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Abstract: Patient-specific modeling of hemodynamics in arterial networks has so far relied on pa-
rameter estimation for inexpensive or small-scale models. We describe here a Bayesian uncertainty
quantification framework which makes two major advances: an efficient parallel implementation,
allowing parameter estimation for more complex forward models, and a system for practical model
selection, allowing evidence-based comparison between distinct physical models. We demonstrate
the proposed methodology by generating simulated noisy flow velocity data from a branching arte-
rial tree model in which a structural defect is introduced at an unknown location; our approach is
shown to accurately locate the abnormality and estimate its physical properties even in the presence
of significant observational and systemic error. As the method readily admits real data, it shows
great potential in patient-specific parameter fitting for hemodynamical flow models.
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1 Introduction

Mathematical models for hemodynamics trace back to the work of Euler, who described a one-
dimensional treatment of blood flow through an arterial network with rigid tubes [10, 26]. More
recent approaches are considerably more sophisticated: highly computationally intensive three-
dimensional models can now accurately simulate specific human arteries (e.g., the thoracic aorta
[27]) and model their material properties (e.g., of cerebral arterial walls [30]). There also exist
multicomponent models [9], which are amenable to applications such as modeling oxygen transport
to solid tumors [4] and surgical tissue flaps [18, 19].

Despite the sophistication of these modern approaches, there remain a number of challenges
in the creation of patient-specific models using individual medical data. In particular, compu-
tational expense usually limits arterial parameter estimation to modern one-dimensional models
[26, 11], which have nonetheless proven sufficiently robust to study fluid-structure interactions and
viscoelasticity [24, 17] and create a patient-specific model for vascular bypass surgery [15]. Several
approaches exist for parameter estimation and uncertainty quantification for these models. Gradient
descent has been used to estimate arterial compliance parameters [16], recovering single parameters
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assumed constant in space and time. Sensitivity analysis has also been used, successfully quan-
tifying output sensitivity to various uncertainties in a stochastic flow network [5]. More recently,
computational methods based upon Bayesian optimization and multi-fidelity information fusion for
model inversion have been explored [25].

The chief contribution of this work is to introduce a Bayesian framework for uncertainty quan-
tification in a bifurcating network of one-dimensional extensible arteries. The advantages of the
approach are twofold. First, it utilizes transitional Markov chain Monte Carlo (TMCMC), a highly
parallelizable algorithm for approximate sampling which allows practical uncertainty quantifica-
tion even for large arterial networks; our high-performance implementation Π4U will be shown to
simultaneously and efficiently estimate several unknown parameters in this setting. Second, the
approach can practically be used for Bayesian model selection, allowing for evidence-based compar-
ison between models with distinct physical assumptions. The approach thus represents a significant
advance in fitting patient-specific hemodynamical flow models.

Specifically, we consider a branching network of 19 arteries in which a structural flaw (e.g.,
an aneurysm) has been introduced at an unknown location. Sections 2 and 3 describe the one-
dimensional blood flow model and the uncertainty quantification framework. In Section 4, we use
the flawed model to simulate noisy observations of the flow velocity at fixed points in the network.
We then use Bayesian model selection to probabilistically locate the defect within the network and
accurately recover its structural properties, showing the approach to be effective even when the
model is misspecified (i.e., the model used to generate the artificial data differs from the model
used to perform uncertainty quantification). As the method readily admits clinical blood flow data,
which have been shown to be measurable with non-invasive procedures [29, 22, 28, 20], it shows
great potential in diagnosing patient-specific structural issues in the circulatory system.

2 Nonlinear One-Dimensional Blood Flow Model

We first introduce the one-dimensional blood flow model. While such models can be derived via
a scaling of the Navier-Stokes equations for viscous flow [21], we use here the geometry- and
conservation-motivated approach described by Sherwin et al. [26] and Peiró and Venziani [11].
In this approach, the viscous, incompressible flow is assumed to move only in the axial direction
(i.e., along the one-dimensional artery), to exhibit axial symmetry, and to maintain constant inter-
nal pressure over orthogonal cross-sections. The artery is assumed to have low curvature and to be
distensible in the radial direction. A schematic of the artery appears in Fig. 1.

Figure 1: Schematic of one-dimensional artery segment.

The artery of constant length ` and position-dependent cross-sectional area A(x, t) is filled with
blood flowing at velocity u(x, t) and with internal cross-sectional pressure p(x, t), yielding the cross-
sectional flux Q(x, t) = A(x, t)u(x, t). Choosing u, A, and p as the independent variables, the
partial differential equation governing the incompressible flow can be derived from conservation of
mass and momentum:
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where pext is the external pressure, E is the Young’s modulus of the wall, h is the wall thickness,
A0 is the relaxed cross-sectional area, and ν is the Poisson ratio, here taken to be 1

2
. For notational

simplicity, we collect the coefficient into a single stiffness parameter B, yielding
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(1) can then be re-written in the form of a nonlinear hyperbolic conservation law [26]:
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in terms of the elastic component pe(x, t) and viscoelastic component pv(x, t) of the pressure.
The hyperbolic system is approximated numerically using a discontinuous Galerkin method. The

one-dimensional domain Ω = (a, b) is discretized into N non-overlapping elements Ωi = (xLi , x
R
i )

such that xRi = xLi+1 and
N⋃
i=1

Ω̄i = Ω̄; discrete approximations to the corresponding weak formulation

are found in terms of orthonormal Legendre polynomials of degree p [8, 13] (see, e.g., [8, 14] for
the advantages of this approach). Inlet and outlet boundary elements use upwind flux, while a
second-order Adams-Bashforth scheme [8] is used for time integration.

1

2

3

Figure 2: Schematic of Y-bifurcation in an arterial network.
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To extend the model to a branching arterial network, multiple arteries are joined via coupled
boundary conditions at bifurcations. An example of such a bifurcation appears in Figure 2. Bound-
ary conditions are physically motivated; mass should be conserved through bifurcations, while
momentum should be continuous at the boundary, i.e.,

A1u1 = A2u2 + A3u3,

p1 +
1

2
ρu21 = p2 +

1

2
ρu22,

p1 +
1

2
ρu21 = p3 +

1

2
ρu23,

where pi, Ai, and ui correspond to the ith artery. Other branching configurations appear in [26].

3 Bayesian Uncertainty Quantification

The primary practical goal of this paper is to identify structural defects in an arterial network
using observations of the blood flow velocity. By varying the material properties of the arteries,
perturbations to the flow can be computed via the blood flow model described in Section 2; in
this sense, the goal is to solve the inverse problem of determining structural parameters given
velocity data as model output. In real applications, these velocity data may be corrupted by noise
(e.g., measurement error). Furthermore, the model itself may be misspecified; for example, model
parameters assumed as known may be incorrect. In this section, we introduce our recent Bayesian
framework for uncertainty quantification which is amenable to the former issue (noise) and will prove
robust to the latter (misspecification). Section 3.3 describes the TMCMC method which forms the
core of this approach: its parallelizability allows for feasible application to more expensive models,
such as the model of Section 2, via the use of high-performance computing.

3.1 Parameter Estimation

Denote as M the mathematical model of interest, which deterministically maps a set of n parameters
θ ∈ Rn to m outputs g(θ|M) ∈ Rm (here, g denotes the forward problem, and so g(·|M) is a solution
to the forward problem using the model M). The inverse problem is then to estimate the parameters
θ given the model outputs. We assume that these model outputs have been corrupted by noise (due
to, e.g., measurement, computational, or modeling error) as

D = g(θ|M) + e (3)

in terms of a random predictive error e. Under the Bayesian formulation of this problem, the pa-
rameters θ are assigned a prior distribution π(θ|M) given any a priori knowledge of the parameters
based on, e.g., physical constraints; the posterior p(θ|D,M) that observed data D were generated
by parameters θ can then be found as

p(θ|D,M) =
p(D|θ,M)π(θ|M)

ρ(D|M)
, (4)

using the likelihood p(D|θ,M), calculated by evaluating g(θ|M) and using the form of e, and the
evidence ρ(D|M) of the model class, computed via the multi-dimensional integral

ρ(D|M) =

∫
p(D|θ,M)π(θ|M)dθ.
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In order to calculate the likelihood p(D|θ,M), we make the simplifying assumption that e is nor-
mally distributed with zero mean and covariance matrix Σ, which may itself include additional
unknown parameters. Since the model outputs g are deterministic, it follows that D is also nor-
mally distributed, and so the explicit likelihood p(D|θ,M) is given by

p(D|θ,M) =
|Σ(θ)|−1/2

(2π)m/2
exp
[
− 1

2
J(θ,D|M)

]
,

where
J(θ,D|M) = [D − g(θ|M)]TΣ−1(θ)[D − g(θ|M)]

is the weighted measure of fit between the model predictions and the measured data, | · | denotes
determinant, and the parameter set θ is augmented to include parameters that are involved in the
structure of the covariance matrix Σ.

3.2 Model Selection

The Bayesian approach to uncertainty quantification is especially useful in the context of model
selection. The evidence ρ(D|M) which appears in (4) is a measure of the degree to which the model
M can explain the data D; when M is one particular model in a parameterized classM of models,
the evidence can be used to derive a distribution on models. Let Pr(Mi) be a prior distribution on
models in the class M. The posterior Pr(Mi|D) can again be derived from Bayes’ theorem:

Pr(Mi|D) =
ρ(D|Mi)Pr(Mi)

p(D|M)
,

where p(D|M) =
∑
i

ρ(D|Mi) is a normalization constant. Intuitively, Pr(Mi|D) is a distribution

which describes the probability of the data D having been generated from model Mi (as opposed
to another model Mj) under the assumption that at least one model in M is the true model, i.e.,
was actually used to generate the data. If a uniform prior is assumed on models, this posterior is
directly proportional to the evidence ρ(D|Mi), and so model selection is “free” when the evidence
is already calculated for parameter estimation [2, 12, 3, 6].

3.3 Transitional Markov Chain Monte Carlo

The main computational barrier in calculating the posterior distribution (4) is the complex forward
problem g (here, the blood flow model of Section 2) which appears in the fitness J(θ,D|M). Our spe-
cific implementation Π4U of Bayesian uncertainty quantification has two advantages in this respect:
first, it approximately samples the posterior via transitional Markov chain Monte Carlo (TMCMC),
which is massively parallelizable, and second, it leverages an efficient parallel architecture for task
sharing described in Appendix A.

The TMCMC algorithm used functions by smoothly transitioning to the target distribution
(the posterior p(θ|D,M)) from the prior π(θ|M). To accomplish this, a series of intermediate
distributions are constructed iteratively:

fj(θ) ∼ [p(D|θ,M)]qj · π(θ|M), j = 0, . . . , λ

0 = q0 < q1 < . . . < qλ = 1.
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The explicit algorithm is summarized below in Algorithm 1. It begins by taking N0 samples θ0,k
from the prior distribution f0(θ) = π(θ|M). For each stage j of the algorithm, the current samples
are used to compute the plausibility weights w(θj,k) as

w(θj,k) =
fj+1(θj,k)

fj(θj,k)
= [p(D|θj,k,M)]qj+1−qj .

Recent literature suggests that qj+1, which determines how smoothly the intermediate distributions
transition to the posterior, should be taken to make the covariance of the plausibility weights at
stage j smaller than a tolerance covariance value, often 1.0 [7, 12].

Algorithm 1 TMCMC

1: procedure TMCMC Ref. [12]
2: BEGIN, SET j = 0, q0 = 0
3: Generate {θ0,k, k = 1, . . . , N0} from prior f0(θ) = π(θ|M) and compute likelihood p(D|θ0,k,M)

for each sample.
4: loop:
5: WHILE qj+1 ≤ 1 DO:
6: Analyze samples {θj,k, k = 1, . . . , Nj} to determine qj+1, weights w(θj,k), covariance Σj,

and estimator Sj of E[w(θj,k)].
7: Resample based on samples available in stage j in order to generate samples for stage j+1

and compute likelihood p(D|θj+1,k,M) for each.
8: if qj+1 > 1 then
9: BREAK,
10: else
11: j = j + 1
12: goto loop.

13: end
14: END

Next, the algorithm calculates the average Sj of the plausibility weights, the normalized plau-
sibility weights w(θj,k), and the scaled covariance Σj of the samples θj,k, which is used to produce
the next generation of samples θj+1,k:

Sj =
1

Nj

Nj∑
k=1

w(θj,k)

w(θj,k) = w(θj,k)
/ Nj∑
k=1

w(θj,k) = w(θj,k)
/

(NjSj)

Σj = b2
Nj∑
k=1

w(θj,k)[θj,k − µj][θj,k − µj]
T .

Σj is calculated using the sample mean µ
j

and a scaling factor b, usually 0.2 [7, 12].

The algorithm then generates Nj+1 samples θ̂j+1,k by randomly selecting from the previous

generation {θj,k} such that θ̂j+1,` = θj,k with probability w(θj,k). These samples are selected inde-
pendently at random, so any parameter can be selected multiple times – call nj+1,k the number of
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times θj,k is selected. Each unique sample is used as the starting point of an independent Markov
chain of length nj+1,k generated using the Metropolis algorithm with target distribution fj and a
Gaussian proposal distribution with covariance Σj centered at the current value.

Finally, the samples θj+1,k are generated for the Markov chains, with nj+1,k samples drawn from
the chain starting at θj,k, yielding Nj+1 total samples. The algorithm then either moves forward to
generation j + 1 or terminates if qj+1 > 1.

4 Results

We now apply the Bayesian framework of Section 3 to the blood flow model of Section 2. In partic-
ular, we study the example 19-artery network shown in Figure 3. The solution for our deterministic
model, given by (2) and solved using a discontinuous Galerkin method with time step ∆t1 = 0.00004
seconds, plays the role of g in the model prediction equation (3). Measurements of the flow velocity
are taken at N specified locations which vary by experiment and occur with a sampling period of
∆t2 = 1600∆t1 = 0.064 seconds.

Figure 3: Schematic of arterial network (not to scale). 19 arteries have varied lengths (ranging
from 0.026 to 0.17 m) and cross-sectional areas (ranging from 10−5 to 10−6 m2). The star shows an
example measurement location at a bifurcation.

Blood (viscosity µ∗ = 0.0045, with asterisks denoting reference values) in the network begins
with zero velocity and is driven by a specified inflow velocity at the beginning of the first artery: a
sum of trigonometric polynomials, shown in Figure 4, which approximates the flow for three cardiac
cycles [24]. The length of three cycles (∼ 3.3 seconds) allows for a total of 52 velocity data per
measurement location using the sampling period ∆t2, and so the output space of g has dimension
52N . The outflow condition is a fully-absorbing boundary condition, described in more detail in
[23].
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Figure 4: Inflow boundary condition for blood velocity (m/s) corresponding to three cardiac cycles.

We consider three free parameters: the blood viscosity µ, the arterial stiffness parameter B, and
the relaxed cross-sectional area A0 (the last two of which vary by artery). A structural defect (e.g.,
an aneurysm or stenosis) can be modeled by varying the stiffness or relaxed area of a particular
artery; to better emphasize the degree to which a flawed artery has been modified by its defect,
results will use the scaled stiffness β = B/B∗ (with respect to the reference stiffness B∗) and scaled
cross-sectional area α = A0/A

∗
0 (with respect to the reference area A∗

0), and so arteries with no
defect will have β = α = 1.

We use our implementation of Bayesian uncertainty quantification to examine a number of
questions in the context of this forward model, focusing in particular on the ability of uncertainty
quantification to identify the location of structural flaws within the network using only noisy mea-
surements of the flow velocity. To test the effectiveness of our implementation in these experiments
thus requires noisy data D corresponding to a known truth; we use here synthetic data generated
from the same model but with known, fixed parameters. It should be stressed that the approach
is easily modified to admit real data and that there exist multiple practical methods for measuring
blood flow velocities from in vivo arteries [29, 22, 28, 20]. Section 4.3 will show that flaws can be
located accurately even when the parameters used to generate the synthetic data are significantly
perturbed from the parameters used to perform uncertainty quantification.

Explicitly, observed data D are generated as

Dk = vk + σεk, (5)

where Dk is the noisy observation at time tk, vk is the flow velocity at time tk, εk is a zero-mean,
unit-variance Gaussian random variable, and σ is the noise level. Here, we choose σ to be a fraction
σ = 0.01η (or sometimes 0.05η) of the standard deviation η of all velocity data vk.

In the following results, we use our implementation of uncertainty quantification to generate 500
samples from the posterior distribution p(θ|D,M) in a variety of scenarios. Posterior distributions
are used for parameter estimation (Section 4.1) and to identify structural flaws via Bayesian model
selection (Sections 4.2 and 4.3). Recovered posterior means, denoted with a hat (e.g., β̂), are used
as parameter estimates in our analysis.
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4.1 Parameter Estimation

We first consider a basic case of parameter estimation to illustrate the feasibility of the approach.
Specifically, we estimate the blood viscosity µ and the scaled stiffness β2 of artery 2 (see Figure 3
for artery labels) assuming all other parameters are fixed to their reference values. The noisy data
used, corrupted according to (5) with noise level σ = 0.01η, are sampled from a single location
at the start of artery 6. As described in Section 3, we choose σ as an additional free parameter,
requiring the approach to recover the noise level in addition to the target model parameters. A
uniform distribution on [0.5, 1.5]× [0.5, 1.5]× [0, 1] in the parameter space (µ, β2, σ) is used as the
parameter prior π.

To determine the effect of the choice of sampling location, we additionally consider separate
cases using data obtained from the start of arteries 1 and 8; for notational clarity, we refer to as Oi

the case of observing the upflow end of artery i.
The results for the case O6 appear in Figure 5. µ and β2 are positively correlated in the posterior,

i.e., simultaneously raising or lowering both the blood viscosity and the stiffness of artery 2 yields
qualitatively similar observed data. Intuitively, in order to maintain a consistent rate of flow, a
viscous flow necessitates more rigid artery walls.

Figure 5: Parameter estimation results for blood viscosity µ, arterial stiffness β2 for artery 2, and
noise level σ using corrupted reference data from the beginning of artery 6 (O6). Figures on the
diagonal show histograms for each parameter. Subfigures below the diagonal show the marginal
joint densities for each pair of parameters, while subfigures above the diagonal show the samples
used in the final (convergent) stage of TMCMC. Colors correspond to likelihoods, with yellow likely
and blue unlikely.

Numerical results for O1, O6, and O8 are summarized in Table 1. The recovered posterior means
of (µ, β2, σ) were (0.00410, 0.972, 0.00074), (0.00449, 0.997, 0.00074), and (0.00447, 0.994, 0.00077),
respectively, closely matching the true values µ∗ = 0.0045 and β∗

2 = 1.0 (σ∗ differed by experiment
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due to differences in flow velocity by location: 0.00074, 0.00074, and 0.00077 for O1, O6, and O8,
respectively). To quantify the degree of uncertainty in each parameter’s posterior distribution, we
compute a coefficient of variation, defined as the ratio of the single-parameter posterior’s standard
deviation to its mean (denoting the results uµ̂, uβ̂2 , and uσ̂); here, O6 and O8 recover parameters
with comparatively lower uncertainty than O1, whose measurements were largely dominated by
the inflow boundary condition. Nonetheless, in all cases the reference values used to generate the
synthetic data were within one standard deviation of the recovered posterior means.

Data Observations µ̂ uµ̂ (%) β̂2 uβ̂2 (%) σ̂ uσ̂ (%)

O1 0.004102 11.86 0.97175 3.48 0.00074218 5.87
O6 0.004493 1.41 0.99663 0.51 0.00073577 6.30
O8 0.004470 2.05 0.99367 0.70 0.00076524 7.65

Table 1: Posterior means and uncertainties for parameter estimation on the 19-artery network for
three cases Oi (noise level σ = 0.01η).

4.2 Locating Structural Flaws with Model Selection

Given the practicality of parameter estimation and its intermediate estimation of the model evidence
ρ(D|M), the Bayesian model selection framework described in Section 3.2 is a natural approach
to locating structural flaws in the arterial network. Namely, define as Mi the model in which the
scaled stiffness β of artery i has been perturbed from its reference value by an unknown amount,
corresponding to, e.g., an aneurysm or stenosis. Parameter estimation as in Section 4.1 can be used
to recover the perturbed stiffness which best matches the observed data, simultaneously yielding
an estimate for the evidence ρ(D|Mi) of model Mi. Letting M be the collection of Mi for various
arteries i in the network, the model selection distribution Pr(Mi|D) is a probabilistic measure of
the likelihood of the structural defect occurring in the artery i (as opposed to a different artery j).
The class M can easily be augmented with additional models; here, we also consider a model Mi:j

which freely varies the stiffness of two arteries i and j.
We first consider generating data D from a reference model using β6 = 0.5 and βi = 1, i 6= 6,

i.e., a model in which the scaled stiffness of artery 6 has been halved from its reference value. we
consider three cases for data collection: a two sensor configuration using data from the end of
arteries 1 and 7, a three sensor configuration using data from the end of arteries 1, 7, and 13, and
a four sensor configuration using velocity data from the end of arteries 1, 7, 10, and 13. In each
case, no sampling locations are adjacent to the damaged artery. The noise level is again chosen as
σ = 0.01η, i.e., 1% Gaussian noise, and we employ the same uniform prior on [0.5, 1.5] × [0, 1] for
the parameters (β, σ).

Table 2 presents numerical results for six flaw models M3,M6,M7,M11,M13, and M6:7 when
taking flow measurements from the ends of arteries 1 and 7. Models M6 and M6:7, both of which
include the correct defect location in artery 6, are assigned the largest probabilities under the model
selection posterior (Pr(Mj|D) = 0.99949, 0.00042, respectively); recovered parameter estimates

β̂6 = 0.499 (M6) and β̂6 = 0.501 (M6:7) for the wall stiffness of the damaged artery were accurate
to within one standard deviation. Though M6:7 assumes a second defect in artery 7, the posterior
mean estimated the stiffness to be similar to the reference value (β̂7 = 1.036). M3,M7,M11, and
M13 are not able to accurately match the observed data, and so require a significantly higher noise
level σ to explain differences between the evaluated and observed velocities. For this reason, these
models are assigned negligible mass by Pr(Mi|D).
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Note that the model M6:7 contains M6 in the sense that it can predict any combination of
parameter values which M6 can predict. In this light, the relatively higher evidence for M6 over the
broader error model M6:7 is in keeping with theoretical results available for Bayesian model class
selection wherein over-parameterized model classes are penalized due to Occam’s factor [2].

Prediction Model β̂ uβ̂ (%) σ̂ uσ̂ (%) Log evidence Pr(Mj|D)

M3 0.741 2.82 0.000786 6.31 583.2 0.00009
M6 0.499 6.61 0.000729 3.73 592.5 0.99949
M7 1.055 3.14 0.000923 4.27 567.7 ∼0
M11 1.022 0.76 0.000892 5.96 566.3 ∼0
M13 0.587 5.81 0.000867 5.04 578.3 ∼0
M6:7 [0.501, 1.036] [3.75, 2.15] 0.000719 5.16 584.7 0.00042

Table 2: Numerical results for identification of a β6 = 0.5 aneurysm using noisy data from the ends
of arteries 1 and 7 (noise level σ = 0.01η).

Table 3 illustrates the corresponding results for a three-sensor configuration using blood flow
velocity data from the ends of arteries 1, 7, and 13. The additional data collected from artery 13
significantly reduce the (already small) probabilities assigned to models other than M6 and M6:7.
Interestingly, leveraging information from the end of artery 13, which is in a parallel tree (rather than
directly upstream or downstream) from the damaged artery, has the effect of shifting mass from M6

to M6:7 in the model posterior, finding Pr(M6|D) = 0.708 and Pr(M6:7|D) = 0.292. Nonetheless,
both M6 and M6:7 estimate the damaged stiffness β6 accurately (0.501 and 0.505, respectively),
with M6:7 again finding the stiffness β7 of the undamaged artery 7 to be largely unchanged (1.031).

Prediction Model β̂ uβ̂ (%) σ̂ uσ̂ (%) Log evidence Pr(Mj|D)

M3 0.722 2.29 0.000811 4.81 875.6 0.00001
M6 0.501 4.31 0.000770 5.23 886.3 0.70756
M7 1.056 2.19 0.000956 4.64 853.1 ∼0
M11 1.005 0.60 0.000949 5.02 848.8 ∼0
M13 0.901 1.91 0.000887 5.06 858.3 ∼0
M6:7 [0.505, 1.031] [3.45,2.33] 0.000770 3.58 885.5 0.29242

Table 3: Numerical results for identification of a β6 = 0.5 aneurysm using data from the ends of
arteries 1, 7, and 13 (noise level σ = 0.01η).

Finally, Table 4 shows numerical results when velocity data are sampled at four monitoring
locations: at the ends of arteries 1, 7, 10, and 13. The additional data from the end of artery 10
drive the model probabilities assigned to M3,M7,M11, and M13 down further (< 10−8), rendering
them orders of magnitude smaller than the probabilities assigned to M6 and M6:7 (0.9996 and 0.0004,
respectively). The estimated scaled stiffness remains accurate to within one standard deviation, with
M6 and M6:7 finding β̂6 = 0.520 and 0.521, respectively, and M6:7 again estimates the stiffness of
artery 7 to be only slightly perturbed (β̂7 = 1.027).

Taken together, these configurations support two conclusions about Bayesian model selection
for flaw identification: first, that increasing the number of locations at which data are sampled
reduces the probabilities assigned to incorrect models, and second, that model selection can accu-
rately determine the defect location and magnitude for a variety of sensor configurations, including
configurations which do not sample from at or near the defect location.
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Prediction Model β̂ uβ̂ (%) σ̂ uσ̂ (%) Log evidence Pr(Mj|D)

M3 0.760 2.60 0.000817 3.93 1169.9 ∼0
M6 0.520 2.57 0.000762 3.48 1187.3 0.9996
M7 1.046 2.72 0.000926 3.86 1144.5 ∼0
M11 0.996 0.19 0.000932 3.58 1134.1 ∼0
M13 0.890 1.83 0.000902 3.47 1148.8 ∼0
M6:7 [0.521, 1.027] [3.98,2.49] 0.000771 3.63 1179.5 0.0004

Table 4: Numerical results for identification of a β6 = 0.5 aneurysm using data from the ends of
arteries 1, 7, 10, and 13 (noise level σ = 0.01η).

4.2.1 Model Selection for Cross-Sectional Area

As previously suggested, aneurysms and stenoses can also be modeled by adjusting the initial cross-
sectional area of an artery rather than its stiffness. Ideally, the Bayesian framework for model
selection should provide similar results when the stiffnesses β are fixed and models Mi instead
allow the scaled cross-sectional area α of the defective artery to be perturbed. In what follows, we
examine similar scenarios to the above in the case where, rather than reducing its wall stiffness, the
relaxed cross-sectional area of artery 6 is altered. A uniform prior on [0.5, 1.5] × [0, 1] is used for
the parameters (α, σ).

We first consider the case α6 = 1.5, i.e., an aneurysm in which the defective artery (again, artery
6 in the reference model) has become enlarged by 50%. Noisy flow velocity data are collected from
the ends of arteries 1, 7, 10, and 13, as in the final case of the previous section; results appear in
Table 5. M6 and M6:7 are again the most likely models (Pr(Mj|D) = 0.998 and 0.002, respectively),
suggesting that the previous results do not rely on the specific choice of the parameter β. Other
models were assigned negligible probabilities. Similarly to the results for reduced stiffness, both M6

and M6:7 accurately recover the defect magnitude (α̂6 = 1.508, 1.507, respectively), and M6:7 finds
artery 7 to be unchanged (α̂7 = 1.000).

Prediction Model α̂ uα̂ (%) σ̂ uσ̂ (%) Log evidence Pr(Mj|D)
M3 1.126 26.29 0.00554 3.40 781.0 ∼ 0
M6 1.508 0.45 0.00078 4.33 1183.6 0.998
M7 0.976 0.17 0.00415 4.15 827.9 ∼ 0
M11 1.048 0.48 0.00471 3.41 810.0 ∼ 0
M13 1.014 0.17 0.00518 3.18 793.0 ∼ 0
M6:7 [1.507, 1.000] [0.52, 0.031] 0.00077 3.24 1177.6 0.002

Table 5: Numerical results for area-based identification of an α6 = 1.5 aneurysm using data from
the ends of arteries 1, 7, 10, and 13 (noise level σ = 0.01η).

We then consider the same scenario for a reduction α6 = 0.5 in the cross-sectional area of artery
6, i.e., a stenosis in which the defective artery has narrowed by 50%. Results are summarized in
Table 6. M6 and M6:7 recover the reduced area accurately (α̂6 = 0.500, 0.501, respectively) and are
assigned the highest model evidence (Pr(Mj|D) ≈ 1.00 and ∼ 10−4, respectively).

Table 7 shows results for the same magnitude stenosis (α6 = 0.5) with increased observational
noise level σ = 0.05η. The log evidence of models M6 and M6:7 is sharply reduced compared to
Table 6, though M6 and M6:7 remain the most probable models under the model selection posterior,
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Prediction Model α̂ uα̂ (%) σ̂ uσ̂ (%) Log evidence Pr(Mj|D)
M3 0.072 8.00 0.023 4.04 478.9 ∼ 0
M6 0.500 0.05 0.00076 3.16 1178.0 1.00
M7 1.127 0.78 0.0195 4.83 513.3 ∼ 0
M11 0.790 2.37 0.0215 3.72 493.8 ∼ 0
M13 0.941 0.73 0.0238 3.33 475.2 ∼ 0
M6:7 [0.501, 1.000] [0.08, 0.03] 0.00076 3.30 1164.6 ∼ 0

Table 6: Numerical results for area-based identification of an α6 = 0.5 stenosis using data from the
ends of arteries 1, 7, 10, and 13 (noise level σ = 0.01η).

with Pr(Mj|D) = 0.983 and 0.017, respectively. Both models additionally recover the reduced area
accurately (α̂6 = 0.502 and 0.503, respectively) despite the increased noise.

Prediction Model α̂ uα̂ (%) σ̂ uσ̂ (%) Log evidence Pr(Mj|D)
M3 0.070 4.98 0.0234 2.56 481.1 ∼ 0
M6 0.502 0.37 0.00376 4.10 849.6 0.983
M7 1.118 0.90 0.0199 2.78 512.5 ∼ 0
M11 0.800 2.09 0.0221 4.33 492.5 ∼ 0
M13 0.940 0.88 0.0234 3.97 474.8 ∼ 0
M6:7 [0.503, 1.000] [0.40, 0.23] 0.00381 4.69 845.6 0.017

Table 7: Numerical results for area-based identification of an α6 = 0.5 stenosis using data from the
ends of arteries 1, 7, 10, and 13 (noise level σ = 0.05η).

Finally, Table 8 considers the case of a smaller-magnitude stenosis (α6 = 0.8). Results were
similar to those of Table 7, with accurate recovery of location (Pr(Mj|D) = 0.99999 and 0.00001
for M6, M6:7, respectively) and magnitude (α̂6 = 0.801 and 0.802). As in the previous area-
modification scenarios, M6:7 found artery 7 to be unaffected (α̂7 = 1.000), thereby coinciding with
the single defect model M6.

Prediction Model α̂ uα̂ (%) σ̂ uσ̂ (%) Log evidence Pr(Mj|D)
M3 0.175 4.13 0.00493 3.71 809.0 ∼ 0
M6 0.801 0.18 0.00075 4.68 1185.1 0.99999
M7 1.024 0.15 0.00404 3.78 838.0 ∼ 0
M11 0.955 0.45 0.00447 3.92 820.5 ∼ 0
M13 0.987 0.17 0.00488 3.89 802.7 ∼ 0
M6:7 [0.802, 1.000] [0.16, 0.033] 0.00077 3.11 1173.7 0.00001

Table 8: Numerical results for area-based identification of an α6 = 0.8 stenosis using data from the
ends of arteries 1, 7, 10, and 13 (noise level σ = 0.01η).

4.3 Locating Defects with a Misspecified Model

Results have so far assumed the model selection framework is provided the reference values for all
model parameters, i.e., the non-defective stiffness and area of each artery are known. In a scenario
using real-world data, these “known” values may themselves be estimated from noisy measurements.
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A final but crucial test of the robustness of the model selection flaw identification framework is thus
to perform experiments in which the reference parameters used by the method are incorrect, and
so no combination of free parameters is capable of reproducing the observed data.

We now revisit the cases of Section 4.2.1, beginning with the case of an α6 = 1.5 aneurysm in
artery 6. In addition to corrupting observed flow velocities with additive Gaussian noise, we now
additionally corrupt the parameters themselves: the initial cross-sectional area αk for each artery
k is noised as

αk = α∗
k (1 + σαεk) , (6)

where α∗
k is the reference value, εk is again a standard normal random variable, and σα is the

parameter noise level. The structural parameters used to generate the synthetic data (αk from Eq.
6) thus differ from the fixed values used in the defect models Mi (α∗

k).
As before, Bayesian model selection is performed assuming the prediction equation (3), which

is now misspecified (it assumes correctness of the reference parameters α∗
i ). As a result, the σ̂

estimated by posterior samples must now capture the effects of both the true observational noise
level σ and the parameter noise level σα.

Table 9 shows numerical results for Bayesian model selection in this setting. Despite the mis-
specification, M6 and M6:7 again dominate the model posterior, with Pr(M6|D) = 0.907 and
Pr(M6:7|D) = 0.093, respectively. Both overestimate the defect magnitude (α̂6 = 2.047, 2.123,
respectively), though M6:7 again estimates artery 7 to be unaffected (α̂7 = 1.002). We note that
some error in α̂6 is expected, as it attempts to fit observations from the noised-parameter model
and thus varies significantly depending on the particular values of αk from Eq. (6). Despite this
effect, identification of the location appears robust to perturbation of model parameters, with all
other models assigned negligible probability (Pr(Mi|D) ∼ 0).

Prediction Model α̂ uα̂ (%) σ̂ uσ̂ (%) Log evidence Pr(Mj|D)
M3 1.312 29.2 0.00761 3.39 711.6 ∼ 0
M6 2.047 0.89 0.00217 3.98 972.9 0.907
M7 0.970 0.23 0.00628 3.48 748.7 ∼ 0
M11 1.075 0.56 0.00645 3.76 746.9 ∼ 0
M13 1.016 0.29 0.00725 3.53 716.8 ∼ 0
M6:7 [2.123, 1.002] [3.27, 0.11] 0.00216 4.32 970.6 0.093

Table 9: Numerical results for area-based identification of an α6 = 1.5 aneurysm using data from
the ends of arteries 1, 7, 10, and 13 (noise level σ = 0.01η) with misspecified cross-sectional areas
(perturbed with noise level σα = 0.01).

Turning to the second case (α6 = 0.5), model selection again successfully locates the defect
despite the misspecification (Table 10), with M6 assigned nearly all mass by the model selection
posterior. In this case, parameter estimation recovers the defect magnitude accurately (α̂6 = 0.515).
In keeping with previous results, defect model M6:7 finds a similar reduction in cross-sectional area
for the damaged artery (α̂6 = 0.517) and little change in the defect-free artery (α̂7 = 1.003).

The third case repeated the α6 = 0.5 experiment with increased observational noise σ = 0.05η;
results for the same case with parameter noise (now also increased to σα = 0.05) are shown in Table
11. M6:7 is significantly more likely than in previous cases (Pr(M6:7|D) = 0.783), though M6 is
still assigned all remaining posterior mass (Pr(M6|D) = 0.217). The recovered uncertainties uα̂
are significantly higher than in Table 10 due to the higher level of noise, with both M6 and M6:7

underestimating the magnitude of the damage (α̂6 = 0.597, 0.609, respectively).
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Prediction Model α̂ uα̂ (%) σ̂ uσ̂ (%) Log evidence Pr(Mj|D)
M3 0.816 7.29 0.0220 4.36 485.7 ∼ 0
M6 0.515 0.17 0.0021 3.22 973.6 0.999
M7 1.118 0.66 0.0181 3.44 529.0 ∼ 0
M11 0.808 1.72 0.0207 3.41 505.7 ∼ 0
M13 0.943 0.69 0.0221 3.14 490.5 ∼ 0
M6:7 [0.517, 1.003] [0.23, 0.001] 0.0021 3.87 966.5 0.001

Table 10: Numerical results for area-based identification of an α6 = 0.5 stenosis using data from
the ends of arteries 1, 7, 10, and 13 (noise level σ = 0.01η) with misspecified cross-sectional areas
(perturbed with noise level σα = 0.01).

Prediction Model α̂ uα̂ (%) σ̂ uσ̂ (%) Log evidence Pr(Mj|D)
M3 1.668 45.9 0.0195 4.35 518.5 ∼ 0
M6 0.597 0.80 0.0111 3.31 636.6 0.217
M7 1.085 0.62 0.00076 4.82 558.5 ∼ 0
M11 0.894 1.52 0.0185 3.82 527.1 ∼ 0
M13 0.947 0.51 0.0175 3.62 534.9 ∼ 0
M6:7 [0.609, 1.015] [1.22, 0.44] 0.0108 2.22 637.9 0.783

Table 11: Numerical results for area-based identification of an α6 = 0.5 stenosis using data from
the ends of arteries 1, 7, 10, and 13 (noise level σ = 0.05η) with misspecified model parameters
(perturbed with noise level σα = 0.05).

Finally, Table 12 shows results for the fourth case (α6 = 0.8) in the presence of σα = 0.01
parameter noise. While model selection again recovers the correct defect location (Pr(Mj|D) =
0.969, 0.031 for M6, M6:7, respectively), the smaller-magnitude stenosis proves more challenging
for parameter estimation, with α̂6 = 0.865 and 0.869, respectively, notably underestimating the
magnitude of the damage.

Prediction Model α̂ uα̂ (%) σ̂ uσ̂ (%) Log evidence Pr(Mj|D)
M3 1.767 22.2 0.00388 3.57 852.4 ∼ 0
M6 0.865 0.35 0.00204 3.36 974.9 0.969
M7 1.017 0.13 0.00320 3.87 889.5 ∼ 0
M11 0.979 0.24 0.00369 3.61 860.3 ∼ 0
M13 0.988 0.12 0.00345 3.49 869.5 ∼ 0
M6:7 [0.869, 1.003] [0.50, 0.076] 0.00209 3.22 971.5 0.031

Table 12: Numerical results for area-based identification of an α6 = 0.8 stenosis using data from
the ends of arteries 1, 7, 10, and 13 (noise level σ = 0.01η) with misspecified model parameters
(perturbed with noise level σα = 0.01).

5 Discussion

Taken together, the results describe a robust approach for uncertainty quantification in the context
of arterial networks. The model selection posterior universally assigned the highest probabilities

15

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 21, 2018. ; https://doi.org/10.1101/422485doi: bioRxiv preprint 

https://doi.org/10.1101/422485


(by several orders of magnitude) only to those models which included the true defect location, even
in cases where simulated data were sparse, noisy, and poorly located. The Bayesian uncertainty
quantification framework thus appears a powerful tool for comparing and fitting models.

Though all results were generated using simulated noisy data, they simultaneously suggest that
the approach would prove useful for real-world inference. The experiments outlined in Section 4.2
show the method to successfully recover parameter values (often within one standard deviation) and
identify the defect location in a range of sampling cases which varied sensor numbers and locations,
and so the approach is not reliant on a particular set of observed data which may not be realistically
attainable. Results were also consistent when using alternative magnitudes and parametrizations of
arterial defects (the scaled cross-sectional area α and boundary stiffness β) and using models which
considered different numbers of defects (in particular, the two-defect model M6:7 which consistently
found the “defective” artery 7 to be largely unaltered). Most importantly, Section 4.3 showed
inference to remain effective even when the model used to generate the simulated data differed from
the model used to perform inference (i.e., model misspecification). As mathematical models are
inherently simplifications of complex physical systems, robustness to misspecification is an essential
component of applicability to experimental data.

The approach itself readily facilitates the incorporation of real data, which can be used in
place of simulated data without otherwise altering the method. A natural extension is thus direct
application to medical datasets. Future work will also incorporate alternative network structures
and models and will consider defects in more localized arterial subdomains.
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Appendix A: High-performance implementations

Π4U [12] is a platform-agnostic task-based UQ framework that supports nested parallelism and
automatic load balancing in large scale computing architectures. The software is open-source and
includes HPC implementations for both multicore and GPU clusters of algorithms such as Tran-
sitional Markov chain Monte Carlo (TMCMC) and Approximate Bayesian Computational Subset-
simulation. The irregular, dynamic and multi-level task-based parallelism of the algorithms (Fig. 6,
left) is expressed and fully exploited by means of the TORC runtime library [1]. TORC is a soft-
ware library for programming and running unaltered task-parallel programs on both shared and
distributed memory platforms. TORC orchestrates the scheduling of function evaluations on the
cluster nodes (Fig. 6, right). The parallel framework includes multiple features, most prominently
the inherent load balancing, fault-tolerance and high reusability. The TMCMC method within
Π4U is able to achieve an overall parallel efficiency of more than 90% on 1024 compute nodes of
Swiss supercomputer Piz Daint running hybrid MPI+GPU molecular simulation codes with highly
variable time-to-solution between simulations with different interaction parameters.
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Figure 6: Task graph of the TMCMC algorithm (left) and parallel architecture of the TORC library
(right).

References

[1] Panagiotis Angelikopoulos, Costas Papadimitriou, and Petros Koumoutsakos. Bayesian uncer-
tainty quantification and propagation in molecular dynamics simulations: a high performance
computing framework. The Journal of Chemical Physics, 137(14):144103, 2012.

[2] James L Beck and Ka-Veng Yuen. Model selection using response measurements: Bayesian
probabilistic approach. Journal of Engineering Mechanics, 130(2):192–203, 2004.

[3] Clark Bowman, Karen Larson, Alexander Roitershtein, Derek Stein, and Anastasios Matza-
vinos. Bayesian uncertainty quantification for particle-based simulation of lipid bilayer mem-
branes. In Magda Stolarska and Nicoleta Tarfulea, editors, Cell Movement: Modeling and
Applications. Springer, 2018.

[4] Christopher JW Breward, Helen M Byrne, and Claire E Lewis. A multiphase model describing
vascular tumour growth. Bulletin of Mathematical Biology, 65(4):609–640, 2003.

[5] Peng Chen, Alfio Quarteroni, and Gianluigi Rozza. Simulation-based uncertainty quantification
of human arterial network hemodynamics. International Journal for Numerical Methods in
Biomedical Engineering, 29(6):698–721, 2013.

[6] Zhizhong Chen, Karen Larson, Clark Bowman, Panagiotis Hadjidoukas, Costas Papadimitriou,
Petros Koumoutsakos, and Anastasios Matzavinos. Data-driven prediction and origin identifi-
cation of epidemics in population networks. Submitted.

[7] Jianye Ching and Yi-Chu Chen. Transitional markov chain monte carlo method for bayesian
model updating, model class selection, and model averaging. Journal of Engineering Mechanics,
133(7):816–832, 2007.

[8] Bernardo Cockburn. Discontinuous Galerkin Methods. ZAMM-Journal of Applied Mathematics
and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 83(11):731–754, 2003.

17

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 21, 2018. ; https://doi.org/10.1101/422485doi: bioRxiv preprint 

https://doi.org/10.1101/422485


[9] Donald A Drew and Stephen L Passman. Theory of multicomponent fluids, volume 135.
Springer Science & Business Media, 2006.

[10] Leonhard Euler. Principia pro motu sanguinis per arterias determinando. Opera posthuma
mathematica et physica anno, pages 814–823, 1844.

[11] Luca Formaggia, Alfio Quarteroni, and Allesandro Veneziani. Cardiovascular Mathematics:
Modeling and simulation of the circulatory system, volume 1. Springer Science & Business
Media, 2010.

[12] Panagiotis E Hadjidoukas, Panagiotis Angelikopoulos, Costas Papadimitriou, and Petros
Koumoutsakos. Π4U: A high performance computing framework for bayesian uncertainty quan-
tification of complex models. Journal of Computational Physics, 284:1–21, 2015.

[13] Jan S Hesthaven, Sigal Gottlieb, and David Gottlieb. Spectral methods for time-dependent
problems, volume 21. Cambridge University Press, 2007.

[14] Jan S Hesthaven and Tim Warburton. Nodal discontinuous Galerkin methods: algorithms,
analysis, and applications. Springer Science & Business Media, 2007.

[15] Emilie Marchandise, Marie Willemet, and Valérie Lacroix. A numerical hemodynamic tool for
predictive vascular surgery. Medical Engineering and Physics, 31(1):131–144, 2009.

[16] Vincent Martin, François Clément, Astrid Decoene, and Jean-Frédéric Gerbeau. Parameter
identification for a one-dimensional blood flow model. In ESAIM: Proceedings, volume 14,
pages 174–200. EDP Sciences, 2005.

[17] Koen S Matthys, Jordi Alastruey, Joaquim Peiró, Ashraf W Khir, Patrick Segers, Pascal R
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