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Abstract

Neuroimaging techniques such as MRI have been widely used to explore the associations
between brain areas. Structural connectivity (SC) captures the anatomical pathways across
the brain and functional connectivity (FC) measures the correlation between the activity of
brain regions. These connectivity measures have been much studied using network theory
in order to uncover the distributed organization of brain structures, in particular FC for
task-specific brain communication. However, the application of network theory to study FC
matrices is often “static” despite the dynamic nature of time series obtained from fMRI. The
present study aims to overcome this limitation by introducing a network-oriented analysis
applied to whole-brain effective connectivity (EC) useful to interpret the brain dynamics.
Technically, we tune a multivariate Ornstein-Uhlenbeck process to reproduce the statistics
of the whole-brain resting-state fMRI signals, which provides estimates for EC as well as
input properties (similar to local excitabilities). The network analysis is then based on the
network response (or Green function) that describes the interactions between nodes across
time for the estimated dynamics. This model-based approach provides time-dependent graph-
like descriptors —communicability and flow— that characterize the roles that either nodes
or connections play in the propagation of activity within the network. They can be used at
both global and local levels, and also enables the comparison of estimates from real data with
surrogates (e.g., random network or ring lattice). In contrast to classical graph approaches
to study SC or FC, our framework stresses the importance of taking the temporal aspect of
fMRI signals into account. Our results show a merging of functional communities over time
(in which input properties play a role), moving from segregated to global integration of the
network activity. Our formalism sets a solid ground for the analysis and interpretation of
fMRI data, including task-evoked activity.

1. Introduction

The study of the brain network has attracted much attention in recent years as a collec-
tive attempt to understand how distributed and flexible cognitive functions operate. A large
body of data-driven studies has focused on the interpretation of brain connectivity measured
by structural and functional magnetic resonance imaging (sMRI and fMRI, respectively);5

for a review see [1]. A particular focus [2] has been on the relationship between the struc-
tural connectivity (SC), which is the architecture of connections between brain regions, and
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functional connectivity (FC), the correlation structure of the observed activity. Initially, SC
and FC were investigated using statistical descriptors designed for graphs such as the degree
distribution and clustering coefficient [3, 4, 5]. Brain areas can then be characterized —often10

in an off-the-shelf manner— such as highly connected hubs that are hypothesized to central-
ize information distributed across the brain. Following, the concept of communicability was
proposed as a model of interactions in a graph to link the network structure to the pairwise
functional associations of nodes [6]. It has then been used to derive measures that describe
the roles for nodes in networks [7] and to define a new version of centrality in graphs [8, 9].15

In the context of neuroimaging, graph communicability has been applied to evaluate the
contribution of SC topology in generating FC [10]. The SC topology explains part of the FC
structure, but this type of modeling is limited for explaining the time-series nature of the
fMRI measurements.

In this context the present study aims to describe the fMRI-related functional associations20

between the nodes in the brain network, also known as regions of interest (ROIs), while
properly taking time into account. We follow recent works that employed dynamic models of
the brain activity to link SC and FC [11]. A great variety of network designs has been explored
to combine experimental data in various levels of detail [12, 13, 14, 15, 16]. These dynamic
models typically involve a connectivity matrix that describes how the activity propagates25

in the network. This should be contrasted with another active line of research focusing on
the ‘dynamic FC’ that relies on sliding time windows to capture the statistical (functional)
dependences between ROIs on the timescale of a minute [17]. The statistical analysis of
these successive connectivity measures can lead to the definition of “states” for the whole
network or ROIs [18, 19, 20]. Only after, the transitions between the obtained states are30

examined, for instance using hidden Markov models (HMMs) that generate dynamic FC in
each window [21, 22]. A common aspect for the second type of studies is the representation of
BOLD time series as independent “static” snapshots corrupted by noise, without considering
the transition between successive BOLD activities. Instead, we aim to address this limitation
by providing a network-oriented analysis that takes into account the propagation nature of35

BOLD signals.
Definition of integration measures have been proposed to quantify how nodes in the

network exchange information at the scale of the whole network, thus building a global
workspace [23, 24]. Previously-proposed definitions of integration have focused the similarity
as measured using mutual information or the cross-correlation between the observed activity40

of subgroups of nodes in the network [25, 26, 27]. The resulting ‘network complexity’ of
the network activity reflects the superposed contribution of hubs and network motifs such as
modules [28]. Moreover, when network analysis is used with generative models to interpret the
collective pattern of interactions between ROIs or quantify integration, it is most often applied
on the model activity, such as the model dynamic FC to take time into account [29, 30, 31].45

Therefore, it can be argued that these previously-proposed measures for integration focus on
the observed or generated activity rather than their causes. To explore this point we will
compare network analyses based on the ROI correlation pattern and based on measures of
the causal interactions between ROIs in a model.

Here we present a model-based approach that focuses on the effective connectivity (EC)50

instead of the FC or SC as a basis for network analysis. It aims to incorporate time in the
network analysis by accounting for the propagation nature of the BOLD dynamics. Our
framework relies on a dynamic model —multivariate Ornstein-Uhlenbeck (MOU) process—
fitted to whole-brain BOLD signals, where EC measures the causal interactions between ROIs
and relates to the “generator” of the model activity [14, 32]. The relationship with other55

network models such as dynamic causal model [33] will be discussed later. The mathematical
tractability of the MOU allows for the interpretation of the model estimates –in particular
EC— in terms of interaction over time between the brain regions [34]. This provides a consis-
tent analysis based on the same network dynamics from the estimation to the interpretation,
in contrast to previously-proposed formalisms that applied “artificial” dynamics on static60

networks obtained from neuroimaging data [35, 36, 37, 6, 7]. The rationale is the following:
The dynamic model is an assumption (a prior) about the spatio-temporal structure of the
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empirical time series and the estimation is a “projection” of the fMRI data on the space of
model parameters. The tuned dynamic model can then be used to examine the interactions
between the brain regions.65

After recapitulating in Methods important points about the model optimization to fMRI
data [14], we present the formalism to analyze complex network dynamics with linear cou-
pling [34]. It is based on two core graph-like measures for the interactions between brain
regions: dynamic communicability and flow, which depend over time and serve as the ba-
sis for multivariate descriptors. We illustrate the framework using resting-state fMRI and70

diffusion MRI of the ARCHI database acquired by the European project Connect [38, 39]
and freely available from the HBP Neuroinformatics platform. In particular, we show how
communicability provides a finer and more general description of the network dynamics —by
capturing the propagation of the BOLD signals throughout the whole network via EC— than
classical analysis based on FC or SC. At the end, we perform community analysis and show75

how the network displays integration of information, first locally and then globally.

2. Methods

2.1. Acquisition of resting-state fMRI time series and structural connectomes

The analyses were applied to the ARCHI database [38, 39] composed of 79 subjects (32
females, mean age 23.65 years, SD=5.16) with high quality T1-weighted images and diffusion80

data, acquired on a Magnetom TimTrio 3T MRI System (Siemens Healthcare, Erlangen,
Germany).

Resting state fMRI data were acquired using the following parameters: GRE EPI se-
quence, isotropic spatial resolution 3.0×3.0×3.0 mm3, 40 slices, field of view 192 mm, phase
FOV 100%, slice thickness 3.0 mm, TE = 30 ms, TR = 2400 ms, flip angle FA = 81◦, matrix85

64 × 64, read bandwidth RBW = 2442 Hz/pixel, echo spacing ES = 0.47 ms, 1 excitation,
interlaced multislice, EPI factor 64, total scan time 9 min 47 s.

The MRI protocol used in this study included anatomical T1-weighted images at one
millimeter isotropic spatial resolution, a B0 fieldmap to correct for susceptibility artifacts, and
a high angular resolution diffusion imaging (HARDI) dataset along 60 optimized directions90

at a b value of 1500 s/mm2 with an isotropic spatial resolution of 1.7× 1.7× 1.7 mm3. The
imaging parameters were as follows: T1-weighted data: 160 slices, FOV 256 mm, Phase FOV
93.8%, slice thickness, 1.1 mm, TE/TR = 2.98/2300 ms, TI = 900 ms, FA = 9◦, matrix
256 × 240, RBW=240 Hz/pixel; diffusion data: 70 slices, field of view 220 mm, phase FOV
100%, slice thickness 1.7 mm, TE = 93 ms, TR=14 s, flip angle FA = 90◦, matrix 128× 128,95

read bandwidth RBW = 1502 Hz/pixel, echo spacing ES = 0.75 ms, 1 excitation, partial
Fourier factor PF = 6/8, parallel acceleration factor GRAPPA = 2, total scan time 16 min
46 s.

Both structural and functional MRI data were processed using Freesurfer 5.3 software [40],
which performed cortical tissue (gray and white matters) segmentation, and surface mesh100

building for both pial interface and grey/white interface of each hemisphere. Surface align-
ment was performed to an inter-subject template, allowing the projection of atlases on the
anatomical meshes, involving the Freesurfer Desikan atlas [41] and the surface projection
of the AAL atlas [42]. The fMRI activity was obtained by averaging the projected BOLD
signals over each ROI of the AAL atlas, see Table 1 below.105

Individual SC matrices were built using Diffusion weight imaging (DWI) following the
processing steps of the Connectomist-2.0 software [43]: artifact correction, geometrical dis-
tortion correction, analytical Q-ball model [44], streamline probabilistic fiber tracking inside
an improved T1-based brain mask [45] using 27 seeds per voxel at the T1 image resolution
and propagation step size of 0.4 mm. Unreliable short fibers under 30 mm were removed,110

then region-to-region SC matrices could be built by counting fibers connecting regions of
a given atlas [46]. From the individual SC matrices, we calculate a generic SC matrix by
averaging over all subjects.

3

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 19, 2018. ; https://doi.org/10.1101/421883doi: bioRxiv preprint 

https://doi.org/10.1101/421883
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1: List of the 43 ROI labels for the AAL parcellation [42]. The order of Fig. 3a, from top to bottom.
The parcellation has 1 such ROI for each hemisphere.

Label Description
ITMP inferior temporal cortex
TPM middle temporal pole
MTMP middle temporal cortex
TPS superior temporal pole
STMP superior temporal cortex
HSCHL Heschl gyrus
PARAC paracentral lobule
POSTC postcentral gyrus
PREC precentral gyrus
PCUN precuneus
ANG angular gyrus
SMAR supramarginal cortex
IPAR inferior parietal cortex
SPAR superior parietal gyrus
FUS fusiform gyrus
IOCC inferior occipital cortex
MOCC middle occipital cortex
SOCC superior occipital cortex
LING lingual gyrus
CUN cuneus
CALC calcarine gyrus
INS insula
AMYG amygdala
PARH parahippocampal cortex
HIP hippocampus
CPOST cingulate posterior cortex
CMID cingulate middle cortex
CANT cingulate anterior cortex
OFCL orbitofrontal cortex lateral
OFCP orbitofrontal cortex posterior
OFCA orbitofrontal cortex anterior
OFCM orbitofrontal cortex medial
REC rectus gyrus
ORBM orbitrofrontal medial cortex
SFM frontal superior medial
SMA superior motor area
ROL rolandic opercularis
ORBI pars orbitalis
PTRI pars triangularis
OPER pars opercularis
MF middle frontal cortex
SF superior frontal cortex
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2.2. Noise-diffusion model to interpret whole-brain fMRI data

The network dynamic model [14, 32] combines two key aspects:115

• A whole-brain approach [12] is necessary to properly take into account the distributed
nature of information conveyed by BOLD signals, as was experimentally observed for
high-level cognition [47] or neuropathologies [48].

• In the model the directional connections between brain regions describe causal inter-
actions, which corresponds to the concept of EC that was developed along with the120

dynamic causal model [33]. Here the EC weights are optimized such that the model
reproduces the spatio-temporal structure of the BOLD signals, which was shown to
convey information about the behavior condition of subjects [49, 50, 51]. This con-
trasts to the traditional “spatial” FC, which is calculated using the Pearson correlation
for pairs of BOLD signals, but does not involve time lags.125

Initially, we use the binarized average SC matrix described in the previous section for all
subjects to determine which intracortical connections exist in the model (i.e., the EC topol-
ogy). This reduces the number of parameters, improving the robustness of the estimation.
As detailed below, the EC weights come from the optimization of the model to reproduce
the spatio-temporal structure of the BOLD signals, which is simply the covariances without130

and with a time lag equal to 1 TR (temporal resolution of the BOLD measurements). This
contrast to previous studies that used SC values for the connectivity weights in their model,
while tuning local dynamics such as Kuramoto oscillators or mean-field approximation of
spiking neurons [52, 53, 13]. Our estimation procedure can be seen as a “projection” of the
empirical spatio-temporal BOLD structure on the space of model parameters. Importantly,135

the individual values of the estimated EC weights do not depend on SC values, but are de-
termined by the optimization procedure that strive for the model FC to best reproduce the
empirical FC. It is also worth noting that EC is a directed and weighted matrix.

Now we recall details about the MOU process that will be useful for the calculation of our
graph-like measures. The MOU process is determined by (i) a local leakage, (ii) a directed
weighted graph associated with linear coupling and (iii) fluctuating inputs with zero mean
and given covariances. In matrix form it reads

dx = Jxdt + dζ , (1)

where the Jacobian matrix J is determined by the decay time constant τ (identical for all
ROIs) and Aij is the EC weight from ROI j to ROI i (different from the usual convention in
graph theory):

Jij = −δij
τ

+Aij ; (2)

here δij is the Kronecker delta (equal to 1 when i = j and 0 otherwise). Similar to a transition
matrix for a Markov chain, the whole-brain EC determines the Jacobian of the dynamic140

system. Last, the fluctuating input to ROI i is denoted by ζi is a Wiener process (temporally
white noise). The covariance matrix of all ζi is denoted by Σ. To ensure stable dynamics, the
local leakage determined by τ corresponds to a Jacobian J whose eigenvalues have strictly
negative real part. In particular, the dominating eigenvalue (or spectral diameter) of the
weight matrix A needs to satisfy λmax < −1/τ .145

In practice, the topology of the network (where absent connections correspond to zero
EC weights) determined by SC defines a sparse EC matrix [14]. For each fMRI session, we
calculate τ from the BOLD autocovariances, then estimate A and Σ. To do so, each of the
Aij for existing connections and Σii are iteratively optimized to reproduce the covariances
of fMRI signals involving time shifts (empirical FC matrices). Here we constrain Σ to be150

diagonal (although it may involve cross-covariances in addition to variances in general). The
corresponding Lyapunov optimization is detailed in previous papers [14, 32]. Note that we
use simplified notation for compactness here, as compared to those previous publications.
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2.3. Communicability and flow to measure interactions between ROIs across time

Following our previous paper [34], we firstly define “dynamic” communicability to char-
acterize the network interactions due to the connectivity A, ignoring the input properties Σ.
Our definition is adapted to study complex networks associated with realistic (stable) dy-
namics where time has a natural and concrete meaning. In comparison, a previous version of
communicability for graphs [6] relied on abstract dynamics. The basis of our framework is the
network response over time, or Green function, which is the basis of the concept of dynamic
communicability, which focuses on the temporal evolution of such interactions. Although
we constrain the present study to the MOU process, our framework can be easily adapted
to distinct local dynamics for which the Green function is known. In addition to the EC
matrix A, the MOU dynamics is determined by the input properties. Here communicability
is the “deformation” of the Green function eJt of the MOU process due to the presence of the
(weighted and directed) matrix A, as compared to the Green function eJ

0t corresponding to
the Jacobian with leakage only and no connectivity, J0

ij = −δij/τ . It is defined as the family
of time-dependent matrices depicted in Fig. 1a:

C(t) = ||J0||
(
eJt − eJ

0t
)
. (3)

The scaling factor ||J0||−1 = ||
∫
t≥0 e

J0tdt|| where || · || is the L1-norm for matrices (i.e., sum155

of elements in absolute value) is used for normalization purpose [34]. Recall that t ≥ 0 here
is the time for the propagation of activity in the network, referred to as ‘impulse-response
time’ in the figures.

From the time-dependent matrices C(t), we define the total communicability that sums
all interactions

SC(t) =
∑
{i,j}

Cij(t) . (4)

Total communicability for graphs has been used to define a type of centrality that measures
how “well-connected” nodes are [8] and corresponds here to how much activity they exchange.
We also define the diversity (or heterogeneity) among the ROI interactions in the time-
dependent matrices C(t), which can be seen as a proxy for their homogenization over time:

DC(t) =
σ{i,j}[Cij(t)]
µ{i,j}[Cij(t)]

, (5)

defined as a coefficient of variation where µ{i,j} and σ{i,j} are the mean and standard devi-
ation over the matrix elements indexed by (i, j).160

To incorporate the effect of local spontaneous activity or excitability (inputs in the model),
we define the flow that fully characterizes the complex network dynamics [34]. The input
statistics of interest for a stable MOU process correspond to the input (co)variance matrix Σ,
which are independent parameters from the EC matrix A. This is represented by the purple
arrows with various thicknesses in Fig. 1a, indicating that the ROIs may receive inputs with
various levels of fluctuations. The Σ matrix may be non-diagonal when ROIs experience
cross-correlated noise [32], as represented by the purple dashed arrows. The flow describes
the propagation of local fluctuating activity over time via the recurrent connectivity and is
defined by the

F(t) = C(t)
√

Σ , (6)

where
√

Σ is the real symmetric “square-root” matrix of the input covariance matrix, satis-

fying Σ =
√

Σ
√

Σ
†
. Communicability is thus a particular case of the flow for homogeneous

input statistics. Similar expressions to Eqs. (4) and (5) are used to define SF (t) and DF (t)
for the flow matrices F(t).

2.4. Community detection165

To detect communities from C(t) or F(t), we rely on Newman’s greedy algorithm for mod-
ularity [54] that was originally designed for weight-based communities in a graph. Adapting
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it here to the flow matrix F(t) at a given time t, we seek for communities where ROIs have
strong bidirectional flow interactions. In the same manner as with weighted modularity, we
calculate a null model for EC:

Anull =
ainaout†

SA
. (7)

Note that we preserve the empty diagonal. The resulting matrix contains from the expected
weight for each connection, given the observed input strengths ain and output strengths
aout; SA is the total sum of the weights in A. Then we caclulate Fnull(t) using Eq. (6) with
Anull instead of A. Starting from a partition where each ROI is a singleton community, the
algorithm iteratively aggregates ROIs to form a partition of K communities denoted by Sk

that maximizes the following quality function:

Φ =
∑

1≤k≤K

∑
i,j∈Sk

(
F(t)−Fnull(t)

)
ij

+
(
F(t)−Fnull(t)

)
ji
. (8)

At each step of the greedy algorithm, the merging of two of the current communities that
maximizes the increase of Φ is performed. Communicability-based communities are defined
similarly using C(t) and the corresponding null model Cnull(t).

3. Quantification of brain communication evaluated from fMRI data

This section applies the presented framework to fMRI data (see Fig. 1a). We use the model170

estimates obtained from 77 subjects recorded during 8 minutes at rest with eyes closed in
a scanner and the python code available on github.com/MatthieuGilson/WBLEC_toolbox).
In this study we present results on averages over subjects, leaving individual discrepancies for
future work. We firstly show how communicability provides information about the topology
of the estimated EC (leaving out the estimated input variances Σ), from the global level of175

the whole network to the local level of individual connections or ROIs, including the detection
of communities of ROIs. Finally, we take into account the estimated inputs related to Σ (in
purple in the right diagram of Fig. 1a) and analyze the flow. (Note that communicability is
a particular case of the flow when inputs are homogeneous, which will be discussed later.)

3.1. Communicability provides both global and local information about the brain network180

In the present formalism, communicability is the family of matrices C(t) in Fig. 1b that
describe the interactions between pairs of ROIs across time, as the response to a standard
perturbation occurring at the source ROI at time t = 0. In essence, each directed matrix
measures how a fluctuation applied at a source ROI propagates throughout the network
via the recurrent EC and impacts the target ROI later in time. The corresponding lag is185

referred to as ‘impulse-response time’ t. The theory is based on the Green function or impulse
response of the network, see Eq. (3) in Methods. This directed measure thus integrates all
possible pathways between the source and target ROIs, while taking the nodal dynamics of
the model into account (here a exponential decay related to a time constant τ , see Fig. 1a).

Initially aligned with EC (i.e., interactions through the strong direct connections domi-190

nate), the pattern of communicability progressively reshapes and the superiority of strong EC
weights dilutes, as illustrated in Fig. 1c. In particular, unconnected regions may have strong
communicability due to network effects (see crosses for EC = 0 on the left of the plots). This
homogenization results from the superposed loops in the EC matrix that generate a strong
overall feedback that distributes the effect of the fluctuation.195

The strong network feedback is further illustrated by the total dynamic communicability
SC in the top panel of Fig. 1d raises to reach a maximum around 12 TR, before decaying
very slowly. The homogenization is reflected in the communicability diversity DC (bottom
panel) that quickly decays to stabilize after 20 TR. Note that, meanwhile, the SC is still high.
This curves provide a signature for the estimated EC, which can be analyzed to uncover its200

topological properties.
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Fig. 1: Whole-brain communicability evaluated from fMRI signals. a) From the fMRI signals (left
plot), these parameters for a dynamic system are estimated (right diagram). The network parameters comprise
of the EC matrix A (red arrows) and self-inhibition corresponding to the time constant τ (blue arrows),
see Eq. (2). Note that not all possible connections exist in the network, whose topology is determined by
anatomical SC. In addition, the local excitabilities or inputs (purple arrows) are determined by their covariance
matrix Σ. Here only 4 ROIs are represented for readability. Details about the dynamic model and estimation
procedure can be found in previous studies [14]. b) Communicability for a single subject, corresponding to
the family of matrices C(t) in Eq. (3) that involves the exponential of the Jacobian multiplied by time t ≥ 0.
Recall that t corresponds to the integration time for fluctuating activity in the network. Communicability is a
particular case of the flow where input statistics are ignored. c) Match between EC and communicability for
each pair of ROIs (red crosses) at three times for the same subject as in panel b. d) Total communicability SC
defined as in Eq. (4) that measures the overall network feedback. The x-axis represents the impulse-response
time in units of the scanner measurements (time resolution, or TR, equal to 2 s). The curves correspond to
the average over the 77 subjects and the error bars the standard deviation. Diversity of communicability DC

defined as in Eq. (5) that quantifies the homogenization of interactions across time.
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Fig. 2: Comparison of the estimated model with surrogates. a) Randomized version of the estimated
EC matrix A (similar to the left panel in Fig. 1b) by globally shuffling the target ROIs. b) The null-model
connectivity is calculated using Eq. (7) redistributes the weights while preserving the input and output
strengths for each ROI. This results in a full matrix, apart from the empty diagonal. c) The ring surrogates
consider the initial ROI order and reallocate the non-zero weights in the original A to the preceding ROIs.
The ring preserves the number of connections (hence the density), whereas the shortened ring corresponds to
grouping connections three by three, resulting in fewer connections. d) The total communicability SC and
the corresponding diversity DC in red are the same as in Fig. 1d, but the error bars indicate the standard
error of the mean here (much smaller than the standard deviation). The colored areas correspond to the
surrogate networks in a to c, which preserve part of the connectivity statistics of the original A (see Table 2).
The transformations being applied individually for each subject. The variability of the curves (represented
by the thickness of the plotted area) corresponds to the standard error of the means over subjects, as error
bars for the red curve.
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Table 2: This table shows which properties of the original network are preserved (3) or randomized (7) by
the surrogates.

Property random null ring short ring
Mean weight 3 3 3 3
In weight for each ROI 7 3 3 3
Out weight for each ROI 7 3 7 7
Density 3 7 3 7

3.2. Comparison with reference networks

Communicability enables the quantitative comparison of the estimate for brain dynamics
with other reference network models. Here we compare the global measures of total com-
municability SC and its diversity DC in Fig. 1d to their counterparts for surrogate networks205

obtained by manipulating the EC estimates. The comparison between the timescales associ-
ated with the corresponding curves provides insight about equivalent topologies to generate
dynamics similar to the model estimates. Topological properties such as strong feedback and
short path length are reflected in SC and DC [34].

In Fig. 2d, the evolution of SC and DC for the original data (red curves) is compared with210

four surrogate models:

• The random surrogate in Fig. 2a reallocates the weights to a pair of ROIs. The exact
weight distribution is conserved in the network, but not for each ROIs.

• The null model in Fig. 2b was proposed for Newman modularity [54] to detect commu-
nities and corresponds to resulting a full matrix with for each pair of ROIs the expected215

weight that preserves the distribution of input and output strengths over each ROI, see
Eq. (7) for details.

• The ring surrogate in Fig. 2c (left matrix) reorganizes the input connections for each
ROI to promote local connectivity with a ring topology determined by the index of the
ROIs. In this arbitrary topology, distant ROIs are not directly connected.220

• The shortened ring in Fig. 2c (right matrix) is similar to the previous ring surrogate,
but with pooling every 3 input connections, resulting in lower density (by a factor 3).

In each case, the shuffling of the original estimate is performed for each subject and the
average over subjects is then calculated. Importantly, these surrogates all destroy parts of
the statistics of the original weight distribution in the estimated A in a specific manner while225

preserving others. They all preserve the total weight in A, which is the 1st-order moment
of the weight distribution, and leave the diagonal empty. For example, the random and
ring surrogates both preserve the connectivity density (1st-order of the overall distribution
for the binarized weight matrix) as they topologically reallocate weights from connection to
connection in a one-by-one mapping, but only the ring surrogate preserves the original sum230

of input weights for each ROI. This is summarized in Table 2, where the mean input and
output weight per ROI, which is the first order of the weight distribution “projected” in one
dimension of the weight matrix. Note that each surrogate also destroys the second-order
statistics, corresponding to the joint distribution of weights for pairs of ROIs.

The random surrogate (dark blue curve) exhibits a smaller values for SC and a homoge-235

nization slightly after 20 TR, but at a lower asymptotic value forDC . The ring surrogate (dark
cyan curve) destroys the local loops and clusters, which decreases SC even more strongly than
for the random surrogate. In our previous theoretical study, we used ring lattice to study
how communicability captures the small-worldness in networks, which corresponds to a quick
stabilization of DC compared to the timescale of SC [34, Fig. 6]. Here the estimated EC ex-240

hibits a profile for DC that is much closer to the random surrogate than the ring lattice,
indicating that the fluctuating activity quickly propagates throughout the whole network.
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Because both surrogates have the same density and individual weights, this suggests a spe-
cific internal organization for the estimated EC, related to the multiple loops and resulting
in a strong network effect. A possible explanation is the existence of modules [34, Fig. 7],245

which will be further studied later using community detection.
For the short ring surrogate (light cyan curve), the main difference concerns the much

slower homogenization for DC . This arises because shortest paths between ROIs are much
longer for the short ring (light cyan curve) than the ring surrogate (dark cyan curve). This
shows that the mean weight per ROI is not the relevant feature to understand the propagation250

of activity in the network.
Last, the null model (gray curve) also has a weaker SC , but more interesting is the flat

curve for DC . This illustrates the already-homogenized (fully-connected) network for the
surrogate obtained by randomizing the second order statistics of the connectivity. This point
will become important when performing community detection based on communicability or255

flow. The comparison of those descriptors for the estimated EC with the surrogates —each
specifically destroying part of the weight structure— gives insight about how close or distant
the brain network dynamics are with respect to the corresponding stereotypical models.

3.3. ROI-specific analysis and comparison with SC and FC

The brain network structure determines a hierarchy among ROIs. For binary graphs, the260

notions of degree and centrality have been used to detect highly connected ROIs, or hubs.
This type of approach has been used to explore the importance of ROIs in the brain based
on SC or FC data [56, 1]. A limitation of this approach is that SC and FC do not have
directional information (i.e., they are symmetric matrices). Graph communicability [7] can
be used to describe differentiated input and output properties for the ROIs. We now show265

how our dynamic communicability can be used to characterize ROIs in the network and over
time.

The overall picture obtained from EC is differentiated roles for the ROIs, with listeners
and broadcasters (or both), as indicated by the input and output communicability in Fig. 3a.
This relates to the propagation nature of fMRI signals, which is related to the asymmetry of270

estimated EC matrices [14] and is in line with previous results of the fMRI lag structure [51].
Compared to our previous analyses focused on individual EC connections [32, 57], commu-
nicability provides a description of the ROI role over time. Interestingly, each ROI has its
own amplitude and timescale that incorporates network effects —as illustrated in Fig. 3b and
c— and it may be distinct for input and output. ROIs usually classified as hubs such as the275

precuneus (PCUN) and superior frontal cortex (SF) exhibit strong input communicability,
which classifies it as a listening ROI, integrating the activity from other ROIs. In comparison,
the superior parietal cortex (SPAR) has more balanced input and output communicabilities.

To further interpret these results, Fig. 3d compares the input and output communicability
of each ROI (measured at the peak at t = 14 TR) to their counterparts with SC and FC.280

We find that output communicability strikingly differs from SC/FC degrees and strengths
(triangles in the right plots). In contrast, input communicability appear to be strongly corre-
lated with SC/FC (dots in the left plots). Evaluating the statistical (in)dependence between
these ROI values, we find an explained variance of R2 (evaluated for each subject, then
averaged over them) of 31% between input communicability and the SC degree. Likewise,285

we find 22% between the output FC strength and the output communicability (even though
the relationship for the average over subjects in Fig. 3d is less obvious). It is less than 10%
otherwise. It appears that regions with strong input communicability have sufficiently many
connections to support it, on average. It was previously shown that EC weights are mod-
ulated in a task-dependent manner [32, 57]. In particular, the output EC weights of ROI290

hubs are down-regulated at rest as compared to visual tasks [57]. This suggests that not
all existing EC pathways are used at rest, which may explain the very weak correlation of
output communicability with SC in Fig. 3. In conclusion, our model-based approach provides
distinct information from the classical analyses based on SC/FC alone.
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Fig. 3: Characterization of ROI roles and comparison with information obtained from SC and
FC. a) Temporal evolution of input and output communicability for all ROIs. The values are averages over
the two hemispheres and all subjects. The ROIs are grouped by anatomical areas and black crosses indicate
the three ROIs that are mentioned in the main text. b) Comparison of input and output communicability for
each ROI (red cross). The plotted value is taken at the maximum t = 14 TR, indicated by the dashed vertical
lines in a. c) The superposed time courses for input communicability reveals heterogeneous timescales across
the ROIs. d) Comparison of the input and output communicability (left and right panels in each row with
dots and triangles, resp.) with the SC degrees and empirical FC strengths. Each symbol represents the value
for a ROI, averaged over all subjects; for communicability, it is taken at the time corresponding to the dashed
vertical lines in a.
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Fig. 4: Communicability-based communities and homogenization of cortical activity. a) Each
matrix represents the communities of cortical regions with strong communicability for four values of t. Regions
are paired when they have strong bidirectional communicability between them, see Eq. (8) for details. They
correspond to averages over the 77 subjects and darker pixels indicate that the two regions (on the x- and
y-axis) belong to the same community over all subjects. The region ordering is the same for all plots. b)
Similar plots to a with the FC-based communities. c) Similar plot (left panel) to a for SC-based communities
obtained with the individual matrix with DWI values, see Methods. The right panel display the matrix of
matching indices for SC, which measures the overlap between connected targets for each pair of ROIs. d)
Cumulative distribution of the community coparticipation values in a for the 4 matrices. e) The matrices
indicate the average communicability between the three communities obtained at t = 1 TR in a.
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3.4. Functional communities in brain network and information integration295

The high saturating value of DC in Fig. 1d is also reminiscent of hierarchical networks
consisting of several modules that have rather strong coupling between them, for which
the diversity stabilizes early when the total communicability is still large and close to its
peak [34, see Fig. 7 there]. To further examine this aspect, we perform a community analysis
to reveal the communication between ROI groups over time. In essence, communicability is300

compared to that obtained with the null connectivity model in gray in Fig. 2. ROIs with
greater reciprocal communicability compared to the null model are grouped into communities,
yielding the coparticipation matrices in Fig. 4a. These matrices measure the robustness of
the communities across subjects: Well-defined correspond to dark squares on the diagonal
(after reordering the ROIs), whereas weak associations of ROIs appear in lighter gray. Note305

that the ordering of the brain regions corresponds to the 3 communities obtained at t = 1 TR:
From the lower left to the upper right, the two largest communities correspond to the two
hemispheres, while the third and smallest comprises of the bilateral precuneus and cingulate
ROIs (PCUN, CANT, CMID and CPOST in Table 1).

We firstly compare these four community matrices with the same algorithm applied on310

FC and SC, as classically performed. The resulting community matrices in Fig. 4b and c
(left panel) are distinct from those obtained from communicability in several aspects. FC-
based communities are less evident (with darker pixels on average), suggesting that even
the strong overall correlations between regions do not adequately determine the functional
communities. This comes partly from the fact that FC is a full matrix. SC-based communities315

(averaged over subjects) are clearly defined and correspond to at least 5 groups, where the two
hemispheres appear to be each divided in two groups. The right matrix in Fig. 4c displays
the pairwise matching indices calculated for the (binarized) SC. The matching index [58]
quantifies the fraction of common neighbors two ROIs share and is thus often considered as
a measure of “functional similarity”. Since the matching index is based on first-neighbor320

interactions, we find that this simplified estimate based on the topology alone satisfactorily
predicts diffusion the propagation at early times described by communicability. Our results
confirm that, although the communicability structure is correlated with FC and SC to some
extent at the ROI level in Fig. 3, the discrepancies at the connection level involve a different
organization.325

Another advantage of our approach is the quantitative description of the community
merging over time, as illustrated by the distributions of coparticipation indices in Fig. 4d.
The communities remain distinct for t ≤ 10 TR in Fig. 4a, but the difference vanishes for
t ≥ 20 TR. The average communicability between the communities in Fig. 4e confirms this
global pattern: It suggests that information is first integrated somehow independently within330

distinct communities, then is broadcasted to the whole network during the homogenization
phase. These two modes of information integration are reminiscent of synchronization in
networks for distinct values of the global coupling [59, 60], but it is important to note that
they are supported by the same dynamic regime in our case; they simply occur at different
timescales within the network response.335

3.5. Importance of heterogeneities in local excitability for functional communities

So far, we have analyzed the communicability that depends on the connectivity only.
However, the model-based estimation tunes the local excitability for each ROI (input vari-
ances in the model, see Fig. 1a) in addition to the network connectivity. The Σ estimates
have been shown to be modulated when engaging a task, such as movie viewing as com-340

pared to rest [32]. Now we incorporate these excitabilities in the community analysis using
the flow to examine whether they provide additional information as compared to the con-
nectivity alone for resting-state fMRI. Fig. 5a displays the flow-based communities, which
differ from the communicability-based ones in spite of the correlation between the flow and
communicability (Fig. 5b for a single subject). This illustrates the importance of taking345

into account all the model parameters that determine the system dynamics, here the input
variances Σ in addition to EC. Nonetheless, the global homogenization process is similar to
communicability-based communities (Fig. 5c).
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Fig. 5: Flow-based communities. a) Flow-based communities at the four times, similar to Fig. 4a. Note
that the ROI ordering differs from Fig. 4. b) Comparison between communicability and flow matrix elements
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Previous work [61] showed asymmetries in the left and right within-hemisphere FC pat-
terns. In our data we observe to some degree discrepancies between the two hemispheres350

in the flow-based communities in Fig. 5a, as well as in the communicability-based commu-
nities in Fig. 4a. In addition, Fig. 5d shows that the flow is initially much higher within
each hemisphere (solid curves) than between hemispheres (dashed curves), but eventually
reaches similar values around 50 TR. This points to weaker inter-hemispheric communica-
tion compared to within-hemispheric communication at rest. Our previous results based355

on EC indicated stronger inter-hemispheric communication when analyzing changes of indi-
vidual EC weights when engaging a passive-visual task [32], which would be interesting to
quantify at the network level using the present formalism.

Finally, we verify the robustness of the community detection by performing the same
procedure with subsets of 25% of the 77 subjects. The left plot of Fig. 5e shows the corre-360

spondence between coparticipation values (matrix elements in Fig. 5a) for two subsets. From
this we calculate the Pearson correlation coefficient to evaluate the alignment of the com-
munities, which corresponds to 0.9 (green distribution in the right of Fig. 5e ). This comes
because the mean EC over the subjects in each subset have a very similar structure (orange
distribution), even though individual EC are more moderately aligned (blue distribution).365

4. Discussion

The present paper has introduced a network-oriented analysis of effective connectivity
(EC) obtained from fMRI data, applying our recently-proposed formalism [34]. It demon-
strates the flexibility of the framework that provides information at both local (single con-
nections or ROIs) and global levels, allowing for a comprehensive description of the network370

going beyond a link-specific analysis. The pairwise interactions across time determined by
the network dynamics are described by a family of matrices that incorporate network effects.
Our results stress the importance of taking time into account to describe the brain communi-
cation in order to describe how “information” —here measured via the propagation of BOLD
signals— is integrated in the network. Variability across subjects has not been explored here,375

but is of interest and will be studied in future work.
The BOLD signals obtained from fMRI are “projected” on the model parameters. EC

acts as a transition matrix, measuring the propagation of fMRI (fluctuating) activity across
brain areas. In addition, the input properties are described via their (co)variance matrix Σ.
In our model-based approach, the network analysis thus characterizes the brain dynamics,380

whose consistency from estimation to interpretation is a strength compared to previous stud-
ies in our opinion. As an example, FC-based analysis can be considered as a “projection” of
BOLD signals on a graphical model, where the successive levels of BOLD activation (for all
ROIs) are considered as i.i.d. variables over time. Likewise, sliding-window FC measures are
typically considered as a pool of measures with no intrinsic temporal structure [18, 19, 20],385

which has also been used in other fields such as epidemic spreading [62]. Another model-
free alternative to define states and transitions between them has used clustering techniques
on the instantaneous phases obtained from the Hilbert transform [63]. Although these ap-
proaches have proven useful to describe time-dependent interactions between ROIs, they do
not capture the propagation nature of the BOLD signals. In addition, our approach con-390

ceptually differs from previous network studies that applied various types of nodal dynamics
—such as Kuramoto oscillators and noise-diffusion processes— to static networks in order to
reveal the properties of their complex topologies [35, 36, 37]. This formalism thus opens a
new dynamical perspective to interpret fMRI data, as compared to more “static” approaches
using network theory that focused on FC or SC [2, 1].395

In our framework two families of time-dependent matrices are defined to analyze the
brain dynamics. (Dynamic) communicability accounts for the estimated EC alone, while
the flow also incorporates the effect of the estimated input properties (covariances Σ). In
fact, communicability is a particular case of the flow when inputs are homogeneous (Σ is
the identity matrix). As illustrated by the comparison between Fig. 4 and 5, functional400

communities evaluated from the brain dynamics do not only depend on the estimated EC,
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but also on the heterogeneities in Σ. In practice, the difference between the two measure is the
following: Communicability describes how standard input fluctuations propagate throughout
the estimated EC, whereas the flow quantifies the propagation of fluctuating activity for
the estimated brain dynamical “state”. Communicability is thus appropriate to study the405

propagation of perturbations in the network, whereas the flow is better suited when Σ depends
on the subject’s condition as was shown for movie viewing versus rest [32].

The presented framework allows for the analysis of connectivity at various scales. At
the global level, the total flow SF measures how the inputs circulate over time via EC. The
stabilization of DF indicates the temporal horizon when the network interactions homogenize410

the inputs. At the local scale, we have explored the functional roles of ROIs over time, e.g.,
feeders or receivers (Fig. 3a), which provides complementary information to FC and SC
(Fig. 3d). For instance, we have found that anatomical ROI hubs [56] are not necessarily
those with larger output communicability values for the resting state. Last, community
detection uncovers the functional organization of ROIs at an intermediate level (Fig. 4a-d).415

For the studied dataset, EC determines functional communities in a much more accurate
manner than FC (Fig. 4b), at the same level as SC (Fig. 4c). This is an important point to
analyze task-dependent communities, which is not possible using SC. Our results also show
a multistage integration of information supported by the cortical network —first locally
within the communities, then globally. These two modes emerge as a natural consequence420

of the timescale separation due to information propagation within the network. In contrast,
previous studies could only identify such modes by “artificially” setting the network into
two very different dynamical states: either weakly or strongly synchronized [59, 60]. This
flexibility may be interesting to quantify the notion of integration in networks that has
attracted a lot of attention, in particular in neuroscience [25, 64, 24, 30, 28].425

Another interesting aspect of our formalism is the quantitative comparison with surrogate
networks —such as ring lattices or random networks— in order to reveal the properties of
the estimated EC. Here we have compared global measures: the total flow S is the sum of all
interactions at a given time and the flow diversity D reflects their heterogeneity within the
network. These time-dependent measures correspond to curves that are more or less distant,430

providing a metric to compare the data with specific topologies (Fig. 2).
The present analysis of the brain dynamics relies on the MOU process for both estimation

and network-oriented interpretation. The multivariate measures (communicability and flow)
can be derived for other dynamic system provided the Green function is known. The MOU
network corresponds to a non-conservative and stable propagation of fluctuating activity,435

which was used to study network complexity [25, 26, 27, 28]. The MOU process has also been
used in many other scientific disciplines [65, 66, 67], in particular for time-series analysis [68].
The viewpoint taken on the MOU process is a “noise”-diffusion network where fluctuating
activity propagates, EC defining the input-output mapping [69].

Recall that the present interpretation of BOLD in term of brain communication relies on440

the assumption that changes in neural activity are reflected in the BOLD dynamics, which is
under debate [70, 71, 72]. In a sense, the dynamic model to estimate our version of EC can be
thought as a linearization of more elaborate models such as the dynamic causal model (DCM)
that explicitly incorporates hemodynamics [33, 73]. We nonetheless stress that the MOU
estimation properly deals with the subsampling related to the discrete observations of BOLD445

signals [14], in contrast to estimation relying on the multivariate autoregressive process. Our
approach can thus be seen as an alternative to DCM that aims to solve the trade-off between
robust estimation and application to large brain network (hundreds of ROIs) by using linear
dynamics, as was done recently with DCM for resting-state fMRI [74, 73].
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