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Abstract

Survival analysis is a well known technique in the medical field. The iden-
tification of individuals whose survival time is too short or to long given
their profile, assumes great importance for the detection of new prognostic
factors. The study of these outlying observations have gained increasing rel-
evancy with the availability of high-throughput molecular and clinical data
for large cohorts of patients. Several methods for outlier detection in sur-
vival data have been proposed, which include the analysis of the residuals,
the measurement of the concordance c-index, and methods based on quan-
tile regression for censored data. However, different results are obtained
depending on the type of method used. In order to solve the disparity of
results we proposed to apply the Rank Product test. A simulated dataset,
and two clinical datasets were used to illustrate our proposed consensus out-
lier detection method, one from myeloma disease and the other from The
Cancer Genome Atlas (TCGA) ovarian cancer. Finally, the Rank Product
with multiple testing corrections was performed in order to identify which
observations have the highest rank amongst the methods considered. Our
results illustrate the potential of this consensus approach for the automated
retrieval of outliers and also the identification of biomarkers associated with
survival in large datasets.

1 Introduction

Survival analysis is a statistical technique widely used in many fields of
science, in particular in the medical area, and which studies the time until
an event of interest occurs. The event may be death, the relapse of a tumour,
or the development of a disease. The response variable is the time until that
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event, called survival or event time, which can be censored, i.e. not observed
on all individuals present in the study.

There are different ways of modelling this type of data, one of most
widely used due to its flexibility is the Cox proportional hazards regression
model [1]. This is a semi-parametric model because the baseline hazard does
not need to be specified. One of the problems of this technique is the fact
that a single abnormal observation can affect the parameter estimates. To
overcome this issue it is important to study mechanisms to identify individ-
uals who lived too long or too short, given their covariates.

The detection of outliers in survival data has gained great importance
due to the fact that the identification of individuals with survival time too
high or too short can lead in the medical field to the detection of new prog-
nostic factors [2]. The first attempt to analyse and identify outliers was
based on residuals. In this context, graphical methods based on the analysis
of martingale, score and deviance residuals were proposed [3]. Nardi and
colleagues [2] proposed two new types of residuals: the log-odds and nor-
mal deviate residuals, with theoretical properties and empirical performance
appealing for outlier detection.

More recently, three outlier detection algorithms for censored data were
presented [4]: the residual-based, boxplot, and scoring algorithms, all based
on quantile regression, which is robust to outliers [5]. Alternative meth-
ods for outlier detection based on the concordance c-index were also pro-
posed [6]: the one-step deletion (OSD) and bootstrap hypothesis testing
(BHT) strategy, subsequently improved with a dual bootstrap hypothesis
testing (DBHT) version [7].

The aim or this paper is to review some of the methods usually applied
for outlier detection in survival data and present an ensemble approach
that can combine the results obtained by each method, since each usually
provides distinct and sometimes contradictory results. In fact, to overcome
these differences, we proposed to use a non-parametric method, the Rank
Product (RP) test, to identify the outliers that are consistently highly ranked
in the outlier detection methods described. In this context, the RP test
seems a promising approach to identify outliers in a model-based context.
In particular model-based outlier detection methods provide a structured
framework to identify abnormal cases, i.e., those who significantly deviate
from what would be expected.

All the R scripts and datasets are available at http://web.ist.utl.

pt/susanavinga/outlierRP for sake of reproducibility. This includes R
Markdown (RMD) files that can be run to replicate all the obtained results.

The outline of this paper is as follows. In Section 2, Survival Regression
models, three different approaches to model survival data are presented.
In Section 3, several outlier detection methods and the RP test are pre-
sented. In Section 4 application examples with simulated data and two
clinical datasets are presented. Finally, conclusions and future work are
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addressed to Section 5.

2 Survival Regression models

In this section three different approaches to model survival data are pre-
sented. First is introduced the Cox regression model proposed in [1] and
then two alternative proposals, robust version on the Cox regression model
( [10]) and censored quantile regression ( [16]), are presented.

2.1 Cox regression model

The Cox regression model is one of the most used methods in Survival
analysis [1]. It is based on a semi-parametric likelihood, which is able to
deal with censored data and assumes that the hazard function h(t) at time
t is:

h(t; x) = h0(t) exp(xTβ), (1)

where β = (β1, ..., βp) are the unknown regression coefficients, which repre-
sent the covariate effect in the survival, h0(t) represents the baseline hazards
and x = (x1, ..., xp) is the covariate vector associated to an individual.

The Cox regression model is called a semi-parametric regression model,
because the baseline hazard function, h0(t) is not specified. This contributes
for the flexibility of the model. The unknown regression coefficients, β are
determined by maximizing the partial likelihood function

L(β) =
n∏
i=1

[
exp(xTi β)∑
j≥i exp(xTj β)

]δi
, (2)

where δi is the censored indicator.
Although the Cox regression model is a widely used method due to its

simplicity, the corresponding estimator has a breakdown point of 1/n [8],
which means that the presence of outlying observations may have extreme
influence on the estimation of the model parameters. In order to handle this
problem, a robust version of the Cox regression model has been proposed [10]
and will briefly be presented next.

2.2 Cox Robust regression model

The robust version of the Cox regression model [10] is based on doubly
weighting the partial likelihood function of the Cox regression model.

Let w(t,x) be a weight function, were wij = w(ti,xj) and wi = wii =
w(ti,xi) are the weights for all 1 ≤ i ≤ j ≤ n. The solution of the unknown
parameters β for the robust case of the partial likelihood function, presented
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by [10] and [11], is given by

n∑
i=1

wiδi

[
xi −

∑
j≥iwij exp(xTj β)xj∑
j≥iwij exp(xTj β)

]
= 0, (3)

where w(t,x) appears in the main sum, down-weighting the uncensored
observations, and in the inner sums. This allows that outlying observations
will have a lower weight in the likelihood function, thus also down-weighting
their influence on the parameter estimations. In this way, the most outlying
observations will contribute less to the inference of the β.

The robust Cox is presented here as a framework that allows to infer the
parameters in a more robust way when outlying observations are present, i.e.
individuals that lived to long or died too early when compared to others with
the same clinical conditions. Furthermore, the weights obtained with this
method can give information about which observations are more influential
and therefore can be considered as putative outliers.

2.3 Censored quantile regression

Censored quantile regression was first introduced in the econometrics litera-
ture for fixed censoring [34]. There have been many proposals in literature to
overcome this issue, particularly [16] proposed the censored quantile regres-
sion as an alternative to the Cox’s regression model for survival data based
on a generalization of the Kaplan-Meier one sample estimator, using recur-
sive estimation, which relies on the assumption that the conditional quantile
function is linear. An improvement of this proposal was presented in [17],
where a new locally weighted censored quantile regression was considered.

The method requires that the survival time and the censoring variables
are conditional independent, given the covariates, and that the quantile
level of interest is linear. Due to the fact that the Cox’s regression model
assumes proportional hazards, the censored quantile regression can provide
more flexibility.

Let Yi = min(Ti, Ci) represent the observed response variable, where
Ci : i = 1, ..., n denoting the censoring times. The quantile regression model
is defined by

Ti = xTi β(τ) + εi(τ), (4)

where β(τ) is a p-dimensional quantile coefficient vector for τ ∈ (0, 1), and
εi(τ) is a random error whose τth conditional quantile equals zero.

Consider QTi(τ |xi) = inf {t : F (t|xi) ≥ τ}, the τth conditional quantile
of Ti given xi, and F (t|xi) the conditional cumulative distribution function
of the survival time t given xi. Then the conditional quantile is given by

QTi(τ |xi) = xTi β(τ). (5)
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Several techniques are available in the literature to estimate the conditional
quantile coefficients β(τ) (e.g. [16], [35] and [17]). As in terms of interpre-
tation the coefficients, can be interpret as direct regression effects on the
survival times. For this reason, the used of censored quantile regression
must be considered when the principal interest of the study is the survival
times, contractually to the Cox regression model, where the hazard rates
are the main focus of the analysis.

There is a gap in the literature regarding the impact of increasing pro-
portions of censoring on the performance of censored quantile regression.
However, as referred in [5], censored quantile regression may break down
with the existence of contaminated observations with extreme distance val-
ues on the predictor variables (leverage observations). For low levels of con-
tamination, and for a central level of the quantile (τ = 0.5), the performance
of the censored quantile regression should not be an issue.

3 Consensual Outlier detection in Survival Anal-
ysis

In this Section the Rank Product (RP) test is presented as a consensual
technique to identify outlying observations in survival data. First several
methods to detect outliers in the context of survival analysis are approached.

3.1 Outlier diagnostics

In the literature, three different types of unusual or discrepant cases are
considered: outliers, influential and leverage observations, see [32]. An out-
lier can be defined as an observation with a large residual, whose dependent
variable value is unusual given its value on the predictor variables; an outlier
may indicate a sample peculiarity or a data entry error. A leverage obser-
vation, on the other hand, is an observation with extreme distance values
on the predictor variables. An influential observation severely affects the
parameters estimates, i.e., the regression coefficients change when they are
removed from the dataset.

In this study, the abnormal observations that are considered are the
outliers. In the context of survival analysis, an observation is considered
an outlier if the individual is poorly adjusted to the model, i.e., individuals
that lived too long or died too early, when compared to others with similar
covariate values [2]. One of the major difference between survival data and
other other types of data is the presence of censored observations. In the
context of this work, it is worth stressing that the goal is not to identify the
best outlier detection technique, but to delineate a method that allows to
combine several approaches and generate a consensus result. In fact, given
the inherent dependency of the specific methods used for outlier detection,
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our aim is to profit from that variability and envisage a framework that
can identify aberrant observations as those consistently classified as such,
independently of a particular method and/or residual definition.

Three types of outlier detection algorithms in survival analysis are de-
scribed next. They are based on the residuals, the concordance c-index and,
finally, on censored quantile regression.

3.1.1 Residuals

Outlier diagnostics can be firstly approached via inspection of the residuals.
An appropriate definition of residual is fundamental to evaluate a regression
model. The usual definition of residual is the difference between the expected
value of the response variable and the predicted value obtained by the model.
However, when dealing with censored observations, the natural definition
of residual does not stand. To overcome this difficulty, several types of
residuals to analyse Cox proportional hazards models have been proposed
for censored data, such as Cox-Snell, Schoenfeld, martingale, deviance, log-
odds and normal deviate residuals. Although, there are in the literature
other types of residuals for survival data, e.g. the Schoenfeld residuals, which
are very useful on the evaluation of the proportional hazards assumption,
after the adjustment of a Cox model to a given dataset [13], they are not
suitable for the detection of outliers.

Cox-Snell residuals were the first to be proposed for the proportional
hazard regression model [12]. If the model is well adjusted, then the residuals
should follow a known distribution.

For a given individual, x = (x1, ..., xp) represents the covariate vector
and β = (β1, ..., βp) the regression coefficients. From the Cox regression
model, the cumulative hazard function, H(·), is represented by

H(t; x) =

∫ t

0
h0(u) exp(βTx)du

= exp(βTx)H0(t),

where H0(t) corresponds to the cumulative baseline function. The residual
for the ith individual, is defined as

ri = Ĥ(ti) = exp(xTi β̂)Ĥ0(ti), i = 1, ..., n, (7)

where β̂ and Ĥ0(ti) are the estimates obtained by the partial maximum
likelihood of the Cox regression model. If the model is fitted correctly, the
estimate values of Ĥ(ti) are similar to the real values of H(ti) the residuals
will follow an exponential distribution with parameter λ = 1. That is, the
residuals ri should behaviour as an exponential distribution with mean value
1. Since these residuals are based on the assumption of unit exponential
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distribution for survival times, the expected straight line of the H(·) only
applies to the exponential function [9].

Note that expression Eq. (7) does not take into account censored data.
The modified Cox-Snell residuals that consider censoring are given by

r∗i =

{
ri, if ti is not a censored observation

ri + 1, if ti is a censored observation.
(8)

The Cox-Snell residuals are positive, and if they are higher than 1 the ti
observation is censored, and if the graphical representation is approximately
a straight line with gradient 1 and y-intercept null, the model is appropriate.
For more details, see [12].

Martingale Residuals arise from a linear transform of the Cox-Snell
residuals [3] and are very useful for outlier detection. Let all the covariates
be fixed, the martingale residual for the ith individual is given by

r̂Mi = δi − Ĥ0(ti) exp(β̂Txi). (9)

The martingale residuals are asymmetric and take values in (−∞, 1),
which is the primary drawback of its application for outlier detection.

The martingale residuals are the difference between the observed number
of the events for the ith individual in (0, ti) and the corresponding expected
number, obtained by the adjusted model. The observed number of “deaths”
is one if ti is not censored, i.e., is equal to δi. On the other hand, rMi is
the estimate of H(ti), which can be interpret as the expected number of
“deaths” in (0, ti), since it is only considered an individual.

The martingale residual will reveal the individuals that are not well
adjusted to the model. i.e., those that lived too long (large negative values)
or died too soon (values near one), when compared to other individuals with
the same covariate pattern.

Although these residuals are suitable to identify outlying observations,
the pronounced skewness of random departures is an inherent limitation [9].
To overcome this problem, Therneau1 and colleagues [3] introduced the
deviance residuals, described next, where the asymmetry of the martingale
residuals is corrected.

Deviance Residuals were introduced in [3], in order to overcome the
fact that the martingale residuals are asymmetric distributed. The deviance
residuals are defined as

rDi = sign(r̂Mi)
√
−2 (r̂Mi + δi log(δi − r̂Mi)), (10)

where r̂Mi is the martingale residual for the ith individual and sign(·) is
the sign function. Notice that the deviance residuals are components of the
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deviance statistics, D, given by

Di = −2(l̃i − li), (11)

representing the difference between the log-likelihood for observation i under
a given model (l̃i) and the maximum possible log-likelihood for that obser-
vation (li). In this way, D =

∑n
i=1 r

2
Di

, i.e., observations with high values of
residuals in absolute value, are observations that are not well adjust by the
model and potential outliers.

Log-Odds and Normal deviate residuals were proposed by [2] to iden-
tify outliers in survival analysis, measuring the differences between observed
and estimated median failure time by comparing the estimated survival
probability at failure time with 0.5. These residuals are quite appealing
in the context of outlier detection, due to their properties and performance.

Let Ŝi(ti) be the estimated value of the survival function for the ith

individual at ti, his observed time of failure. For a model adjusted by the
Cox’s regression model, an observation is considered well predicted, if the
observed survival time and its estimated median match.

The failure and non-failure of the estimated median time is coded as
a binary variable following a binomial distribution. Based on this, by a
transformation of the survival function using logit and probit, two residuals
arise: the log-odds and normal deviate, respectively. The log-odds residual
is given by

rli = log
[
Ŝi(Ti)/

{
1− Ŝi(Ti)

}]
(12)

and the normal deviate residual is

rni = Φ−1
{
Ŝi(Ti)

}
, (13)

where Φ denotes the cumulative normal distribution function.
An observation i is considered an outlier for high absolute values of rli

and rni . The increasing differences from a considered perfect prediction are
reflected by increasing absolute values of both residuals. For more details
on those residuals, see [2].

3.1.2 The concordance c-index

In survival analysis, the concordance c-index [15] denotes the probability
that a randomly selected subject who experienced the outcome will have a
higher predictive probability of having the outcome occur compared to a
randomly selected subject who did not experienced the event. Here the con-
cordance c-index is used as a test statistics that is sensitive to the presence
of outliers, i.e., the larger the number of outliers, the lower the performance
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of the model adjusted. Thus, the concordance c-index measures how well
predicted values are concordant with the rank ordered response variables.

Three alternative methods for outlier detection in survival data based
on the c-index were proposed [6, 7], based on the rational that an outlier
is “an observation that when absent from the data, will likely decrease the
prediction error of the fitted model”.

One-step deletion (OSD) is an algorithm that tries to identify which
observation, if removed, leads to the best improvement of the concordance
c-index of the obtained model.

In the first step of the procedure, each observation of the dataset is
removed temporarily, and the difference between the original c-index and
the one obtained is calculated. In the following step, the most outlying
case is definitively removed, and the procedure is repeated again for the
remaining data.

The process ends when the quantity of erased observations reaches a
pre-defined proportion of expected outliers. In the end of the algorithm the
ranked list of the observations removed constitutes the putative outliers.

Bootstrap hypothesis test (BHT) performs B hypothesis tests for the
concordance variation on bootstrap samples without the target observation i.

Let C−i be the c-index of the fitted model of the data without the ith

observation and C0 the c-index corresponding to the full dataset model. The
hypothesis test for a certain observation i is:

H0 : ∆Ci ≤ 0 vs. H1 : ∆Ci > 0

where ∆Ci = C−i − C0. The null hypothesis states that there are no im-
provements on the concordance when removing observation i.

The algorithm starts by computing C0. For each observation i under
test, the c-index from the model fitted without i, C−i, is calculated and
also ∆Ci. Then B bootstrap samples are generated from the data without
observation i. The p-value is determine based on the proportion of samples
having ∆Ci ≤ 0. The lower the p-value, the more outlying the observation
is considered to be.

Dual bootstraps hypothesis testing (DBHT) is an improvement of
the BHT described before. The BHT removes one observation from the
dataset, and then evaluates the impact of each removal on the concordance c-
index. Notice that the model has less observations than the original dataset,
and therefore the concordance c-index has the tendency to increase, which
may hamper the evaluation of the statistical significance and may increase
the number of false positives.
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The DBHT method generates two histograms from two opposite versions
of the bootstrap procedure and compares them. In one of the samples,
the observation under test is always removed (A), whereas in the other
resampling scheme it is forced to be in all the (P ) bootstrapped samples.
The null hypothesis is that the expected value of ∆CAi is larger than ∆CPi
(see [6, 7] for more details).

Outlier detection in Censored quantile regression

Three different algorithms to detect outlying observations in survival data
based on censored quantile regression have been proposed [4]: residual-
based, boxplot and scoring. The residual-based and boxplot algorithms
were developed by modifying existing ones, [2] and [18] respectively, and the
scoring algorithm was introduced to provide the outlying magnitude of each
point from the distribution of observations and to enable the determination
of a threshold by visualizing the scores. Notice that in each run of the algo-
rithm, the 0.5th conditional quantile, Q(0.50|xi), must be estimated, and its
estimation is not always reliable. Consequently the results obtained by the
three algorithms are not always unique. Reliable results for the estimation
of Q(0.50|xi) depends on the percentage of censoring in the dataset. Ideally
the amount of censoring should not exceed 20% [38]. Next, these algorithms
are briefly described.

Residual algorithm arises from the outlier detection algorithm for the
Cox’s regression model for censored data proposed by [2] but now based on
quantile regression. The residual for the ith individual is given by

ri = Yi −Q(0.50|xi), (14)

where Q(0.50|xi) is the 50th conditional quantile for the ith individual by
censored quantile regression.

Let kr be a resistant parameter in order to control the cut-offs, and

σ̂ = median

{
|rqi |
β̂0

, i = 1, ..., n

}
, (15)

with β̂0 = Φ−1(p) the inverse cumulative distribution of the Normal dis-
tribution for quantile p. Then the indicator function O

rq
i which gives the

information if the ith individual is or is not an outlier is defined as

O
rq
i =

{
1, if rqi > krq σ̂

0, otherwise,
(16)

which mean that if the residual for the ith individual, rqi , is higher than a
threshold, krq σ̂, observation i is considered to be an outlier.
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Boxplot algorithm is a modification of the algorithm used by [18] using
quantile regression for censored data.

Obtaining the outlying individuals involves two steps. First, the censored
quantile regression models are fitted for τ = 0.25 and τ = 0.75 in order to
obtain the conditional quantile estimates Q(0.25|xi) and Q(0.75|xi), respec-
tively. Based on those, the inter-quantile range (IQR) is determined for
observation i, and an upper fence UFi is defined as:

UFi = Q(0.75|xi) + kbqIQR(xi), (17)

where kbq is a resistant parameter to control the tightness of cut-offs. The
indicator function to declare if the ith individual is an outlier is given by

O
bq
i =

{
1, if Yi > UFi

0, otherwise.
(18)

which means that an observation is considered to be an outlier if it is located
above the upper fence.

Score algorithm In both the residual-based and the boxplot algorithms
a threshold should be specified a priori. To overcome this limitation, the
scoring algorithm was proposed, which is able to determine the deviations
from the distribution of the individuals given the covariates using a flexible
cut-off, ksq .

In order to obtain the outlying individuals, first the censored quantile
regression model has to be fitted for τ = 0.25, 0.50, 0.75 in order to obtain
the conditional quantile estimates, Q(0.25|xi), Q(0.50|xi) and Q(0.75|xi),
respectively. By considering those, the outlying score for the ith individual
is determined by

sqi =


Yi −Q(0.50|xi)

Q(0.75|xi)−Q(0.50|xi)
, if Yi > Q(0.50|xi)

Yi −Q(0.50|xi)
Q(0.25|xi)−Q(0.50|xi)

, if Yi ≤ Q(0.50|xi).
(19)

The indicator function to declare if the ith individual is an outlier is given
by

O
sq
i =

{
1, if sqi > ksq
0, otherwise.

(20)

where ksq can be determined a posteriori by graphical visualization of the
Q-Q plot of the scores.
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3.2 Rank Product test

The outlier detection methods analysed, given their distinct assumptions
and rationales, usually lead to distinct sets of solutions and outlyingness
rankings. In addition, different estimated models will also significantly in-
fluence the obtained results regarding the identification of these discrepant
cases.

We propose to adopt a consensus strategy to cope with this expected
variability of the results, in order to delineate a more robust regression
method and accurate outlier detection framework. The rationale is that, if
a given observation is systematically classified as an outlier, independently
of the chosen method, then our trust on the accuracy of that particular
classification should increase.

Statistically, one possibility of performing a consensus ranking of the
observations in terms of their relative outlyingness is to use Rank Products
(RP). The required input is to have a list of all the observations ranked
by their level of outlyingness, which can be based on the previously de-
scribed residuals and influential measures. This non-parametric statistical
technique gained great importance in detecting differential regulated genes
in replicated microarray experiments [19] and can support the meta-analysis
of independent studies [20]. Recently, [37] used the RP test as a consen-
sus method to identify observations that can be influential under survival
models, consequently potential outliers, in high-dimensional datasets.

Let n be the number of observations and k the number of different meth-
ods for outlier detection presented before. Consider Zij a measure of the
deviance (or outlyingness) of the ith observation in the jth outlier detection
method, with 1 ≤ i ≤ n and 1 ≤ j ≤ k. The deviance rank for each Zij
considering method j is defined by

Rij = rank(Zij), 1 ≤ Rij ≤ n.

In the case of outlier detection, the lowest ranks indicate that the obser-
vation is more outlier than the others, i.e., exhibits larger deviances.

The rank product is defined by:

RPi =
k∏
j=1

Rij .

After ranked the observations by their RP, the p-values associated must
be obtained. These p-values are associated with each observation under the
null hypothesis that each individual ranking is uniformly distributed, which
means that there each method is actually sorting randomly.

Several methods were proposed in order to estimate the statistical signifi-
cance of RPi under the null hypothesis of random rankings (discrete uniform
distribution for each method).
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In [19] the distribution of RPi was based on a permutation approach.
An alternative formulation that is less computational intensive was described
more recently, based on an approximation of the logarithm of these values
using the gamma distribution with parameters (k, 1) [21]. In [22] the exact
probability distribution for the RP was derived. However, this approach for
large n is increasingly expensive, which motivated another solution based on
the geometric mean of upper and lower bounds, defined recursively [23]. The
results shows that the algorithm provides accurate approximate p-values for
the RP when compared to the exact ones.

Another key issue when performing these tests is related with the mul-
tiple testing problem. In fact, since many observations are tested, type-I
errors (false positives) will increase. Several correction methods exist that
usually adjust α so that the probability of observing at least one significant
result due to chance remains below a desired significance level. The Bon-
ferroni correction is one classical choice, with less conservative options also
available, such as the False Discovery Rate (FDR) [24]. The FDR, which
is the expected proportion of false positives among all tests that are signif-
icant, sorts in an ascendant order the p-values and divides them by their
percentile rank. The measure used to determine the FDR is the q-value. For
the p-value: 0.05 implies that 5% of all tests will result in false positives,
instead, for the q-value: 0.05 implies that 5% of significant tests will result
in false positives. In this sense the q-value is able to control the number of
false discoveries in those tests. For this reason it has the ability of finding
truly significant results.

The RP is used in the context of outlier detection as a consensus tech-
nique for all different results obtained by each method of outlier detection,
in a model-based context.

In the next section, the RP technique is applied, where the aim is to
obtain outlying observations based on some of the methods presented in
Section 3.

4 Results and Discussion

In this section three datasets will be analysed to illustrate the performance
of the outlier detection methods reviewed. A simulated dataset and two clin-
ical case-studies, were considered. One of the issues when dealing with omics
data, is the high-dimensionality problem, i.e., the number of covariates (p) is
often much larger than the number of observations (n). The solution to this
issue is not straightforward, with regularized optimization now standing as
one of the techniques used to overcome this issue [33]. Nevertheless the aim
of the present work is not the development of model variable selection meth-
ods but to evaluate ensemble outlier detection strategies. For the ovarian
cancer dataset, the present proposal assumes that the variable selection in
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the model analysed was already performed. Regarding the myeloma dataset,
where the dimensionality of the data is not an issue, the stepwise algorithm
was used. The chosen datasets try to span common challenges encountered
when analysing patients data, namely in survival analysis.

To use the Rank Product as a consensual technique to identify outlying
observations in survival analysis, the methods considered should be inde-
pendent. To guarantee this assumption, only one technique from each of
the methods described in Section 3, was chosen, namely the deviance resid-
uals (residuals), the DBHT algorithm (concordance c-index) and the Score
algorithm (censored quantile regression). The deviance residual has some
limitations [2], however the goal of this work is to obtain a consensual result
by using the RP test, regardless of the choice of a specific technique or error
definition.

To investigate the stability of the Q(50|xi), a simulation experiment
based on the real clinical data was performed. For each of the two datasets,
different percentages of censoring were considered, by randomly changing
the censoring indicator. In the myeloma dataset the original percentage of
censored observations was 26%, and four distinct censoring values were then
tested. Only for high values of censoring (> 50%) we did not obtain reliable
results with the Score algorithm. Regarding the ovarian cancer dataset (45%
of censored observations), the outlier detection algorithm based on censored
quantile regression had good performances up to 60% censored observations.
As established by [38] the amount of censoring should not exceed 20%, which
is not the case for the datasets here presented (26% for the melanoma dataset
and 45% for the ovarian cancer dataset). However, no convergence problems
were observed when applying the algorithms, for none of the the techniques
used for outlier detection. Notice also that, besides the amount censoring,
also the dimension of the dataset is important to obtain reliable results.
For this particular case no numerical problems were observed but it is an
important aspect that should be analysied more deeply in other datasets.

All the analysis were performed in R [25]. The libraries used for were:
survival, for the Cox regression model, OutlierDC, outlier detection method
based on quantile regression, survBootOutliers, outlier detection based on
the concordance c-index and qvalue, to determine the q-values. Two ver-
sions of the robust Cox regression model were considered: the one proposed
in [10] is available in R, library coxrobust, and an improvement of this
method is available in [5]. Notice that the analysis for the censored quantile
was not included, due to the fact that the interest of the analysis does not
rely on the importance of the survival times. The algorithm implementation
to obtain the p-values for the RP, based on the geometric mean, is provided
by the authors [23]. For the Cox’s robust regression model [5], an exponen-
tial weight was chosen. The number of bootstraps used for DBHT was 1000.
To treat the ties in the ranks, the method used was the first occurrence wins.

All the analysis were performed in R [25] and are fully documented in
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the supporting information, which includes the original data, R Markdown
files (Rmd Files) and HTML reports, all available at http://web.ist.utl.
pt/~susanavinga/outlierRP/.

4.1 Simulated data

A simulation study was carried out to highlight the importance of the RP
test as a consensual technique to obtain outlying observations in survival
datasets. Several datasets underlying the Cox regression model were gener-
ated, with survival times and covariates similar to real situations. For each
simulated dataset a pure and contaminated models, with different param-
eters, were considered. For the pure model, which represents the overall
tendency of the observations, the values of the parameter β considered were
always 1. For the observations that do not follow the overall trend, the
values considered for the parameter β

′
were −1 and −0.2. Two different

datasets were simulated with dimensions 100 and 200, having 20 covariates
each case. All covariates follow a multivariate normal distribution with zero
mean, and Σ, the covariance matrix, equals to the identity matrix, I. The
simulation of the survival time was based on the work of [36]. Two differ-
ent models were considered to simulate the survival times: one for the pure
model and other for the contaminated (outlying observations). Let k be
the number of outlying observations considered, with k < n, the generated
hazard function is given by:

hi(t) = =

{
h0(t) exp (βx), 1 ≤ i ≤ n− k
h0(t) exp (βTx), n− k < i ≤ n− k

,

where h0(t) represents the baseline hazard following a Weibull distribution
with scale (λ) and shape (ν) parameters. The values chosen for these pa-
rameters were 0.5, 1, 1.5. The number of outliers, k, was 10 for n = 100 and
20 for n = 200, representing in each case 10% of outlying observations for
each simulated dataset.

The survival curves, Si(t) = e−Hi(t), were determined based on the esti-
mation of the Hi(t), cumulative hazard function, obtained by

Hi(t) =

∫ t

0
hi(τ)dτ. (21)

Based on the distribution obtained by generating the survival times,
a censoring vector following a Bernoulli distribution, c = (c1, ..., cn) was
generated, with the probability of success corresponding to the proportion
of censored observations. Usually the censored proportion considered is 0.2,
but we also considered 0.3.

In Tables 1 and 2 are the results for the outlying observations obtained,
for the simulation of 200 observations and 20% censoring. The results
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showed that for almost the scenarios considered, observations 181 and 186
are considered outliers regarding their q−value. Notice that the q−value
(FDR) was obtained given the p−values ( [23]) based on the RP values. As
we can see for the majority of the cases, depending on the method of outlier
detection chosen, different results are obtained. For instance for β

′
= −1,

λ = ν = 1, regarding the ranks for each technique, and considering that
lowest the rank more outlying observations are, observations 181 and 186
lead to different conclusions depending on each of the method chosen. How-
ever when all techniques are combined using the RP, despite the different
ranks obtained for each outlier detection method, a more robust response is
given. Even though the 20 outliers were not all identified (q−value signifi-
cant), one of the advantages of using a test that combines the results of all
techniques is the fact that, despite the q−value significant or not, we order
the observations by ranks indicating their relevance for each of the methods
used to detect outliers.

Table 1: Outlying observations for n = 200, 20 covariates, β
′

= −1 and
censoring amount of 0.2.

id Rank Deviance Rank DBHT Rank Score q-values
λ = 1 181 1 2 5 0.0010
ν = 1 186 3 1 11 0.0030
λ = 1.5 181 1 1 7 0.0005
ν = 0.5 186 4 2 15 0.0156
λ = 0.5 181 1 1 13 0.0021
ν = 1.5 186 3 2 15 0.0168

Table 2: Outlying observations for n = 200, 20 covariates, β
′

= −0.2
and censoring amount of 0.2.

id Rank Deviance Rank DBHT Rank Score q-values
λ = 1 186 3 1 80 0.0476
ν = 1 181 1 2 77 0.0476
λ = 1.5 186 3 1 77 0.0424
ν = 0.5 181 1 2 69 0.0424
λ = 0.5 183 1 1 124 0.0341
ν = 1.5 115 2 2 38 0.0341

4.2 Myeloma

The myeloma dataset is composed by clinical information on 16 covariates of
65 patients with multiple myeloma [26]. All the covariates were considered
to the Cox regression model and subsequently reduced using the stepwise
method in order to decrease the data dimensionality.

The results regarding the Cox regression model and the robust version
are presented in Table 3. From the results, only covariate blood urea ni-
trogen (bun) is statistically significant across all the models tested, whereas
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gender (sex) and total serum protein (total.serum.prot) are always non
significant. However, proteinuria at diagnosis (proteinuria) and protein
in urine (protein.urine) are statistically significant for the Cox regression
model and Cox robust proposed by [5] but not significant when using the
methodology of [10]. For the hemoglobin (hgb), a p-value= 0.032 was ob-
tained for the Cox model, but in the robust version this variable is no longer
found to be significant.

Table 3: Results for the Cox’s regression model and Cox’s robust
(both proposals) for the myeloma dataset.

Cox CoxRobust CoxR (Heritier)
Variable estimate (se) p-value estimate (se) p-value estimate (se) p-value

hgb -0.136 (0.063) 0.032 -0.138 (0.100) 0.167 -0.134 (0.075) 0.075
sex -0.512 (0.363) 0.158 -0.546 (0.639) 0.393 -0.531 (0.415) 0.201
proteinuria 0.066 (0.028) 0.020 0.060 (0.055) 0.271 0.059 (0.028) 0.038
protein.urine 0.925 (0.381) 0.015 0.860 (0.520) 0.098 0.863 (0.404) 0.033
total.serum.prot 0.133 (0.069) 0.054 0.122 (0.063) 0.053 0.123 (0.064) 0.056
bun 0.024 (0.006) 0.000 0.025 (0.007) 0.001 0.025 (0.004) 0.000

In order to identify outlying observations that may explain those dif-
ferences, a plot of the robust estimates with log-transformed exponential
weights was performed (Fig 1). Observations 40, 44 and 48 have presented
the lowest weights.

Figure 1: Plot of robust estimates with log-transformed exponential weight
versus case number for the myeloma data with six covariates.

The results regarding the deviance residuals are presented in Fig 2. Ob-
servations 3, 2, 5 and 15 presented the highest absolute values for this resid-
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ual. Different results were obtained by considered other outlier methods,
such as for the concordance c-index (algorithm DBHT) and for the Score
algorithm regarding the censored quantile regression.

Figure 2: Plot of the deviance residual for the myeloma dataset with six
covariates.

The top-10 outliers obtained for each method are presented in Table 4.
As we can see nine of the observations are common at least for two of the
methods considered: 3, 15, 21, 23, 35, 40, 44, 57 and 64. As expected,
different results are obtained for each of the methods. The application of
RP test allow us to combine them in a consensus ranking using the q-values.

Table 4: Top-10 outlying observations for the myeloma dataset with
six covariates, for each technique considered.

Rank Deviance Rank DBHT Rank Score

3 15 40

2 23 46

5 40 39

15 17 44

4 57 48

12 21 57

64 44 35

23 35 65

9 18 64

21 3 47

The results in Table 5 show that for the usual level of significance, none
of the observations are considered outliers. Nevertheless, the proposed con-
sensual technique is able to identify observations that should be taken under
consideration for medical purpose. Notice that observation 40, which pre-
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sented a lowest weight, is not considered an outlier. However it appears
in the first position regarding the product of the ranks obtained by each
technique. In previous studies of this dataset [26], the patient correspond-
ing to observation 40 lived longer than the others with similar values of the
covariates.

Table 5: Ranks for outlier detection methods (Deviance, DBHT
and Score) sorted by q-value for the myeloma dataset.

id Rank Deviance Rank DBHT Rank Score p-values q-values

40 23 3 1 0.0034 0.1810

15 4 1 53 0.0126 0.3379

3 1 10 51 0.0318 0.3412

44 15 7 4 0.0261 0.3412

57 11 5 6 0.0203 0.3412

23 8 2 46 0.0457 0.4080

64 7 25 9 0.0918 0.7026

5 3 22 45 0.1541 0.7149

17 13 4 57 0.1539 0.7149

21 10 6 56 0.1690 0.7149

4.3 Ovarian cancer

The ovarian cancer dataset is based on gene expression data of oncological
patients and is constituted by 517 observations over 12, 042 covariates. This
data was obtained from The Cancer Genome Atlas (TCGA). It comprises
the follow-up time, survival status and microarray gene expression of 517
patients. The microarray data was obtained using the HG-U133A platform
and contains 12, 042 gene expression levels [27]. The dataset is publicly
available through R package curatedOvarianData and it was normalized
and aggregated by the TCGA consortium allowing for the analysis to be
reproducible with the original dataset.

The clinical data was cleaned using Days to last follow-up and Days

to death attributes to detect inconsistencies between them. Only the cases
where the number of days matched were included in the analysis. The same
process was performed for the attributes Days to death and Vital status,
where some cases had as status deceased, but a missing Days to death.

For the analysis 18 gene expressions were considered. The variable se-
lection was based in a previous study of [28], so no model selection was
performed. The dataset is a matrix of size 517 × 18, and, in this case, the
only genes statistically significant after fitting Cox’s and Cox’s robust mod-
els were: CRYAB and SPARC – see Table 6). Although two gene expressions
were statistically significant, for a significance level of 5%, all the 18 covari-
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ates are used in the model specification and for further analysis. Despite
the fact that specification of the correct model depends on the measurement
of the proper covariates, in this study our concern is to demonstrate the
relevance of using a consensual test (RP) to identify outlying observations
and also to maintain coherence with the previous work of [28].

Table 6: Results for the Cox’s regression model and Cox’s robust (both
proposals) for the TCGA data with 18 genes.

Cox CoxRobust CoxR (Heritier)
variables coef se(coef) p-value coef se(coef) p-value coef se(coef) p-value

LPL 0.1263 0.0751 0.0924 0.1011 0.0856 0.2375 0.1011 0.0717 0.1584
IGF1 0.0210 0.0600 0.7266 0.0341 0.0705 0.6289 0.0340 0.0670 0.6114

EDNRA 0.0224 0.1227 0.8549 0.0619 0.2119 0.7704 0.0621 0.1482 0.6752
MFAP5 0.0165 0.0482 0.7327 0.0089 0.0622 0.8865 0.0089 0.0516 0.8630
LOX 0.1918 0.1251 0.1254 0.1688 0.1499 0.2604 0.1690 0.1281 0.1872

INHBA -0.1432 0.1786 0.4227 -0.1556 0.1895 0.4118 -0.1556 0.1841 0.3978
THBS2 0.0639 0.0902 0.4787 0.0863 0.1072 0.4205 0.0862 0.0908 0.3422
ADIPOQ -0.1256 0.0910 0.1676 -0.0727 0.1047 0.4875 -0.0728 0.1001 0.4667

NPY 0.0552 0.0496 0.2655 0.0625 0.0710 0.3785 0.0625 0.0553 0.2590
CCL11 -0.1296 0.0960 0.1771 -0.1578 0.1212 0.1927 -0.1576 0.1013 0.1197
VCAN 0.0578 0.1009 0.5664 0.0286 0.1419 0.8404 0.0286 0.0956 0.7651
DCN 0.0729 0.0892 0.4133 0.0791 0.0993 0.4257 0.0791 0.0976 0.4176

TIMP3 0.0719 0.0835 0.3891 0.0775 0.0906 0.3925 0.0775 0.0881 0.3789
CRYAB 0.1092 0.0424 0.0100 0.1179 0.0544 0.0302 0.1180 0.0437 0.0069
CXCL12 0.0204 0.0818 0.8030 0.0129 0.0962 0.8932 0.0130 0.0879 0.8826
SPARC -0.3811 0.1402 0.0066 -0.3978 0.2020 0.0489 -0.3975 0.1332 0.0029
CNN1 0.0863 0.1141 0.4493 0.1313 0.1395 0.3468 0.1313 0.1341 0.3275
FBN1 0.1135 0.1690 0.5018 0.1122 0.2234 0.6154 0.1116 0.1806 0.5365

The CRYAB gene codes for the crystallin alpha B chain, a protein that
acts as a molecular chaperone. Its function is to bind misfolded proteins and,
interestingly, some defects associated to this protein and gene have already
been associated with cancer, among other diseases. In particular, a recent
study [29] analysed which molecular factors could affect ovarian cancer cell
apoptosis and the authors found out that there was a statistical significant
association between the expression of crystallin B (CRYAB) with survival.
This protein has, indeed, a negative regulation of tumor necrosis, which may
explain these results.

The SPARC gene codes for Secreted protein acidic and rich in cysteine,
a protein that appears to be a regulator of cell growth, by interaction with
cytokines, the extracellular matrix and also binding calcium, copper, and
several others biochemical compounds. This protein is overexpressed in
ovarian cancer tissues [30], playing a central role in growth, apoptosis and
metastasis. It also has been identified as a candidate therapeutic target [31].

Fig 3 shows that observations 113 and 219 are identified with the lowest
weights.

Regarding the deviance residuals, the observations with the highest ab-
solute values are 202, 346, and 415, Fig 4. The results for the top-10 most
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Figure 3: Plot of robust estimates with log-transformed exponential weight
versus case number for the TCGA data with 18 genes.

outlying observations, for the outlier detection methods chosen, are pre-
sented in Table 7, showing that observations 113, 219 and 346 are present
in two of the three techniques used to identify outlying observations.

Based on the p-values obtained through the RP test, the observations
that are considered outliers, considering the results of the q-values, for a 5%
level of significance were: 113, 219, 221, 346 and 455 (see Table 8). Notice
that observations 219 and 221 are censored representing, in the context of
outliers in survival analysis, as long term survivors. On the opposite side,
observation 346 represents an individual that died too early, when compared
to others with similar values on the covariates.

A cluster analysis based on the k-means algorithm was also performed
in order to establish if there were any kind of relationship between those
observations. By considering 4 initial clusters, observations 113 and 221,
were in the same cluster. The link between cluster analysis and interpreting
the results will be expanded in future work.

5 Conclusions

The aim of this paper was to revisit different methods for outlier detection in
survival analysis and to propose a consensus method based on the RP test.
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Figure 4: Plot of the martingale and deviance (absolute value) residuals for
the TCGA data with 18 genes.

Table 7: Top-10 outlying observations for the ovarian cancer with
18 genes.

Rank Deviance Rank DBHT Rank Score

415 346 113

346 74 221

202 42 455

311 201 26

219 219 452

310 113 297

239 508 211

323 277 372

500 466 179

316 115 44

The proposed technique allows to combine the different results obtained
by each method and find which observations are systematically ranked as
putative outliers.

The proposed application of the RP test nevertheless illustrates that it
is possible to combine disparate methods and to obtain a consensus list of
putative outliers to be explored further from a clinical point of view.

By considering each method separately, none of the observations was
consistently identified as an outlier for each one of the methods presented.
In this sense the Rank Product test appears as a robust approach for outlier
detection in the context of survival analysis.
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Table 8: Ranks for outlier detection methods (Deviance, DBHT
and Score) sorted by q-value. TCGA 18 genes dataset.

id Rank Deviance Rank DBHT Rank Score p-values q-values

113 79 6 1 8.71E-05 0.0151

219 5 5 19 8.74E-05 0.0151

221 14 12 2 5.60E-05 0.0151

346 2 1 500 2.12E-04 0.0275

455 11 61 3 4.69E-04 0.0485

202 3 11 486 4.09E-03 0.3527

32 45 14 43 6.80E-03 0.3600

42 29 3 453 9.69E-03 0.3600

74 22 2 510 5.68E-03 0.3600

115 47 10 70 8.18E-03 0.3600

Regarding the outlier detection method based on the concordance c-
index, the fact that a resampling technique is used, different results are
obtained in each run of the algorithm. Another conclusion is the fact that
for a certain dataset the choice of the covariates used significantly changes
the outliers identified, which may hamper a definite answer in this respect.
Therefore, the results regarding the outlying observations in a given dataset
are highly depended on the specific model adjusted. In this sense the con-
sensual method here proposed is a model-based technique. It remains a
question for future work how to combine this uncertainty between differ-
ent Cox fittings and retrieve observations that are systematically classified
as outliers independently of the model considered. Nevertheless, the RP
can help to identify and filter observations that exhibit large deviances that
would be expected by chance for a given number of different outlier detection
methods.

Although our proposal was focused on the proportional hazards model,
the method can be easily expanded to other models besides Cox regression.

In the future we attempt to use the RP to other real datasets and ex-
plore other types of regression regarding the mechanisms of outlier detection.
Ensemble modelling may also provide new insights on the identification of
abnormal observations in clinical data.

Supporting information

Rmd Files. R Markdown files with the results obtained. The
presented results are available as R Markdown (.Rmd) and html documents,
along with the original data files used in the analysis performed. All these
files are available at http://web.ist.utl.pt/~susanavinga/outlierRP/.
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