𝐢 =  ‖𝐩𝐨𝐬𝐢  −  𝐱‖                                                          ( 1 ) 

In the Kohonen learning rule, cluster 𝑖 updates its position 𝐩𝐨𝐬𝐢 to move toward stimulus 

𝐱 according to: 

∆𝐩𝐨𝐬𝐢 = 𝜂𝑡  ∙  (𝐱 − 𝐩𝐨𝐬𝐢)                                                     ( 2 ) 

where 𝜂𝑡 is the learning rate at time 𝑡. In the present simulations, we used batch 

updating to increase numerical stability in which 200 updates were performed 

simultaneously. The learning rate 𝜂 for batch time 𝑡 followed an annealing schedule: 

𝜂𝑡 =
𝜂0

1+ 𝜌 ∙ 𝑡
                                                                        ( 3 ) 

where 𝜂0 is the initial learning rate set to 0.25 and ρ is the annealing rate set to 0.02.  
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Assessing regularity of cluster positions 

To assess whether cluster positions formed a regular hexagonal structure with learning 

in a comparable manner way to grid cells found in the medial entorhinal cortex (mEC), 

we followed the method of Hafting et al.5 and Perez-Escobar et al.35. 

 

In Hafting et al.5, rodents traversed circular and square environments whilst they 

recorded electrophysiological signals from mEC neurons. They found cells that 

displayed multiple firing fields and resembled a grid of regularly tessellating triangles 

spanning the recorded environment. To assess this regularity quantitatively, they 

computed the spatial autocorrelogram of the firing rate map. If the fields were arranged 

in a regular grid, the center peak of the autocorrelogram should be surrounded by six 

equidistance peaks, forming a regular hexagon. The spatial autocorrelogram was 

computed as follows. With 𝜆1(𝑥, 𝑦) denoting the cluster activation at location (𝑥, 𝑦), the 

autocorrelation with spatial lags of 𝜏𝑥 and 𝜏𝑦 was estimated as: 

 

𝑟(𝜏𝑥, 𝜏𝑦) =

𝑛 ∑ 𝜆1(𝑥,𝑦)𝜆2(𝑥−𝜏𝑥 ,𝑦− 𝜏𝑦)

− ∑ 𝜆1(𝑥,𝑦) ∑ 𝜆2(𝑥−𝜏𝑥,𝑦− 𝜏𝑦)

√𝑛 ∑ 𝜆1(𝑥,𝑦)2−( ∑ 𝜆1(𝑥,𝑦))2 

× √𝑛 ∑ 𝜆2(𝑥−𝜏𝑥,𝑦− 𝜏𝑦)
2

−(∑ 𝜆2(𝑥−𝜏𝑥,𝑦− 𝜏𝑦))
2

                                         ( 4 ) 

 

where 𝑟(𝜏𝑥, 𝜏𝑦) is the autocorrelation between bins offset of 𝜏𝑥 and 𝜏𝑦, λ1(𝑥, 𝑦) and 

λ2(𝑥, 𝑦) are equivalent for an autocorrelation indicates the average firing rate of the cell 

in each location (𝑥, 𝑦), and 𝑛 is the number of spatial bins over which the estimation 

was made. 
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To quantify the degree of this regularity, a ‘grid score’ is commonly used35 by computing 

the correlation between the center region of the spatial autocorrelogram (a masked 

region including the six surrounding peaks but excluding the centre peak) and a 60 and 

120  rotated version (to assess the six-fold hexagonal symmetry) minus the correlation 

between the spatial autocorrelograms and a 30, 90,  and 150  rotated version (where 

there should be a low correlation): 

(𝒓𝟔𝟎°+ 𝒓𝟏𝟐𝟎°)

𝟐
−

(𝒓𝟑𝟎°+ 𝒓𝟗𝟎° + 𝒓𝟏𝟓𝟎°)

𝟑
                                                    ( 5 ) 

 

To assess the regularity of the cluster positions in a given environment in the current 

study and compare our results with empirical findings, we followed the method 

described above. We first computed activation maps to emulate firing rate maps in 

empirical neuronal recordings, and computed the spatial autocorrelogram to obtain the 

grid score. 

 

Assessing change in gridness during and after learning 

To characterize how cluster positions changed over time in the learning phase, 

activation maps were computed over trials during learning in a set of 200 simulation 

runs. Trials were binned into 20 equally spaced time bins with 50,000 trials in each time 

bin. We assumed that the activation strength of the winning cluster was a Gaussian 

function of distance from the agent:  

𝑎𝑐𝑡𝑖 =  
1

√2𝜋2
𝑒−

1

2
𝑑𝑖𝑠𝑡𝑖

2

                                                            ( 6 ) 
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where 𝑎𝑐𝑡𝑖 is cluster 𝑖’s activation strength. To compute activation maps for each time 

bin, activations were computed at each location and normalized by the number of visits 

by the agent (as done in empirical studies) to create a normalized activation map. The 

maps were smoothed (Gaussian kernel, SD=1), spatial autocorrelograms were 

computed, and grid scores were computed for each time bin. As the clusters moved 

continuously over time (not defined by the time bins), activation maps changed over 

each time bin. 

 

To test whether gridness increased over time, we used a linear model to estimate the 

slope (beta value) of the grid score of activation maps over each time bin (20 bins) for 

each simulation run during the learning phase. For each condition (number of clusters), 

we estimated the slope for 200 simulation runs, giving 200 beta values. We computed 

the mean and bootstrapped 95% confidence intervals (CIs) over all conditions and 

simulation runs to test if the grid score increased over time. We also computed the 

mean and bootstrapped 95% confidence intervals (CIs) over the 200 beta values for 

each condition. 

 

To assess gridness at the end of learning, a new movement trajectory was generated 

with 100,000 trials and cluster positions were fixed. Grid score after learning was 

assessed for all 1000 simulation runs. The activations and normalized activation map 

were computed over all test trials, the activation map was smoothed (Gaussian kernel, 

SD=1) and the spatial autocorrelogram of the activation map was computed following 

Hafting et al.5, except firing rates were replaced with normalized cluster activation 
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values at each location. Grid scores were then computed based on the spatial 

autocorrelograms using equation (5). We computed the mean grid scores and bootstrap 

95% CIs over all conditions and simulation runs. We also computed the mean and 

bootstrap 95% CIs over each condition. 

 

Classification and percentage of grid cell-like maps 

To assess whether activation maps showed a regular hexagonal pattern that would be 

classified as a ‘grid cell’ according to criteria set in empirical studies, and to compare 

the percentage of grid-like activation maps from our clustering model to the percentage 

of grid cells found in the mEC, we used a shuffling procedure to find the statistical 

threshold of the grid score that passes the criterion for a ‘grid cell’ described in Wills et 

al.52. 

 

The procedure was performed on spatial autocorrelograms of the activation maps 

produced on the test phase, where cluster positions were fixed. Since cluster activations 

were generated in relation to the agent’s location during movement, they were 

temporally correlated. Therefore, to break the location-activation relationship, the vector 

of activations were randomly shuffled in time, and we ensured that each location was at 

least 20 trials from its original position. The activation map was smoothed (Gaussian 

kernel, SD=1) then the grid score was computed. For each condition, this shuffling 

procedure was performed 500 times on each simulation run (on a subset of 200 

simulations). The threshold was defined as the 95th percentile of the 500 shuffled grid 

scores, giving 200 threshold values (from each simulation run) per condition (number of 
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clusters). The highest threshold value (most conservative) was used as the threshold for 

each condition. In the figure in the main text (Fig. 3D and 3E), the thresholds plotted are 

the highest (most conservative) thresholds across all conditions in that particular 

environment. 

 

For each condition, we computed the percentage of activation maps that exceeded the 

shuffled grid score threshold. We computed the percentage of ‘grid cells’ for each 

condition (number of clusters) separately and then computed the mean percentage 

across conditions. 

 

Gridness in Trapezoid Environments 

To simulate the effect of asymmetric boundaries in a trapezoid enclosure on gridness36, 

we took cluster positions from simulations after learning in square environments, and 

ran an additional learning phase for 250,000 trials. In this new learning phase, the 

shape of the environment was now a trapezoid (the agent could only move to those 

locations), and the annealed learning rate schedule continued (starting at 0.0025, 

reducing to 0.002 at the end). The trapezoid dimensions were 5 x 24 x 50 pixels, closely 

matching the proportions in36 (0.2 x 0.9 x 1.9 meters; multiplied by (50/1.9) equals to 

5.26, 23.7, and 50). 

 

In order to test whether the asymmetric boundaries of the trapezoid affected gridness, 

the trapezoid was split into two halves and we computed the grid score for the spatial 

autocorrelogram on the left (wide) and right (narrow) side of the shape. Due to 
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discretization, we split it as close to equal as possible. The wide half extended from the 

leftmost pixels to the 17th pixel (338 pixels), and the narrow side extended from the 18th 

pixel to the 50th pixel (339 pixels).  

 

Due to the asymmetrical shape of the trapezoid environment, the procedure for 

generating a movement trajectory above leads to a slightly biased sampling of the wide 

part of the trapezoid, and less exploration of the middle and top parts of the shape. To 

deal with this, we made a slight change to the possible steps after generating a step 

that brings the agent out of the environment, described below. For each trial, the step 

was generated as before. If the generated step was out of the environment, the step 

was cancelled, and the next step was determined as follows. If the step generated 

would have brought the agent out of the bottom of the trapezoid, the next step was 

sampled from [0,0,1,1] (stay or up). If the step brings the agent out to the top, the next 

step was sampled from [-1,-1,0,0] (down or stay). When the step takes the agent out of 

the left of the trapezoid, then the next step to be sampled on the horizontal axis were 

[0,1,1,2,4], towards the inner portion of the environment. If the step took the agent out of 

the right side of the trapezoid, the next step was generated as before, from [-4,-2,-1,-

1,0,1,1,2,4]. This is because when the agent is out of the trapezoid on the horizontal 

(left-right) axis, the agent could still be in the middle of the shape on the vertical axis, 

since the shape becomes more narrow as it reaches the right. Finally, when it lands 

exactly in the middle of the horizontal axis, but is out of the shape (on the horizontal 

axis), the next step to be sampled from on the vertical axis is [-1,0,1].  
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Code and Data Availability 

All simulation code, simulated data, and plotting scripts are available at 

https://osf.io/2dz3x/. Code is also available at https://github.com/robmok/code_gridCell. 
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FIGURE LEGENDS 

Fig. 1. Cluster learning applied to conceptual and spatial examples. (A) The most similar 

cluster moves (i.e., adjusts its tuning) toward its newest member and becomes associated 

with a response (blue for bird, red for mammal). (B) Out of a pool of many randomly tuned 

clusters, a subset comes to represent the two concepts over learning. (C-D) The same 

learning system applied to an agent locomoting in a circular or a square environment 

gives rise to a hexagonal cluster organization.  

 

Fig. 2. Cluster representations after learning for conceptual and spatial tasks. (A) 

Clusters clump into two groups. Thus, novel bird and mammal stimuli will strongly 

activate one or the other grouping, which does not lead to a grid response across 

possible stimuli. (B) In contrast, for the spatial case, clusters form a hexagonal grid 

which leads to a grid-like response across possible stimuli when cluster activity is 

monitored. 

 

Fig. 3. Clustering leads to activation maps similar to spatial cells in medial entorhinal 

cortex. (A-B) Examples of activation maps with grid patterns in a square environment 

(A-left) and their corresponding spatial autocorrelograms (A-right), and activation maps 

in a circular environment (B-left), and spatial autocorrelograms (B-right). (C) Examples 

showing grid scores increasing over learning in the square (top) and circle (bottom). (D-

E) Univariate scatterplots showing grid scores for simulations in the square (D) and 

circle (E). Dashed line represents the most conservative threshold for a grid ‘cell’. 

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 19, 2019. ; https://doi.org/10.1101/421842doi: bioRxiv preprint 

https://doi.org/10.1101/421842
http://creativecommons.org/licenses/by/4.0/


 

41 

 

Fig. 4. The clustering model captures declines in grid responses in trapezoid 

environments. (A-D) Example of distortion in a trapezoid environment. (A) Example of 

an activity map in a trapezoid environment with 18 clusters. The dotted line demarcates 

the wide and narrow halves of the trapezoid (B) Spatial autocorrelogram of the 

trapezoid. (C) Spatial autocorrelograms of the wide (left) and (D) narrow (right) portion 

of the trapezoid in (A). (E) Univariate scatterplot showing grid scores for simulations in 

the trapezoid enclosure after learning in a square enclosure. (F) The difference 

(positive) between grid scores in the square and trapezoid. (G) The difference (positive) 

between grid scores for the wide and narrow halves of the trapezoid.  
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SUPPLEMENTARY NOTE 1 

Comparable grid-like map proportions with empirical data 

Our simulations produce activations maps that emulate spatial cells in the mEC with 

multi-peaks spatial fields, so the appropriate test for the proportion of grid cells is the 

number of grid cells relative to the total number of spatial cells with multiple peaks. Most 

studies report percentage of grid cells in relation to all cell types (including head-

direction cells, border cells, etc.), but only a few reported and quantified the number of 

non-grid spatial cells, or if they are multi-peaked or not.  

 

Krupic et al.1 tested rodents in a square environment and reported the percentage of 

non-grid spatial cells relative to grid cells, and also the non-grid spatial cells that were 

periodic using a Fourier analysis. In the mEC population they found 26% grid cells, and 

44% non-grid spatial cells with multiple peaks, which means they found 

(26/(26+44))x100 = 37% grid cells relative to non-grid spatial cells. Using the Fourier 

analysis method on only spatial and head-direction cells (ignoring other cells in the 

population), they found 35% grid cells and 43% non-grid periodic spatial cells, and 2% 

conjunctive grid cells. This amounts to (35/(35+43))x100 = 45%, or (37/(37+43))x100 = 

46% grid cells with respect to non-grid periodic grid cells, matching to our 45.3% value 

in the square environment. Perez-Escobar et al.2 tested rodents in a circular 

environment and also report the number of non-grid spatial cells, finding 139 grid cells 

and 226 non-grid spatial cells, meaning they found (139/(139+226))*100 = 38% grid 

cells, matching our 38.6% value in the circular environment.  
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The percentage of grid-like cells show very little difference when the parameters are 

altered, such as a slower or faster learning rate, or an increase or reduction of the batch 

size. These results are provided in the code and simulated data. 
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Supplementary Figure 1. Univariate scatterplots showing grid scores increasing over 
learning in the square (A) and circle (B) for all conditions. 
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Supplementary Figure 2. Examples of activation maps with grid patterns (left) and their 
corresponding spatial autocorrelograms (right) in square (A-C) and circular (D-F) 
environments with 10, 12, and 18 clusters. 
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Supplementary Figure 3. Examples of activation maps with grid patterns (left) and their 
corresponding spatial autocorrelograms (right) in square (A-C) and circular (D-F) 
environments with 20, 23, and 25 clusters. 
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Supplementary Figure 4. Examples of activation maps in the trapezoid environment and 
their corresponding spatial autocorrelograms with (A-D) 14, (E-H) 20, and (I-L) 25 
clusters. (A) Activation map with 14 clusters, (B) spatial autocorrelogram of the full 
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trapezoid, (C) spatial autocorrelogram of the wide (left) half of the trapezoid, and (D) 
spatial autocorrelogram of the narrow (right) half of the trapezoid. Same conventions in 
(E-H) and (I-L). 
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 Mean bootstrap CIs 

10 clusters 0.0032  [0.0017, 0.0050] 

11 clusters 0.0003 [-0.0011, 0.0021] 

12 clusters 0.0097 [0.0075, 0.0123] 

13 clusters 0.0041 [0.0020, 0.0060] 

14 clusters 0.0058 [0.0037, 0.0083] 

15 clusters 0.0011 [-0.0006, 0.0031] 

16 clusters 0.0021 [-0.0001, 0.0035] 

17 clusters 0.0053 [0.0038, 0.0071] 

18 clusters 0.0060 [0.0041, 0.0080] 

19 clusters 0.0048 [0.0028, 0.0070] 

20 clusters 0.0051 [0.0035, 0.0073] 

21 clusters 0.0044 [0.0029, 0.0067] 

22 clusters 0.0020 [0.0005, 0.0038] 

23 clusters 0.0027 [0.0010, 0.0043] 

24 clusters 0.0035 [0.0024, 0.0051] 

25 clusters 0.0046 [0.0030, 0.0064] 

26 clusters 0.0045 [0.0032, 0.0059] 

27 clusters 0.0056 [0.0040, 0.0073] 

28 clusters 0.0059 [0.0045, 0.0077] 

29 clusters 0.0072 [0.0058, 0.0088] 

30 clusters 0.0052 [0.0038, 0.0065] 
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Supplementary Table 1. Mean slopes bootstrap confidence intervals (CIs) for learning 

over time in the square environment for each condition. 
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 Mean bootstrap CIs 

10 clusters 0.0051 [0.0035, 0.0066] 

11 clusters -0.0044 [-0.0060, -0.0032] 

12 clusters 0.0104 [0.0081, 0.0131] 

13 clusters -0.0038 [-0.0047, -0.0024] 

14 clusters 0.0044 [0.0031, 0.0059] 

15 clusters -0.0048 [-0.0060, -0.0033] 

16 clusters 0.0042 [0.0029, 0.0059] 

17 clusters 0.0081 [0.0065, 0.0096] 

18 clusters 0.0113 [0.0091, 0.0135] 

19 clusters 0.0056 [0.0033, 0.0084] 

20 clusters 0.0019 [0.0003, 0.0039] 

21 clusters 0.0017 [0.0003, 0.0033] 

22 clusters 0.0042 [0.0026, 0.0057] 

23 clusters 0.0038 [0.0023, 0.0052] 

24 clusters 0.0057 [0.0040, 0.0073] 

25 clusters 0.0043 [0.0031, 0.0057] 

26 clusters 0.0067 [0.0053, 0.0081] 

27 clusters 0.0057 [0.0045, 0.0069] 

28 clusters 0.0075 [0.0059, 0.0091] 

29 clusters 0.0060 [0.0046, 0.0073] 

30 clusters 0.0050 [0.0032, 0.0061] 
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Supplementary Table 2. Mean slopes bootstrap CIs for learning over time in the circular 

environment for each condition. 
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 Mean bootstrap CIs 

10 clusters 0.2291 [0.2162, 0.2414] 

11 clusters 0.1821 [0.1679, 0.1976] 

12 clusters 0.4685 [0.4478, 0.4905] 

13 clusters 0.3755 [0.3541, 0.3943] 

14 clusters 0.3554 [0.3407, 0.3702] 

15 clusters 0.2205 [0.2037, 0.2373] 

16 clusters 0.2130 [0.1952, 0.2301] 

17 clusters 0.2891 [0.2703, 0.3068] 

18 clusters 0.3544 [0.3370, 0.3734] 

19 clusters 0.2979 [0.2789, 0.3149] 

20 clusters 0.2941 [0.2760, 0.3102] 

21 clusters 0.2398 [0.2245, 0.2551] 

22 clusters 0.2315 [0.2167, 0.2483] 

23 clusters 0.2118 [0.1967, 0.2288] 

24 clusters 0.2315 [0.2166, 0.2473] 

25 clusters 0.2568 [0.2398, 0.2738] 

26 clusters 0.2644 [0.2492, 0.2834] 

27 clusters 0.2729 [0.2559, 0.2898] 

28 clusters 0.2862 [0.2702, 0.3040] 

29 clusters 0.2785 [0.2621, 0.2933] 

30 clusters 0.2549 [0.2390, 0.2692] 

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 19, 2019. ; https://doi.org/10.1101/421842doi: bioRxiv preprint 

https://doi.org/10.1101/421842
http://creativecommons.org/licenses/by/4.0/


 

55 

 

Supplementary Table 3. Mean grid scores and bootstrap CIs in the square environment 

for each condition. 
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 Mean bootstrap CIs 

10 clusters 0.4154 [0.3961, 0.4339] 

11 clusters 0.1071 [0.0961, 0.1184] 

12 clusters 0.5691 [0.5320, 0.6081] 

13 clusters 0.1003 [0.0893, 0.1133] 

14 clusters 0.2975 [0.2803, 0.3147] 

15 clusters 0.0896 [0.0776, 0.1022] 

16 clusters 0.2859 [0.2693, 0.3050] 

17 clusters 0.4905 [0.4699, 0.5086] 

18 clusters 0.5854 [0.5625, 0.6063] 

19 clusters 0.4141 [0.3901, 0.4424] 

20 clusters 0.3430 [0.3238, 0.3623] 

21 clusters 0.2894 [0.2720, 0.3060] 

22 clusters 0.2893 [0.2737, 0.3060] 

23 clusters 0.2854 [0.2686, 0.3008] 

24 clusters 0.2767 [0.2624, 0.2933] 

25 clusters 0.3013 [0.2851, 0.3171] 

26 clusters 0.3036 [0.2876, 0.3203] 

27 clusters 0.3029 [0.2887, 0.3197] 

28 clusters 0.2944 [0.2792, 0.3102] 

29 clusters 0.2873 [0.2715, 0.3022] 

30 clusters 0.2519 [0.2369, 0.2674] 
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Supplementary Table 4. Mean grid scores and bootstrap CIs in the circular environment 

for each condition. 
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 Mean bootstrap CIs 

10 clusters 0.0293 [0.0118, 0.0470] 

11 clusters -0.0097 [-0.0263, 0.0054] 

12 clusters -0.0871 [-0.0997, -0.0745] 

13 clusters -0.1177 [-0.1302, -0.1035] 

14 clusters -0.0369 [-0.0550, -0.0204] 

15 clusters 0.1096 [0.0921, 0.1282] 

16 clusters 0.1581 [0.1414, 0.1774] 

17 clusters 0.1074 [0.0912, 0.1233] 

18 clusters 0.0678 [0.0525, 0.0837] 

19 clusters 0.0309 [0.0161, 0.0466] 

20 clusters 0.0322 [0.0181, 0.0468] 

21 clusters 0.0332 [0.0179, 0.0505] 

22 clusters 0.0459 [0.0279, 0.0633] 

23 clusters 0.0568 [0.0385, 0.0751] 

24 clusters 0.0916 [0.0723, 0.1094] 

25 clusters 0.0981 [0.0793, 0.1143] 

26 clusters 0.1095 [0.0902, 0.1272] 

27 clusters 0.1250 [0.1092, 0.1415] 

28 clusters 0.1392 [0.1232, 0.1538] 

29 clusters 0.1120 [0.0973, 0.1275] 

30 clusters 0.1172 [0.1012, 0.1330] 
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Supplementary Table 5. Mean grid scores and bootstrap CIs in the trapezoid environment 

for each condition.  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 19, 2019. ; https://doi.org/10.1101/421842doi: bioRxiv preprint 

https://doi.org/10.1101/421842
http://creativecommons.org/licenses/by/4.0/


 

60 

 

 Mean bootstrap CIs 

10 clusters 0.1998 [0.1754, 0.2234] 

11 clusters 0.1918 [0.1749, 0.2096] 

12 clusters 0.5556 [0.5300, 0.5807] 

13 clusters 0.4931 [0.4671, 0.5162] 

14 clusters 0.3924 [0.3687, 0.4185] 

15 clusters 0.1110 [0.0869, 0.1365] 

16 clusters 0.0550 [0.0301, 0.0760] 

17 clusters 0.1818 [0.1551, 0.2073] 

18 clusters 0.2865 [0.2599, 0.3132] 

19 clusters 0.2670 [0.2427, 0.2900] 

20 clusters 0.2619 [0.2386, 0.2869] 

21 clusters 0.2066 [0.1851, 0.2283] 

22 clusters 0.1856 [0.1628, 0.2068] 

23 clusters 0.1549 [0.1309, 0.1779] 

24 clusters 0.1398 [0.1183, 0.1615] 

25 clusters 0.1587 [0.1360, 0.1832] 

26 clusters 0.1549 [0.1335, 0.1775] 

27 clusters 0.1479 [0.1231, 0.1680] 

28 clusters 0.1470 [0.1241, 0.1693] 

29 clusters 0.1666 [0.1448, 0.1874] 

30 clusters 0.1377 [0.1170, 0.1594] 
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Supplementary Table 6. Mean grid difference scores and bootstrap CIs between the 

square and trapezoid environment for each condition. 
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 Mean bootstrap CIs 

10 clusters 0.0179 [-0.0128, 0.0444] 

11 clusters 0.1503 [0.1263, 0.1765] 

12 clusters 0.1270 [0.1063, 0.1492] 

13 clusters 0.0965 [0.0786, 0.1151] 

14 clusters 0.0784 [0.0540, 0.1013] 

15 clusters 0.0767 [0.0491, 0.1089] 

16 clusters 0.1451 [0.1141, 0.1784] 

17 clusters 0.2387 [0.2069, 0.2691] 

18 clusters 0.3434 [0.3106, 0.3761] 

19 clusters 0.3020 [0.2723, 0.3361] 

20 clusters 0.2424 [0.2131, 0.2700] 

21 clusters 0.2161 [0.1875, 0.2423] 

22 clusters 0.1515 [0.1237, 0.1768] 

23 clusters 0.0999 [0.0746, 0.1278] 

24 clusters 0.1108 [0.0848, 0.1388] 

25 clusters 0.1122 [0.0834, 0.1392] 

26 clusters 0.0789 [0.0508, 0.1055] 

27 clusters 0.0635 [0.0359, 0.0940] 

28 clusters 0.0714 [0.0421, 0.1013] 

29 clusters 0.0197 [-0.0096, 0.0495] 

30 clusters 0.0499 [0.0214, 0.0754] 

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 19, 2019. ; https://doi.org/10.1101/421842doi: bioRxiv preprint 

https://doi.org/10.1101/421842
http://creativecommons.org/licenses/by/4.0/


 

63 

 

Supplementary Table 7. Mean grid difference scores and bootstrap CIs between the wide 

and narrow portion of the trapezoid environment for each condition. 
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