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Social interactions involving coordination between individuals
are subject to an “evolutionary trap.” Once a suboptimal strat-
egy has evolved, mutants playing an alternative strategy are
counterselected because they fail to coordinate with the major-
ity. This creates a detrimental situation from which evolution
cannot escape, preventing the evolution of efficient collective be-
haviors. Here, we study this problem using the framework of
evolutionary robotics. We first confirm the existence of an evo-
lutionary trap in a simple setting. We then, however, reveal that
evolution can solve this problem in a more realistic setting where
individuals need to coordinate with one another. In this setting,
robots evolve an ability to adapt plastically their behavior to one
another, as this improves the efficiency of their interaction. This
ability has an unintended evolutionary consequence: a genetic
mutation affecting one individual’s behavior also indirectly al-
ters their partner’s behavior because the two individuals influ-
ence one another. As a consequence of this indirect genetic ef-
fect, pairs of partners can virtually change strategy together
with a single mutation, and the evolutionary barrier between
alternative strategies disappears. This finding reveals a general
principle that could play a role in nature to smoothen the tran-
sition to efficient collective behaviors in all games with multiple
equilibriums.
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The success of a collective action often hinges on the coordi-
nated decisions of several individuals. For instance, carrying
out a collective hunt implies that all individuals hunt at the
same time, agree on a common prey, and pursue the prey in
a coordinated manner. Thus, collective efficiency does not
depend solely on the skills of a single individual but emerges
from the ability of the group to act together (1–3). This begs
the question of how natural selection, which acts on individ-
uals, can shape such collective behaviors.
This problem can be formalized with a specific class of games
called “coordination games” To understand, let us consider a
situation in which two hunters must coordinate to capture a
prey, but have to make a choice between a prey with a high
nutritive value and a prey with a low nutritive value. The
strategy of choosing the most nutritious prey is evolutionar-
ily stable. If everyone chooses this prey, one’s best response
is to choose this prey as well. But choosing the poorly nutri-
tious prey is also evolutionarily stable. If everyone chooses
the poorly nutritious prey, there is nothing better one can do
than choose the same. The existence of this second, subop-
timal, evolutionarily stable strategy (ESS) raises a problem
because evolution can hardly move from one ESS to another.

If all hunters initially target the low-value prey, mutants pre-
ferring the high-value prey are counterselected by frequency-
dependent selection because they fail to coordinate with the
majority. Hence, individuals are trapped in a suboptimal ESS
and collective efficiency is not maximized.

All collective actions where individuals need to coordinate
with one another, and where they can do so in either an effi-
cient or an inefficient way, entail such an “evolutionary trap.”
Inefficient coordinated behaviors evolve that cannot later be
improved by natural selection because individual selection
has no way of improving collective efficiency in a coordina-
tion game.

Evolutionary game theoreticians and evolutionary biologists
have explored two hypotheses that can explain how this prob-
lem can be solved in nature. The first hypothesis is based
on stochastic effects (4–6; see also 7 in a different setting).
In a finite population fixed in a particular ESS, counterse-
lected mutants can rise in frequency due to genetic drift, and
eventually destabilize the existing ESS, thereby moving the
population away from the evolutionary trap, toward another,
generally superior, ESS. The second hypothesis is based on
group selection (8–11). Due to chance, different groups of
individuals may initially evolve different ESSes of the same
game. If these groups compete with one another, the groups
that happen to play the most efficient ESS will eventually pre-
vail, allowing this strategy to spread in the entire population.
In sum, according to available theories, coordination games
suffer from an evolutionary trap problem, and collective ef-
ficiency in these games can ensue either from demographic
stochasticity or from group selection, but not from plain in-
dividual selection.

However, so far, coordination games have been formally
studied in models that were highly stylized, in particular
with regard to the mechanistic underpinning of behavior, and
these simplifications may have important consequences. In
this paper, we describe simulations of a coordination game
using evolutionary robotics (12, 13). As compared to classic
evolutionary game-theoretical approaches, evolutionary
robotics provides a more realistic modeling of individuals
and their environment (14, 15), capturing in particular the
practical problems raised by coordination (16).
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In this setting, we show that the evolutionary trap actually
disappears altogether. Robots evolve a behavioral solution
to coordinate with one another that generates indirect ge-
netic effects (17), hereby changing “the rules of the game”.
Through their own behavior, robots transform a coordination
game with multiple ESSes and an evolutionary trap problem
into a simple individual optimization problem with a single,
maximally efficient, ESS. In this transformed game, collec-
tive efficiency is reached by plain individual selection, with
no need for genetic drift or group selection. We posit that
many collective optimization problems may be solved in sim-
ilar ways in nature.

Results
We simulate a collective hunt in which two players must co-
ordinate and attack together the same prey to gain a bene-
fit. The two-dimensional environment contains two types of
prey, poorly nutritious prey called boars (worth 125 payoff
units for each individual hunter), and highly nutritious prey
called stags (worth 250 units for each hunter). Hunting alone
is possible, but it provides 0 payoff unit (cf. payoff matrix
in Table 1). This game features two Nash equilibriums (and
thus two ESSes): to hunt either boars or stags, with the lat-
ter equilibrium providing a higher payoff. In technical terms,
hunting stags is called the “payoff-dominant” equilibrium.

Boar Stag
Boar 125 0
Stag 0 250

Table 1. Possible outcome of a two-person coordination game. The game features
two hunters. Each player may choose to hunt either a boar, or a stag. This payoff
matrix has two equilibriums, a suboptimal one (both players hunt the boar) and an
optimal one (both players hunt the stag).

The robots we use as players are each driven by a multilayer
perceptron (18) that maps sensory inputs to motor outputs,
with neural weights subject to artificial evolution. Each robot
is endowed with proximity sensors all around its body. These
sensors are capable, within a limited range, of discriminat-
ing between boars, stags, the other robot, and walls. So as to
maintain the prey density constant, a captured boar (or stag)
is removed from the environment and relocated to a new po-
sition (Methods).

Individual selection cannot generate collective effi-
ciency, in a simple setting. The first question we address
is whether the evolutionary transition from the least efficient
to the most efficient ESS can occur.
First, we let 30 independent populations of robots pre-evolve
for 3000 generations with only 1 boar and 1 stag, and mod-
ified payoff values: hunting stags temporarily yields no re-
ward. We thus ensure that these 30 populations all evolve the
boar-hunting equilibrium, with all individuals always target-
ing boars and avoiding stags.
Second, each of these 30 populations of evolved boar hunters
is used as the seed for another 6000 generations of evolution,
with the regular rewards for each prey reinstated (Table 1). In
spite of its collective superiority, stag hunting never evolves

within the next 6000 generations for any of 30 independent
replicates (Figure 1). In every replicate, the mean proportion
of stags hunted remains at 0 throughout the 6000 generations.
Hence, individuals are genuinely trapped in the suboptimal
equilibrium. That is, collective efficiency cannot ensue from
plain individual selection.

Fig. 1. Mean proportion of prey hunted. Repartition of the prey hunted by the best
individual in each replicate, at the last generation of evolution (generation 6000).
We differentiated between the type of prey hunted (boar or stag). Rewards were
125 for a boar and 250 for a stag (Table 1).

Collective efficiency can be achieved by individual se-
lection, in a more complex setting. In practice, predators
are unlikely to live in a world with a single prey of each kind.
In a realistic environment, hunters must agree on a specific
individual prey to hunt (1–3), and not just on the type of prey.
To investigate the consequences of this complication, we fol-
low the same procedure as before. We pre-evolve 30 indepen-
dent populations of pure boar hunters, using modified payoff
values, with the stags never bringing any reward, but this time
in an environment with several (9) identical boars and several
(9) identical stags present.
We then let each of these 30 populations evolve for another
6000 generations with regular payoff values (Table 1) in
the same environment with several boars and stags present
(Methods).
In this setting, we observe that the transition from boar hunt-
ing to stag hunting does occur in 12 replicates out of 30 (Fig-
ure 2). This significantly differs from the previous results
obtained in a simpler environment (Mann-Whitney U test
on the number of replicates where the transition happened
p-value <0.0001). Environmental complexity promotes the
evolutionary transition toward the payoff dominant equilib-
rium in 40% of the replicates.
Taking a closer look at these 12 “successful” replicates re-
veals a particular kind of coordination strategy for collective
hunting. Because the environment is more complex, individ-
uals need to react to each other’s behavior to stay together
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Fig. 2. Number of stag-hunting replicates and proportion of prey hunted. (A) Number of replicates (out of a total of 30) where stag hunting evolved in the Simple
environment and Complex environment settings. We considered that stag hunting evolved when more than 50% of the prey hunted were stags hunted cooperatively. In the
Simple environment setting, the environment was constituted of one boar and one stag. In comparison, in the Complex environment setting, 18 prey were present in the
environment, and it was thus necessary to coordinate for cooperation to be possible. (B) Repartition of the type of prey hunted by the best individual in every replicate, at the
last generation of evolution (generation 6000), in the Complex environment setting. Rewards were 125 for a boar and 250 for a stag (Table 1).

and converge on the same prey. To this end they evolve a be-
havioral strategy, which we refer to as the “turning” strategy,
whereby they constantly turn around one another. This strat-
egy ensures that they keep their partner in their line of sight
and move toward a prey at the same time. Due to their prox-
imity, an individual who gets on a prey is likely to be joined
quickly by their partner (Figure 3, a video of this strategy is
also available in Supporting Information).
This behavioral strategy has an evolutionary implication. Be-
cause hunters react to each other’s behavior, a mutation af-
fecting the behavior of one individual can also modify the
behavior of her partner. A mutant attracted to stags rather
than boars may thus succeed in hunting by transforming, al-
beit temporarily, her partner into a stag hunter as well. As a
result, the evolutionary transition away from the suboptimal
trap is facilitated in comparison with the simple environment.

Division of labor further facilitates collective optimiza-
tion. The turning strategy obtained so far results from both
hunters demonstrating identical behaviors, whether related to
moving together or selecting a prey. While this similarity in
behavior makes it possible for hunters to coordinate toward
hunting the same prey, both individuals spend a significant
amount of time turning around one another. This results in a
tedious process of targeting a particular prey. The question
is open as to the existence of more efficient coordination pat-
terns, in particular with respect to assuming complementary
behavioral strategies.
We posit that one possible limitation is the lack of expres-
sivity of our choice of control function, a limitation that may
not exist in nature. Though multilayered perceptrons are the-
oretically universal approximators, this is hardly the case in
practice (19). In particular, the ability to switch from one be-
havioral pattern to a completely different one may be required

Fig. 3. Example of the turning strategy. Example of a simulation where both
individuals adopted a turning strategy. The path of the agents during this simulation
is represented in red and blue, starting from their initial positions (represented by
black dots). Each disc represents a prey in the environment. Boars are represented
in green and stags in purple. When a prey was killed cooperatively, a red cross
(resp. blue) is shown on the prey if the red agent (resp. blue) arrived at this prey
first.

for breaking behavioral symmetry between two individuals,
but may be hindered by the limitation of the controller used
thus far.

To explore the possible benefits of more complex decision-
making capabilities, we enable each robot with the possibil-
ity to choose from two (possibly very) different controllers,
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depending on the context at hand. To do so, we introduce a
new evolutionary operator: the network duplication operator.
Loosely inspired by gene duplication (20), a newly created
individual may be subject to the complete duplication of its
artificial neural network. Conversely, an individual with two
networks may have one deleted. In this setup, any individ-
ual may possess either one or two network(s). Whenever two
individuals who possess two networks each interact with one
another, we ensure that each of them expresses a different
copy of their own networks (Methods).
We use the same experimental procedure as before: 30 popu-
lations are pre-evolved independently where only boar hunt-
ing yields a reward, and this time we introduce network du-
plications. We observe a significant difference with respect
to previous experiments, as in all 30 replicates, we observe
the evolution of asymmetrical hunting behaviors in the form
of a leader-follower division of labor.
Results are also significantly different than in both previous
treatments when the original payoff matrix is reinstated (Ta-
ble 1), because the transition to stag hunting occurs in 22
replicates out of 30 (Figure 4) as compared to 12 replicates
without network duplication. As in the pre-evolution runs,
the leader guides the pair toward a given prey, always arriv-
ing first, while the follower keeps the leader in its line of sight
at all times and joins her afterward on the prey (Figure 5, a
video of this strategy is also available in Supporting Informa-
tion).
This cognitive division of labor stems directly from the dupli-
cation of the neural controller: once duplicated, one version
of the network always ends up encoding for the leader be-
havior, while the other encodes for the follower behavior, just
like duplicated genes of the same family encode slightly dif-
ferent functions. However, network duplication alone (i.e.,
without asymmetrical behavior) is not enough, as demon-
strated by an additional control experiment where network
duplication is allowed, but with both robots using the same
network, randomly chosen at the start of each new evaluation
(see Figure 7 and Methods).
The division of labor has two consequences. First, it im-
proves hunting efficiency. In the turning strategy, the sym-
metry of decision-making sometimes hinders the ability to
reach a consensus. Even though turning promotes coordi-
nation, individuals often still fail to converge on the same
prey. In comparison, performance is significantly higher in
the leader-follower strategy (Figure 6, Mann-Whitney U test
on the mean reward at last generation, p-value <0.001): the
frequency of coordination failures is reduced thanks to a clear
separation of roles.
Second, the division of labor has an evolutionary conse-
quence. In the leader-follower strategy, just as in the turn-
ing strategy, hunters react to each other’s behavior and are
therefore also prone to react to mutants’ behavior. But, in
contrast to the turning strategy, this response is asymmetri-
cal and, therefore, more precise. Any mutation affecting the
leader’s behavior also changes completely the behavior of the
follower. That is, a mutation in a single individual automat-
ically affects two individuals at the same time. As a conse-

quence, the adaptive valley between boar hunting and stag
hunting disappears or, put differently, boar hunting ceases to
be an equilibrium. Any increase in the probability of hunting
a stag rather than a boar, when playing the role of a leader, is
directly favored by individual selection, and pure stag hunt-
ing therefore becomes the only evolutionary equilibrium.

Fig. 4. Transitions to the optimal equilibrium through evolutionary time. Num-
ber of replicates (out of a total of 30) where the switch to stag hunting occurred in the
Simple environment, Complex environment and Complex environment with asym-
metry settings. We considered that stag hunting evolved when more than 50%
of the prey hunted were stags hunted cooperatively. The Simple environment and
Complex environment settings are the same as previously (Figure 2). In the Com-
plex environment with asymmetry, a duplication event could occur where individuals
would coevolve two neural networks. We enforced the asymmetry by forcing each
hunter to use a different random neural network as its controller. Rewards were 125
for a boar and 250 for a stag (Table 1).

Discussion
Collective actions often require several individuals to make
coordinated choices. As a result, their efficiency, or lack
of efficiency, is a collective property, not a property of any
particular individual. This raises an evolutionary difficulty
because natural selection acts on individual, not collective,
properties. Collective actions are thus subject to an “evo-
lutionary trap” problem. Once a relatively successful but
still perfectible collective organization has evolved, any sin-
gle mutant playing a better strategy will be counterselected
due to her lack of coordination with others. For collective ef-
ficiency to be reached by evolution, several individuals would
all somehow have to “mutate collectively”, but genetic muta-
tions do not occur in several organisms at the same time.
In this paper, we studied this problem in artificial robotics
experiments. We simulated the life and the long-term evo-
lution of a population of simple robots that played a 2 x 2
coordination game. Robots were hunters who could choose
between two types of prey that were either poorly nutritious
or highly nutritious. But they could only be successful if they
converged together on the same prey. Hence, they faced a
coordination problem with two ESSes-hunting poorly nutri-
tious prey or hunting highly nutritious prey, and an adaptive
valley in between. Our aim was to find out how the evolu-
tionary trap problem materializes and how it is solved-or not
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Fig. 5. Example of the leader-follower strategy. Example of a simulation where
both individuals adopted a leader-follower strategy. The path of the agents during
this simulation is represented in red and blue, starting from their initial positions
(represented by black dots). Each disc represents a prey in the environment. Boars
are represented in green and stags in purple. When a prey was killed cooperatively,
a red cross (resp. blue) is shown on the prey if the red agent (resp. blue) arrived on
this prey first.

Fig. 6. Mean reward comparison of the turning strategy and the leader-
follower strategy. Mean reward over evolutionary time of the best individuals in
each of the 30 replicates when adopting a turning strategy or a leader-follower
strategy during the pre-evolution step (which lasted for 3000 generations). Rewards
were 125 for a boar and 250 for a stag (Table 1).

solved-in a model possessing a greater degree of realism than
conventional models of coordination games.
We first confirmed the existence of an evolutionary trap. In
a simple setting where the environment was constituted of
two individual prey only-one poorly nutritious and one highly
nutritious-if we initially forced the robots to play the subop-
timal ESS (attacking the poorly nutritious prey), all popula-
tions of robots remained stuck in this ESS “forever,” that is,
at least for the 6,000 generations of our simulations. Individ-
ual mutants who were targeting the better prey could not be

Fig. 7. Transitions to the optimal equilibrium through evolutionary time. Num-
ber of replicates (out of a total of 30) where the switch to stag hunting occurred with
a symmetrical or asymmetrical neural network. We considered that stag hunting
evolved when more than 50% of the prey hunted were stags hunted cooperatively.
In both treatments, a duplication event could occur where individuals would co-
evolve two neural networks. In the symmetrical treatment, both individuals were
forced to use the same randomly chosen neural network during a simulation. In
the asymmetrical treatment, individuals employed a different neural network for the
entirety of the simulation. Rewards were 125 for a boar and 250 for a stag (Table 1).

favored due to their singularity.
This observation may seem at odds with evolutionary game-
theoretical “drift” models (4–6). According to these models,
finite populations always eventually escape from evolution-
ary traps, because counterselected mutants rise in frequency
by genetic drift and eventually replace the suboptimal resi-
dent. Mathematical analyses of this process show that, in the
long run, populations should spend most of the time in the
vicinity of one specific equilibrium (called the “stochastically
stable” equilibrium), which corresponds to stag hunting with
our parameter setting. Hence, “drift” models predict that our
populations should not be trapped in the suboptimal strategy.
This discrepancy is a matter of time scale, however. Accord-
ing to drift models, our robots should eventually escape from
the evolutionary trap and hunt stags, in the “long” run, but
the question is how “long” in practice? The answer to that
question depends a great deal on the practical availability of
mutants. In game-theoretical models, stag hunters are simply
assumed to occur by mutation from boar hunters at a given
rate. In a robotic setting like this one, however, stag hunters
must appear by random changes in the connection weights
of boar hunters’ neural networks, and multiple such changes
separate a pure and well-optimized boar hunter from a pure
and well-optimized stag hunter. As a result, mutants playing
the stag-hunt strategy are extremely rare in a population of
pure boar hunters.
This is confirmed in a supplementary experiment (see Fig. 8,
and Methods), where we analyzed the behavior of 105 mu-
tants generated randomly from a pure and well-optimized
“boar hunter” genotype. This analysis showed that, at best,
the random mutants merely had a probabilistic tendency to
target the stag. That is, they played a mixed rather than a pure
strategy. These intermediate mutants can never prevail in a
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population of pure boar hunters, even after a phase of genetic
drift, because mixed strategies are strongly counterselected
in coordination games (owing to the uncertainty they gener-
ate). Hence, these mutants cannot bring about the stochastic
transition to stag hunting.

Fig. 8. Probability to prefer stags over boars in mutants generated randomly
from a pure boar-hunter genotype. Among the 105 mutants generated, we dis-
play only the 192 mutants whose probability to hunt stags is greater than 1% (see
Methods).

Although the occurrence of strong-effect mutants able to
destabilize the suboptimal equilibrium is possible in princi-
ple, the above analysis shows that it is highly unlikely in
practice owing to the mutational distance between ESSes. As
a result, the stochastic evasion from the evolutionary trap is
an extraordinarily slow process in our simulations. Because
the mutational distance between ESSes will often be even
greater in biology than in the present setting, stochastic eva-
sions from suboptimal equilibriums are presumably a highly
improbable event in general in biological settings.
However, we then showed that this problem actually disap-
pears in a more realistic setting. In a richer environment con-
stituted of several prey of each kind-several poorly nutritious
prey and several highly nutritious prey, individuals needed
to actively coordinate with their partner to converge on the
same prey. To resolve this problem, they evolved behavioral
tactics to keep track of and follow their partner. In our ex-
periments we observed the evolution of two such tactics. In
the first series of experiments, individuals constantly turned
around one another, never moving away from their partner,
which increased the probability that they both would even-
tually converge on a prey. In other experiments where we
authorized a behavioral asymmetry between partners, indi-
viduals evolved a leader/follower strategy whereby a single
individual chose a prey, whereas the other simply followed
her.
These coordination strategies evolved because they had im-
mediate individual benefits. They increased the probability
for individuals to hunt successfully. But they also had an un-
intended evolutionary consequence. When individuals had
the capacity to coordinate with each other, a mutation affect-
ing the behavior of one individual also indirectly modified,
phenotypically, the behavior of his/her partner, almost as if
individuals had mutated “collectively.” In quantitative ge-
netics, such an effect is called an “indirect genetic effect”

(17) because a gene affects the phenotype of an individual in
which it is not directly expressed. Indirect genetic effects are
well known for changing the evolutionary process in some-
times dramatic ways, by altering the genotype-phenotype re-
lationship. In the present case, behavioral coordination tac-
tics evolved to deal with the uncertainty of the “normal” en-
vironment in which one’s partners only targeted suboptimal
prey but the precise individual prey they were targeting could
vary, which required being able to follow them. However,
once evolved, coordination tactics also happened to work ef-
ficiently when interacting with mutants who preferentially
targeted other types of prey. They led one to follow and coor-
dinate with mutants like they did with “normal” residents.
Consequently, genetic mutants that preferred targeting the
most nutritious type of prey were directly favored by indi-
vidual selection because they always had a resident who ac-
cepted to follow them since she was indirectly influenced by
their mutated gene. The suboptimal coordination equilibrium
was no longer an evolutionary trap. In finding a solution to
the behavioral coordination problem, individuals solved the
evolutionary coordination problem as well.
Put another way, behavioral coordination strategies changed
the nature of the game. Individuals initially played a coor-
dination game in which two players needed to jointly evolve
a compatible preference. This raised a bootstrapping prob-
lem and made the transition from one equilibrium to another
unlikely. By evolving endogenously a coordination strategy,
individuals turned this game into a plain optimization game
in which a single player was simply selected to choose the
best possible prey.
Beyond the particular setting considered in this paper, we
think these results reveal a general principle that could play
a role in all games with multiple equilibriums, that is, in all
coordination games, but also in repeated games such as the
repeated prisoner’s dilemma (see, for instance, 21, 22). As
a rule, there are many reasons why the behavior of one’s
partners will vary in all these games, making it necessary
for one to adapt plastically to this variability (23). In our
simulations, for instance, individuals evolved a coordination
strategy to adapt to the precise location where their partner
was heading, but the same principle should hold in other set-
tings as well. Even though behavioral plasticity originally
evolves merely to deal with partners’ phenotypic variability,
it also happens to generate an adaptive response in front of
mutants. These mutants probably did not exist when behav-
ioral plasticity evolved, but they nevertheless happen to trig-
ger the exact same response. And because this response was
originally meant to maximize efficiency, it is likely to do so
with mutants, too, as our experiments illustrate. Hence, there
is a general reason why the plastic response of individuals to
each other should often “change the rules of the game” and
smoothen the transition to efficient collective behaviors.

Methods
Experimental setup. The environment is a 800 by 800 unit
arena with four solid walls. Each simulation is conducted
with a pair of hunters (the robotic agents) and a varying num-
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ber of prey of two types, boars and stags with respective re-
wards 125 and 250 (Table 1). The initial positions of the prey
are random and the prey cannot move. To capture a prey, the
two hunters have to stay in contact with it for 800 time steps
(out of a total of 20000 time steps for each simulation). Both
robots have to be in contact with the prey at the end of the
800 time steps for the hunt to be considered successful. Once
captured, the prey is removed and replaced at a random po-
sition in the arena. In the “simple” environment condition,
there is always exactly one boar and one stag present in the
environment. In the “complex” environment condition, there
is always 9 prey of each type. Robots (that is, hunters) begin
the simulation next to each other at the top of the arena and
can then move freely in the environment. To do so, they are
equipped with a set of sensors and two independent wheels
connected by a fully connected multilayer perceptron. Sen-
sors comprise 12 proximity sensors and a camera. Proximity
sensors are evenly distributed around the robot’s body, and
each has a range of 40 units. A proximity sensor is a ray
toward a particular direction indicating to the robot the dis-
tance of the first obstacle in this direction. The camera is
placed on the front of the robot, and its 90 degree field of
view is divided into 12 equally spaced rays. Each ray of the
camera indicates the type (that is, hunter, boar, or stag) and
the proximity of the nearest agent in its direction. Robots are
individually controlled by a fully connected multilayer per-
ceptron with a single hidden layer. The inputs of the neural
network are fed with the sensory data of the robot. One in-
put neuron is used for each of the 12 proximity sensors, with
maximal (resp. minimal) neural activity when the agent is
directly in contact with an obstacle (resp. when there is no
obstacle in the range of the sensor). Three neurons are used
for each of the 12 rays of the camera: two neurons to encode
the type of obstacle in a two-bit binary value and one neu-
ron to encode the proximity of the obstacle. Finally, there
is a bias neuron whose value is always equal to one. The
total number of input neurons is 49. The hidden layer con-
tains 8 neurons, while the output layer contains 2 neurons.
These 2 output neurons control the speed of the left and right
wheels; minimal (resp. maximal) activity results in maximal
backward (resp. forward) actuation. The activation function
used to compute outputs is a sigmoid function. Connection
weights are each encoded in a single gene (the total genome
size is 410).

Simulating artificial evolution. In each of the 30 indepen-
dent replicates, we let a population of 20 individuals evolve.
Each individual is encoded as a genome, where each gene
codes for a connection weight of the multilayer perceptron
controller. Every gene in the genome is first initialized with
a random value sampled uniformly in [0,1]. In each gen-
eration, the performance of every individual is evaluated by
matching her with five different random partners. In turn,
the performance of each pair of partners is evaluated through
five independent trials. Hence, the fitness of every individual
is computed in each generation as an average across 25 in-
dependent trials. We then apply a (10 + 10) elitist selection
strategy (24). Generation t + 1 is composed of the 10 best

individuals of generation t plus 10 mutants generated from
a single parent of generation t. Mutations are sampled ac-
cording to a Gaussian operator, with a standard deviation of
2×10−1 and a per-gene mutation probability of 5×10−3.

Duplication and coevolution of neural networks. To
study the effect of an asymmetry between hunters, we al-
low the duplication of neural networks. Every individual ini-
tially has a single neural network but duplication and deletion
events can occur randomly (at the same moment of the life
cycle than mutation). When duplication occurs, each gene
is duplicated to create a new genome encoding for a second
neural network that can then evolve independently of the first.
When deletion occurs, one of the two neural networks of the
individual is deleted randomly. Duplication occurs with a
probability 5×10−2 and deletion with a probability 5×10−3

per generation.

Control experiment. We conduct a control experiment to
confirm that evolutionary transition is facilitated by the
leader-follower strategy rather than by the duplication of the
neural network per se. In this experiment, duplication can
occur but robots are always forced to use the same, randomly
chosen, neural network, which prevents the evolution of a di-
vision of labor. We observe that, under this treatment, (i) indi-
viduals evolve a turning strategy rather than a leader-follower
strategy, and (ii) the transition to stag hunting only occurs in
16 replicates out of 30 (Figure 7). This confirms that the di-
vision of labor, and not network duplication per se, facilitates
the transition to stag hunting.

Analyses of boar-hunter mutants w.r.t. stag hunting.
We generate 100.000 random mutants from a well-optimized
boar-hunter genotype (with the same mutation parameters
than in our evolutionary simulations), and assess each mu-
tant’s hunting preferences. From among these 100.000 mu-
tants, we extract 192 mutants that displayed a probability
greater than 0.01 of hunting the stag. Figure 8 shows the
distribution of the preferences of these 192 mutants. Most
mutants have only a small probability to hunt stags. In par-
ticular, not a single pure stag hunter can be found among the
100.000 mutants.
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