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Abstract— MicroRNA mediated incoherent feed forward
loops (IFFLs) are recurrent network motifs in mammalian
cells and have been a topic of study for their noise rejection
and buffering properties. Previous work showed that IFFLs
can adapt to varying promoter activity and are less prone
to noise than similar circuits without the feed forward loop.
Furthermore, it has been shown that microRNAs are better
at rejecting extrinsic noise than intrinsic noise. This work
studies the biological mechanisms that lead to extrinsic noise
rejection for microRNA mediated feed forward network motifs.
Specifically, we compare the effects of microRNA-induced
mRNA degradation and translational inhibition on extrinsic
noise rejection, and identify the parameter regimes where noise
is most efficiently rejected. In the case of static extrinsic noise,
we find that translational inhibition can expand the regime of
extrinsic noise rejection. We then analyze rejection of dynamic
extrinsic noise in the case of a single-gene feed forward loop
(sgFFL), a special case of the IFFL motif where the microRNA
and target mRNA are co-expressed. For this special case, we
demonstrate that depending on the time-scale of fluctuations in
the extrinsic variable compared to the mRNA and microRNA
decay rates, the feed forward loop can both buffer or amplify
fluctuations in gene product copy numbers.

I. INTRODUCTION

Stochasticity in gene expression is known to be modulated
by biological feedback and feed-forward network motifs [1].
In particular, recent work has found that IFFLs – a network
architecture where an upstream regulator directly activates
a downstream target and also indirectly inhibits it – are
capable of buffering against changes in promoter activity,
as well as reducing the stochasticity in gene expression [2]–
[4]. Furthermore, it has also been shown that the reduction
of noise is more effective at the post-transcriptional level
for IFFLs [5]. In this study we focus on understanding
the noise rejection properties of a particular class of post-
transcriptionally regulated IFFLs, where the negative regula-
tory link is implemented with a microRNA (miRNA).

MiRNA are a class of non-coding, regulatory RNAs that
have been linked with the post-transcriptional regulation
of important biological processes including differentiation,
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development and disease [6]. As was the case for transcrip-
tionally regulated IFFLs, experimental studies with miRNA
mediated IFFLs have shown that they have effective noise-
suppressing and buffering properties in some parameter
regimes, often displaying interesting nonlinear behaviors [2],
[4]. miRNA regulation of gene expression is is believed to
occur through two different regulatory modes: i) by degrad-
ing mRNAs that the miRNAs bind to, and ii) by preventing
efficient translation of miRNA bound mRNAs into proteins
(translation-inhibition) [7]. To elucidate the mechanisms un-
derlying these properties, several mathematical models have
been proposed to describe this class of IFFLs [8]–[10].
However, these models either rely on large mathematical
nonlinearities [8], or on complex network architecture [10] to
explain the nonlinear noise-rejection properties of the system.
Such models also often make modeling assumptions that are
not justified using biological mechanisms. On the other hand,
data-fitted models [9] don’t explore the full parameter space,
and risk to overlook important components in the machinery.
Hence, a qualitative, parameter-independent model that could
provide an easy biological explanation is currently missing.
Here, we propose a simple quasi-linear model that utilizes
mechanisms inferred from previous experimental studies [4],
[7] and mild assumptions on the underlying extrinsic noise
sources. Through these basic assumptions, we explain the
previously-reported biological behaviors, and recapitulate the
mechanisms at the origin of the noise-repression mechanism
with particular attention to their biological interpretation.
These insights allow us to precisely pinpoint the qualita-
tive contribution of each cellular machinery on the overall
behavior, providing a framework for understanding current
biological systems and for designing synthetic systems for
noise rejection.
We initially focus on the the more biologically common
situation of static extrinsic noise, which arises when the
mRNA degradation occur on a much faster time scale than
than that set by the cell cycle. We analytically obtain
conditions for extrinsic noise rejection for general miRNA
mediated IFFLs, demonstrating that the noise correlation
alone defines the parameter space for noise rejection. Then,
we demonstrate that high mRNA-miRNA binding rate could
lead to an overall noise increase, and give a simple biological
explanation. Moreover, we show that, contrary to what was
previously reported [9], translation-inhibition is a key-player
in reducing protein noise. Finally, we extend the analysis to
dynamic extrinsic noise, focusing on the special case where
the mRNA and miRNA are derived from the same gene
(single-gene IFFL). We demonstrate that even for this simple
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system, dynamic extrinsic noise can lead to a wide range of
noise rejection regimes depending on the relative stability of
the mRNA and the miRNA.

II. MODEL OF IFFL SYSTEM

We now outline the miRNA-mRNA IFFL model that we
use in this study, starting from the underlying biochemical
reactions. mRNA (M ) and miRNA (S) are transcribed from
genes g1 and g2 respectively at constant rates αm, αs. The
process of translation then converts mRNA into protein (P )
at constant rate αp; miRNA, by definition, is not coding for
any protein. To complete the reaction network, we add the
degradation processes:

G1
αm−→M αp−→ P (1)

M
βm−→ ∅ (2)

G2
αs−→S (3)

S
βs−→ ∅ (4)

The miRNA-based regulation proceeds primarily through
two groups of steps namely miRNA mediated degradation
and translational inhibition which affect each of these reac-
tions separately. Many models for miRNA based degradation
have been proposed [7], [11]–[13]. For the purposes of this
work we rely on a previously-adopted model [4]: we assume
that mRNA and miRNA form an irreversible complex C that
is then degraded into the miRNA alone at rate kc. Moreover,
we assume that mRNA can be translated into protein even
when bound to the miRNA, although at a lower rate. This
factor accounts for the miRNA-induced translation inhibition
that has been previously reported [7], [9]:

M + S
γs−→ C

kc−→ S (5)

C
k1αp−→ P (6)

where k1 is a real number between 0 and 1, where k1 =
0 implies full translation inhibition (no protein from the
complex) and k1 = 1 implies that the complex has the same
translation rate as the mRNA alone.
We now write a mathematical model describing 1 and 5:
the species concentrations (or copy numbers) are represented
with the corresponding lower case bold-faced variables
which represent random processes.

dm

dt
=αmg1 − βmm− γsms (7)

ds

dt
=αsg2 − βss+ kcc (8)

dc

dt
=γsms− kcc (9)

dp

dt
=αp(m+ k1c)− βpp (10)

The production rates of mRNA and miRNA are dependent
respectively on the positive random variables g1 and g2,
which correspond to the average number of active genes.
Genes g1 and g2 can be transcribed either dependently
(Cov(g1,g2) 6= 0) or independently (Cov(g1,g2) = 0).

This model can be further simplified by assuming that the
mRNA-miRNA complex formation reaches steady state at
a faster pace than the other processes. Hence, we get c =
γsms
kc

. This simplifies equations 8–10 to:

ds

dt
=αsg2 − βss (11)

dp

dt
=αpm(1 +Kγss)− βpp (12)

Where K = k1
kc

. In the special case where there is complete
translational inhibition we observe that K = 0.
Steady state mRNA and protein levels of the open loop
system 1 can easily be computed:

m∗OL =
αm
βm

g1 (13)

p∗OL =
αpαm
βpβm

g1 (14)

Under the reasonable assumption that there is negligible
variability in the cellular processes within a cell population,
the extrinsic noise source is the variability of the transcription
of the genes g1 and g2. This enables us to avoid making any
assumptions on the distributions of the parameter values. The
coefficient of variations of the open loop system are given
by:

ηpOL = ηmOL = ηg1 (15)

The corresponding steady state levels in the general IFFL
system according to 11 are:

m∗ =
m∗OL

1 + γsd
βm

g2

(16)

p∗ =
p∗OL

1+ γsd
βm

g2

1+Kdγsg2

(17)

where d = αs
βs

. Equations 16 and 17 highlight the separate
dependency of the system equilibria on the open-loop steady
states and the miRNA regulation.

III. STATIC EXTRINSIC NOISE REJECTION IN GENERAL
IFFL SYSTEMS

Extrinsic Noise Measurement at Steady State for Static Noise.

Extrinsic noise arises from diversity in cell populations,
such as differences in cell size, in uptake of a external signal,
or in the cell cycle phase. The two random variables g1

and g2 representing gene expression level, account for the
extrinsic noise in our model. We consider two cases: when
the noise is static in nature (g1 and g2 are fixed distributions
over time) and when it is time-varying.
To quantify steady-state noise rejection in microRNA-based
systems, we use the square of the coefficient of variation
defined as the ratio:

η2Z =
Var(Z)

〈Z〉2
(18)

where Z is the random variable of interest, and Var(·) and 〈·〉
are the standard notation for the variance and expected value
operators. The coefficient of variation allows to compare
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noise in processes that have different means. This is essential
in our study, as microRNA-control reduces the level of
mRNA and protein.
We use a first-order Taylor-Delta approximations to obtain
the ratio and products of the two random variables (g1

and g2), which leads to the following expression for the
coefficient of variation 18:

η2
(
X

Y

)
=

Var

(
X
Y

)
〈XY 〉

(19)

=

Var(X)
〈Y〉2 − 2 〈X〉〈Y〉3Cov(X,Y) + 〈X〉2

〈Y〉4Var(Y)

〈X〉2
〈Y〉2

(20)

This expression can be simplified to:

η2
(
X

Y

)
= η2X + η2Y − 2ρηXηY (21)

where ρ is the Pearson product-moment correlation coeffi-
cient between the two random variables X and Y.
We can now compute the coefficient of variations for the
mRNA (16) and protein (17) level as:

η2m = η2g1 + η2mm − 2ρmηg1ηmm (22)

η2p = η2g1 + η2pm − 2ρpηg1ηpm (23)

where we define the miRNA-dependent noise contribution
for mRNA (ηmm) and protein (ηpm) as:

ηmm =
γsd〈g2〉

βm + γsd〈g2〉
ηg2 (24)

ηpm =
γsd〈g2〉(1−Kβm)

(1 +Kγsd〈g2〉)(βm + γsd〈g2〉)
ηg2 (25)

and ρm and ρp as:

ρm = ρ

(
g1,

γsd

βm
g2

)
(26)

ρp = ρ

(
g1,

1 + γsd
βm

g2

1 +Kdγsg2

)
(27)

According to formulae 22 and 23, miRNA regulation intro-
duces noise in the system (represented by the quantities η2mm
and η2pm), but it also cancels part of the noise components
of g1 if the two processes are positively correlated (ρ > 0).
The noise cancellation terms, −2ρmηg1ηmm or −2ρpηg1ηpm,
suggest that the noise is canceled from both sources depend-
ing on how well they correlate with each other.

Conditions for noise cancellation in miRNA-regulated IFFLs

To understand the extrinsic noise reduction properties of
miRNA regulation, we studied the values of ηmm and ηpm
in 22 and 23 that satisfy condition: η2 ≤ η2g1 , when the noise
of the close-loop system is lower than for the open loop.
It is easy to see that a necessary condition for noise rejection
is ρm > 0 and ρp > 0. At the mRNA level (eq 24), this
condition is guaranteed iff ρ(g1,g2) > 0, which occurs when

miRNA-dependent noise contribution
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Fig. 1. Extrinsic noise rejection in microRNA based IFFLs.

the same upstream gene positively regulates both g1 and g2,
as is the case in an IFFL. Conversely, uncorrelated miRNA
or coherent feed forward loops (CFFLs) do not have extrinsic
noise cancellation properties at the mRNA level according to
our model.
At the protein level (eq 25), two conditions need to be
satisfied to have ρp > 0:

ρ(g1,g2) > 0 (28)
1−Kβm > 0 (29)

Condition 28 is the same as for mRNA, which implies that
only IFFLs can achieve noise rejection at the protein level.
Condition 29 guarantees that the miRNA-mRNA complex
does not translate into protein faster than mRNA alone would
be degraded. If this were to happen, more protein would be
produced from the complex than from the open loop mRNA.
Therefore the miRNA regulation would not repress pro-
tein expression, but instead facilitate it. Hence, translation-
inhibition (K > 0) could cancel the noise-rejection property
of the IFFL.
Even if ρ > 0, the parabolic form of 22 and 23 implies that
there is a limited range of values of ηmm and ηpm that leads
to extrinsic noise rejection, before the extra noise introduced
by the miRNA machinery leads to worse performance than
in the open loop (Figure1). The limiting case is when
ηmm = 2ρmηg1 and ηpm = 2ρpηg1 , where the amount of
noise that is introduced by the miRNA is equivalent to the
amount of canceled noise (η = ηg1 ). The minimum of the
parabola corresponds to the maximum noise rejection that
could be achieved. This is reached for ηmm = ρmηg1

and
ηpm = ρpηg1

, for which the noise rejection ratio is:

η2m = ηg1
(1− ρ2m) (30)

η2p = ηg1
(1− ρ2p) (31)

Thus, optimal noise rejection is achieved for perfect corre-
lation (ρ = 1).
In summary, we showed that miRNA-based IFFLs are the
only network architecture that can lead to noise reduction in
simple miRNA mediated systems. We also demonstrated that
correlation between the two types of noise (miRNA-based
and mRNA) is the main factor in extrinsic noise cancellation.
However, very high miRNA-related noise (ηmm > 2ρmηg1
or ηpm > 2ρpηg1 ) increases the system noise even at
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maximum correlation (ρm = 1 and ρp = 1), as one would
expect (Figure 1).

High miRNA-mRNA binding rate could lead to increased
extrinsic noise

We investigated the relationship between the miRNA-
mRNA binding rate (γs) and the extrinsic noise rejection
properties of the IFFLs. We showed in the previous sub-
section that the amount of noise introduced by the miRNA
regulation (η2mm or η2pm) could be balanced by noise cancel-
lation (−2ρmηg1ηmm and −2ρpηg1ηpm). Hence, we com-
puted the value of ηmm at the mRNA and the protein level
and studied their dependencies to γs. It could be shown that
ηmm in 24 has a monotonic dependency on γs:

dηmm
dγs

> 0, ∀γs > 0 lim
γs→∞

ηmm(γs) = ηg2 (32)

This equations shows that there is a maximum amount of
noise that could be introduced by the miRNA regulation to
the system at the mRNA level, and this is bounded by the
amount of noise in the input signal g2 (specifically, by η2g1 +
η2g2 − 2ρmηg1ηg2 ). The mRNA extrinsic noise tends to this
value in the limit, although for high values of γs, m∗ → 0.
In this range, the mRNA dynamics are entirely defined by
fluctuations in the miRNA, as all mRNA are in a complex
(Figure2(a)). Moreover, if ηg2 < 2ρmηg1 , according to 22,
noise rejection is achieved for all values of γs.
The optimal noise rejection is reached for:

γsd〈g2〉
βm + γsd〈g2〉

ηg2 = ρmηg1 (33)

This equation shows that the mRNA noise is reduced when
the miRNA-induced degradation can compete with the natu-
ral mRNA degradation βm. Increasing or reducing the value
of βm requires a higher or lower value of γs to reach the
minimum of the parabola. At the protein level, translation
inhibition introduces a non-trivial nonlinear dynamic. In fact,
ηpm is not monotonic on γs, and it reaches a maximum for:

γmaxs =

√
βm
K

1

d〈g2〉
(34)

ηpm(γmaxs ) =
1−
√
βmK

1 +
√
βmK

ηg2 (35)

We notice that the maximum value of ηpm(γmaxs ) is positive
iff 1 − βmK > 0, which is assured by the noise-rejection
condition 29. Equation 25 also shows that the value of ηpm
as γs → ∞ is 0. Hence the maximum amount of noise
that could be introduced by the miRNA regulation to the
system at the protein level is reached for ηpm(γmaxs ) (Figure
2(b)). This quantity is less or equal than ηg2 , satisfying the
equality for K = 0 (complete translation-inhibition), when
the dynamic of the protein noise is equivalent to the mRNA
one.
Depending on the values of 35, there are three possible
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Fig. 2. High miRNA-mRNA binding rate has a nonlinear effect on the
overall extrinsic noise. (a)Noise rejection at the mRNA level for a miRNA-
based IFFL. miRNA-mRNA binding strength drives noise reduction from
0 (red circle) to a minimum (green circle, maximum noise cancellation).
Higher binding rates introduce more miRNA noise in the mRNA spectrum
till it reaches its maximum (blue circle).(b) Noise rejection at the protein
level for a miRNA-based IFFL. Protein is generated from both complex and
mRNA (assuming K 6= 0): for intermediate values of γs, this leads to a
biphasic distribution, which increases the overall noise (dark blue circle).

scenarios:

0 < ηpm(γmaxs ) < ρpηg1 (36)
ηpm(γmaxs ) ≤ ρpηg1 (37)
ηpm(γmaxs ) > ρpηg1 (38)

If 36 is satisfied, then there is only one optimal binding rate
γs, which is sub-optimal for the given distribution g1 and
g2. If 37 is satisfied, then optimal noise rejection is reached
for a unique value of γs. If 38 is satisfied, then optimal noise
rejection is reached for two different values of γs, and noise
increases between the two (local maximum). Moreover, if is
bigger than 2ρpηg1 , then this local maximum is higher than
the open loop noise. In all three scenarios, the IFFL noise
tends to the open-loop noise as γs →∞ (Figure2(b).
In summary, the protein noise follows the mRNA noise
closely for low binding rates. As the binding rate increases,
the miRNA-mRNA complex becomes dominant and com-
petes with mRNA for translation to protein: these two sepa-
rate translation events lead to a bimodal protein population
(’threshold effect’), which increases the total extrinsic noise
(maximum highlighted in blue in Figure 2(b)). At higher
binding rate, the miRNA-mRNA complex mostly dominates
translation: protein noise is then dependent on the miRNA
noise, reaching a second minimum (highlighted in light blue
in Figure 2(b)). For even higher values of γs, protein trans-
lation occurs mainly through the miRNA-mRNA complex,

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 21, 2018. ; https://doi.org/10.1101/422394doi: bioRxiv preprint 

https://doi.org/10.1101/422394
http://creativecommons.org/licenses/by/4.0/


because little free mRNA is left. In this regime, the protein
noise is independent on miRNA, since at steady state the
complex is dependent only on the amount of the substrate
mRNA. Hence, ηp reaches the open-loop mRNA noise ηg1
as γs →∞.

Translation-inhibition modulates the functional range of
miRNA extrinsic noise rejection

To address the importance of translation-inhibition for
the miRNA-induced noise rejection, we analyzed the depen-
dency of our results in the previous section to perturbation
of the translation-inhibition parameter K. Equations 34 and
III show that for a fixed value of γs, the performance of the
miRNA-IFFL could be tuned by increasing or decreasing the
translation-inhibition parameter K or the mRNA degradation
βm. However, tuning these parameters have opposite effects
on optimality: γmaxs is reduced if K is increased, and it
increases if βm is increased. This is not surprising since the
two mechanisms are competing for mRNA degradation.
As shown in Figure 3, increasing K changes the location and
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extrinsic noise rejection. Upon binding to mRNA, miRNA interferes with
the protein translation machinery (translation-inhibition, K 6= 0). This effect
modulates the extrinsic noise peak (blue circle) both in intensity (y-axis)
and in its corresponding binding strength (x-axis). For high values of K
(low translation-inhibition), overall noise rejection occurs at a wider range
of γs values rather than for full translation inhibition (K = 0).

height of the noise peak both in intensity (y-axis) and in its
corresponding binding strength (x-axis). On the other hand,
if K = 0, the dynamic follows the mRNA noise closely and
reaches its maximum at η2g1 + η2g2 − 2ρpηg1ηg2 as γs → ∞
(green line in Figure 3).
Hence, translation-inhibition modulates the noise-rejection
range of the miRNA-mRNA binding rate γs. For high-noise
miRNA, full translation-inhibition (K = 0) reduces protein
noise over a larger range of γs (since η2g1+η

2
g2−2ρpηg1ηg2 <

ηg1 ), while little translation-inhibition is preferred for low-
noise miRNA.

IV. STATIC AND DYNAMIC EXTRINSIC NOISE REJECTION
IN SGFFL SYSTEMS

A. Static noise rejection by sgFFLs

A very common and functionally important sub-class of
IFFLs is the single gene feed forward loop or sgFFL [14],
[15]. sgFFLs are a special class of IFFLs where the mRNA
and the miRNA are co-expressed by the same gene [4], [16].
Typically, the miRNA is located within an intron of the gene

encoding the mRNA. The mRNA and the miRNA are first
transcribed together into one transcript and then separated
from each other by splicing [17], [18]. Mathematically,
this can be expressed as g1 = g2 = g, which simplifies
expression 22 to

ηm = ηg − ηmm = ηg −
ηg

βm
γsd〈g〉 + 1

(39)

As a result of this simplification, the mRNA noise ηm can
be reduced arbitrarily close to 0 by increasing γs, since
ηmm → ηg as γs →∞. Extrinsic variations of mRNA levels
would be canceled out by equivalent variations of miRNA:
each cell would then be reduced to the same mRNA steady
state, defined by the fixed biochemical rates of degradation.
This behavior is conserved at the protein level if there is
full translation inhibition. If one assumes that some of the
complex gets translated, then there is an optimal value of
γs for which extrinsic noise is minimized, and the protein
concentration is not reduced to 0. This value is equivalent
to:

γopts =
1

d〈g〉

√
βm
K

(40)

which is the sgFFL case of 34. This values is a ratio between
mRNA that escapes miRNA degradation (naturally degraded
at rate βm or translated as miRNA-mRNA complex) and total
amount of miRNA (d〈g〉).

B. Dynamic noise rejection by sgFFLs
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Fig. 4. Dynamical noise rejection by miRNA mediated IFFLs. Plot of
noise in mRNA levels ηm as given by (47) as a function of the mRNA-
miRNA interaction strength for different values βg (time-scale of extrinsic
fluctuations), βm (mRNA decay rate) and βs (miRNA decay rate). While
low values of βg cause ηm to monotonically decrease with γs (green
line), values of βg comparable or higher than βm and βs result in a non-
monotonic profile for ηm (blue and orange lines), where mRNA noise is
minimized at an optimal interaction strength. Note that in this plot mRNA
noise levels are normalized by their value in the open loop system with no
mRNA-miRNA interaction.

Having so far studied the effect of static extrinsic noise
on sgFFL circuits, we now consider the scenario of dynamic
noise by allowing

g1(t) = g2(t) = g(t) (41)
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to be a stochastic process modeled as an Ornstein-Uhlenbeck
(OU) process

dg(t) = βg (〈g〉 − g(t)) dt+ ηg〈g〉dw(t), (42)

where 〈g〉 is the steady-state mean level of g(t), w(t) is a
Wiener process, ηg and βg are the magnitude (coefficient of
variation) and time-scale of fluctuations in g(t), respectively.
This stochastic process drives the sgFFL circuit described
earlier by the following system of different equations

dm

dt
=αmg − βmm− γsms (43)

ds

dt
=αsg − βss. (44)

For simplicity, in this subsection we will only focus on noise
at the mRNA level, and hence ignore the protein dynamics.
Note that the limit βg → 0, where fluctuations in g(t)
are significantly slower than the mRNA-miRNA dynamics,
recovers the scenario of static noise that we have up till now
considered. A key question of interest is as we now vary βg
what miRNA-mRNA interaction strengths provide the most
efficient noise buffering?

To address these questions, we investigate the statistical
moments of the joint stochastic processes {g(t), m(t), s(t)}.
Readers are referred to [19], [20] for details on deriving
moment dynamics for hybrid systems of the form (42)-(44)
that couple stochastic and ordinary differential equations.
It turns out that the nonlinear product term ms in (43)
makes computations non-trivial due to unclosed moment
dynamics - the time evolution of the lower-order moments
always depends on high-order moments. Moving forward,
one general approach is to exploit closure schemes that
approximate higher-order moments as nonlinear functions of
lower-order moments [21]–[35]. Here we use an alternative
approach based on linearizing the nonlinearity

ms ≈ 〈s〉m+ 〈m〉s− 〈m〉〈s〉 (45)

where 〈m〉 and 〈s〉 denote the mean steady-state levels for
the mRNA and miRNA, respectively. Using this approxima-
tion in place of ms in (43) result in a linear dynamical system
driven by an OU process, and standard theory can now be
applied to compute moments. More specifically, let µ denote
a vector consisting of all the first and second order moments
of {g(t), m(t), s(t)}, then its time evolution is given by the
linear system

µ̇ = a+Aµ, (46)

where vector a and matrix A depend on model parameters
[19], [20]. Steady-state analysis of (46) yields a complicate
formula for the steady-state noise (coefficient of variation)
in mRNA levels ηm, as given by (47) on top of the next
page. As expected, in the limit of static noise (βg → 0),
(47) reduces to (39), where η2m monotonically decreases with
increasing mRNA-miRNA interaction strength γs.

In the limit of no mRNA-miRNA interaction, the mRNA
noise level is given by

lim
γs→0

η2m = η2g
βm

βm + βg
(48)

and is an increasing function of the mRNA decay rate βm.
Intuitively, as we decrease the mRNA half-life, it becomes
less efficient in averaging out upstream fluctuations in g(t),
and more noise from g(t) propagates to the mRNA level. In
the limit of strong mRNA-miRNA interaction,

lim
γs→∞

η2m = η2g
βg

βs + βg
, (49)

and comparing (50) and (48) reveals an intriguing result: for
sufficiently fast fluctuation in g(t), such that, β2

g > βmβs

lim
γs→∞

η2m > lim
γs→0

η2m, (50)

i.e., strong mRNA-miRNA feed forward interaction will
actually amplify noise compared to the open loop system.
This counter intuitive result can be understood from the fact
that while the incoherent feed forward loop cancels external
noise, it also decreases the mRNA half-life which causes
more noise propagation from g to m. The balance of these
two effects results in an interesting set of behaviors illustrated
in Fig 4 which plots (47) as a function of γs. In particular,
we see
• For slow fluctuations in g(t), mRNA noise level de-

creases with increasing γs as expected form our analysis
of static noise (green line).

• When time-scale of fluctuations in g(t) are comparable
to mRNA and miRNA half-lives, η2m first decrease with
increasing γs to reach a minimum, and then increase
with γs to create a U-shape profile (blue line).

• For sufficient fast fluctuations in g(t), the U-shape
become shallower and shifts to the left such that η2m
is mostly an increasing function of γs (orange line).

In summary, our results show that if the time-scale of
fluctuations in the external variable is somewhat comparable
to the system dynamics, then introducing noise statically in
the system can lead to erroneous results. Given the space
constraints, we have only focused on the noise at the mRNA
level in sgFFLs, and future work investigating dynamic noise
propagation at the protein level in general mRNA-miRNA
feed forward circuits is clearly warranted.

V. CONCLUSION AND FUTURE WORK

Here we have identified the regimes for noise rejection
at the mRNA and the protein level for miRNA-mediated
IFFLs. In the case of static extrinsic noise, we investigated
how the different modes of post-transcriptional regulation
by miRNAs affect noise levels. Interestingly, we found
that IFFLs are the only microRNA mediated process with
extrinsic noise reduction capability. Furthermore, we found
that due to translational inhibition, the regimes for noise
rejection are quite different at the level of mRNA and protein.
While ordinarily this added non-linearity leads to an increase
in noise, under certain biologically realistic circumstances,
this effect can be reversed leading to a greater range of noise
reduction at the protein level. We also mathematically verify
the experimental observation [4] that high mRNA-miRNA
binding rate can lead to an increase in extrinsic noise.
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η2m
η2g

=
β2
m(βm + βs)(βs + βg) + β2

m(βs + 3βg)γsd〈g〉+ 3βmβg (γsd〈g〉)2 + βg (γsd〈g〉)3)
(βs + βg)(βm + γsd〈g〉)(βm + βs + γsd〈g〉)(βm + βg + γsd〈g〉)

(47)

For the case of dynamic extrinsic noise, we limit our
investigation to the special case of co-expressed mRNA and
miRNA (sgFFL system). Our results show counter-intuitive
effects if the time-scale of fluctuations in g(t) are comparable
or faster than the time scale of mRNA and miRNA turnover.
In particular, while for static extrinsic noise the mRNA
noise is predicted to monotonically decrease with increasing
mRNA-miRNA interaction strength, in the case of dynamic
noise (for all other model parameters fixed) there exists an
optimal feed forward strength that minimizes mRNA noise.

Future work will be aimed at extending this analysis to
intrinsic noise. Such a study will enable a more compre-
hensive understanding of the noise rejection properties of
such systems. Another promising direction of future work
relates to studying the noise modulation by more compli-
cated miRNA mediated network motifs, particularly those
involving multiple correlated or uncorrelated miRNAs.
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