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Abstract 

Pancreatic cancers are typically diagnosed at late stage where disease prognosis is poor as 

exemplified by a 5-year survival rate of 8.2%. Earlier diagnosis would be beneficial by enabling 

surgical resection or earlier application of therapeutic regimens.  We investigated the detection 

of pancreatic ductal adenocarcinoma (PDAC) in a non-invasive manner by interrogating changes 

in 5-hydroxymethylation cytosine status (5hmC) of circulating cell free DNA in the plasma of a 

PDAC cohort (n=51) in comparison with a non-cancer cohort (n=41).  We found that 5hmC sites 

are enriched in a disease and stage specific manner in exons, 3’UTRs and transcription 

termination sites. Our data show that 5hmC density in H3K4me3 sites is reduced in progressive 

disease suggesting increased transcriptional activity. 5hmC density is differentially represented 

in thousands of genes, and a stringently filtered set of the most significant genes exhibited 

biology related to pancreas (GATA4, GATA6, PROX1, ONECUT1) and/or cancer development 

(YAP1, TEAD1, PROX1, ONECUT1, ONECUT2, IGF1 and IGF2). Regularized regression models 

were built using 5hmC densities in statistically filtered genes or a comprehensive set of highly 

variable gene counts and performed with an AUC = 0.94-0.96 on training data. We were able to 

test the ability to classify PDAC and non-cancer samples with the elastic net and lasso models 

on two external pancreatic cancer 5hmC data sets and found validation performance to be AUC 

= 0.74-0.97. The findings suggest that 5hmC changes enable classification of PDAC patients with 

high fidelity and are worthy of further investigation on larger cohorts of patient samples.  
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Introduction 

 

Translational research using genomic and proteomic technologies has provided molecular 

insights into the pathogenesis and biology of pancreatic cancer but has yet to yield robust 

diagnostic biomarkers to impact early diagnosis of disease, as reflected by a low overall 5-year 

survival rate of 8.2%1,2.  Pancreatic cancer often presents late and has few symptoms, at which 

point only 10-20% of patients are eligible for surgical resection 2. Pancreatic ductal 

adenocarcinoma (PDAC) and its variants account for more than 90% of all pancreatic 

malignancies 3 with the next most common sub-type being neuroendocrine tumors 2.  Tobacco 

smoking confers a two- to three-fold higher risk of pancreatic cancer and also demonstrates a 

dose-risk relationship, while contributing to approximately 15 to 30% of cases 2, with smokers 

diagnosed 8 to 15 years younger than non-smokers4,5. Family history is contributory in 

approximately 10% of cases, and germline mutations in genes such as BRCA2, BRCA1, CDKN2A, 

ATM, STK11, PRSS1, MLH1 and PALB2 are associated with pancreatic cancer with variable 

penetrance 2.  

 The management of PDAC presents physicians with challenges along the entire clinical 

spectrum, including early detection in high risk individuals, early diagnosis of patients with 

symptoms or imaging findings, prognostication of outcomes and prediction of therapeutic 

responsiveness.  Collectively these factors have engendered intensive efforts in translational 

research to identify and validate biomarkers with sufficient clinical performance metrics to 

improve decision algorithms and resultant clinical outcomes.  Current guidelines in PDAC 

management are limited to two biomarker recommendations tested in an invasive fashion in 
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cystic fluid.  First, carbohydrate antigen 19-9 (CA 19-9) guides surgery decisions, use of adjuvant 

therapy, or the detection of post-operative tumor recurrence, however, the utility is limited 

because 10% of the population does not secrete the antigen6. Second, carcinoembryonic 

antigen (CEA) concentration determination from cyst fluid is used to distinguish higher risk 

mucinous from non-mucinous cysts7,8, thereby mitigating risk.  Among the inherited risk factors 

are genomic mutations such as BRCA2, which confers a 3.5-fold risk in carriers, with the 

probability of a germline mutation between 6 to 12% in PDAC patients with a first-degree 

relative diagnosed with PDAC9. 

 

Molecular analyses of pancreatic cancer genomes have revealed activating mutations in KRAS 

and inactivation of CDKN2A, TP53 and SMAD4, either through point mutation or copy number 

changes at >50% population frequency10–12, however much mutational heterogeneity exists 

rendering this subset of genes incomplete for the diagnosis of patients.  Molecular subtyping of 

pancreatic tumors using mutational-based data11 or gene expression signatures13–15 have not 

yet seen clinical applicability. Other forms of epigenetic data have focused on chromatin-based 

post-translation modifications and the methylation status of cytosine based in DNA. 

 

The control of DNA state and chromatin regulation have been observed to underpin the onset 

and progression of oncologic disease16,17. DNA methylation status of cytosine bases has been 

shown to associate with transcriptional regulation of gene expression. DNA methylation in 

promoters tends to associate with gene silencing whereas demethylation is associated with 

gene activation18. More recently, detailed understanding of demethylation has been enabled 
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with precision around intermediate states during demethylation activation19,20. Specifically the 

oxidation of these methyl group via TET enzymes to 5-hydroxymethyl cytosine (5hmC) have 

yielded novel signatures that have enable the definition of cellular states 21, as well as the 

identification of cancer in the cell free state22–24. 

 

Previously, molecular signatures have been shown in circulating cell free DNA (cfDNA) based on 

5-hydroxymethylation  that may define the tissue of tumor origin in a variety of disease types22. 

Therefore, we embarked on a case-control study aimed at investigating whether DNA 5hmC 

signatures were present in the blood of patients with PDAC compared to a cohort of non-

disease individuals. We also investigated whether these signatures enabled the discrimination 

between cancer and non-cancer patients. 

 

We found that in our study population, PDAC patients possess many thousands of genes with 

an altered hydroxymethylome compared to non-disease individuals. Furthermore, filtering to 

those genes with the most differentially hydroxymethylated states reveals genes that have 

been previously implicated in pancreas development or pancreatic cancer.  This biologically 

significant gene set performs well in the construction of predictive models to discriminate PDAC 

from non-disease, suggesting that the measurement of 5hmC in cfDNA merits further 

investigation for the detection and classification of PDAC. 

 

  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 20, 2018. ; https://doi.org/10.1101/422675doi: bioRxiv preprint 

https://doi.org/10.1101/422675


 6 

Results 

Clinical cohort and Study Design 

Plasma specimens from 92 subjects without or with pancreatic ductal adenocarcinoma (PDAC) 

were collected at multiple institutions in different geographic regions of the United States and 

Germany. These PDAC and non-cancer patient samples satisfied the study inclusion criteria, 

which included a minimum subject age of 18 years as well as confirmed pathologic diagnosis of 

adenocarcinoma of any subtype at the time of biopsy or surgical resection for subjects in the 

cancer cohort (Figure 1A) .  The non-cancer cohort was identified as satisfying the study 

inclusion criteria and patients were specifically negative for any form of cancer. Neither cohort 

were being treated with medication for disease at the time of blood collection, which was prior 

to any biopsy or surgical resection in the cancer cohort. There were no statistically significant 

differences in subject age or gender between the two cohorts, but there was a statistically 

significant greater tobacco exposure in the PDAC cohort, as expected given smoking is common 

risk factor pancreatic cancer. 

 

Sequencing results and metrics 

Filtering criteria to enable the determination of high quality 5hmC libraries were established 

yielding 51 PDAC and 41 non-cancer subjects.  These criteria were established from previous 

studies22 and extensive analysis did not reveal batch processing effects occurring specifically in 

either study cohorts.  PDAC samples that were exclusively either male or female were 

combined with non-cancer samples that were exclusively either female or male in a ratio of 2:1 

respectively following a block randomization scheme. This generated two batch types for the 
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study (Figure 1B) and enabled the identification of sample swaps, none of which were detected. 

A single pooled non-cancer sample (30 non-cancer donor were combined into one plasma pool 

from which cfDNA was isolated) served as a technical/process control for the each of the 

batches in the study. 5hmC enrichment libraries were sequenced to produce a median number 

of unique read pairs of 9.1 and 10.7 million in the PDAC and non-cancer cohorts respectively.  

 

Distributions of 5hmC densities into functional regions in PDAC and non-cancer cohort 

To gain an understanding of the functional genomic regions possibly regulated by 

hydroxymethylation, we first determined 5hmC enriched loci, as measured by increased read 

density and detection as peaks by MACS2. The vast majority of 5hmC loci occur on average in 

non-coding regions of the genome (intronic, transposon repeats – SINES and LINEs, and 

intergenic - Figure 2A) with no preferential distribution in the PDAC or non-cancer cohort. 

Despite the high frequency of 5hmC occurrence, these functional regions exhibit low 

enrichment (intron, Figure 2B) or even depletion of 5hmC sites (intergenic and LINE elements, 

Figure 2B) relative to the genome background.  Instead enrichment occurs in promoters, UTRs, 

exons, transcription termination sites (TTS) and SINE elements, as measured by increased 

relative fold change compared to the genome background. Significant differences in 

enrichment of 5hmC peaks over functional regions were observed in a disease cohort specific 

manner. Increases in enrichment in PDAC were measured in exons, 3’UTR and TTS whereas 

decreases were found in promoter and LINEs, which themselves were either enriched or 

depleted respectively (Figure 2C). These global changes found to occur in a statistically 

significant manner in each cohort were also found to occur in a cancer stage specific manner, 
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with gradual increases (exon, 3’UTR and TTS) or decreases (promoter and LINE) in later stage 

patients (Figure 2D).   

Next, we investigated 5hmC occupancy, and its associated changes in PDAC, with respect to 

chromatin state. Post-translational modifications such as methylation and acetylation on 

histone proteins were inferred in relation to 5hmC occupancy, using the existing histone maps 

from the pancreatic cancer cell line, PANC-1, for which epigenetic data were made available by 

ENCODE25. Notably, reduced overlap with 5hmC was observed in PDAC coincident with loci 

associated with H3K4me3 and H3K27ac, both of which mark transcriptionally active states 

(Figure 2E). There was no significant difference in global 5hmC overlap observed between PDAC 

and non-cancer cohorts in H3K4me1-associated loci, which mark enhancer regions (Figure 2E).  

Furthermore, 5hmC in H3K4me3 associated loci are significantly reduced with progressive 

disease as observed when the PDAC cohort is subdivided into disease stages (p=0.0003 – Figure 

2E bottom right panel). Conversely, there were no statistically significant changes detected in 

5hmC globally over H3K4me1 and H3K27ac associated loci with progressive disease (Figure 2E – 

bottom panels). Amongst the three histone maps from PANC-1 cell line, H3K4me1 has the most 

abundant overlap with 5hmC occupancy in both the PDAC and non-cancer cohort 

(Supplementary Figure 1). The PDAC samples have an increased 5hmC intensity over H3K4me1-

associated sites compared to the non-cancer cohort (Figure 2F – bottom panel). Conversely, 

H3K4me3 loci exhibit the lowest 5hmC intensity in both cohorts (Figure 2F – top panel) and the 

least abundant overlap  with 5hmC occupancy (Supplementary Figure 1).  
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Identification of disease specific genes from plasma samples 

Differential analysis of 5hmC densities in genes revealed 6,496 and 6,684 genes with an 

increased and decreased 5hmC density respectively in PDAC compared to non-cancer samples 

(Figure 3A – adjusted p-value < 0.05). Further filtering of this gene set (fold change ³ 1.5 in 

PDAC versus non-cancer and average log 2 CPM  ³ 4 counts, 142 genes total) revealed 

annotated genes with increased 5hmC density and whose biology is related to pancreas 

development (GATA426, GATA626, PROX127, ONECUT128) and/or implicated in cancer (YAP129, 

TEAD129, PROX130, ONECUT2/ONECUT1, IGF1 and IGF2). Inspection of the MSigDB for relevant 

pathways comprising the 142 genes with enriched 5hmC densities revealed a preponderance of 

pathways down-regulated in liver cancer (5 of the top 10 most significant pathways – Table 2). 

The differential representation analysis coupled with filtering (fold change £ 1.5 in PDAC versus 

non-cancer and log CPM of 5hmC  ³ 4) also revealed 178 genes with a decreased 5hmC density 

in pancreas cancer cfDNA. Closer inspection of these pathways with decreased 5hmc 

representation revealed fundamental pathways in immune system regulation (3 of the top 10 

most significant pathways – Table 3). 

Expanding gene set enrichment analysis to include the full data set of all genes revealed that 

more than 30% of immune related pathways have a reduced 5-hydroxymethylation across early 

and late stage PDAC (Figure 3 B, Table 4). Multidimensional scaling analysis (MDS) using either 

the 13,180 genes with high variation in 5hmC counts (Figure 3 C) or the 320 genes filtered at 

the extremes of 5hmC representation in PDAC (Figure 3 D), reveal partitioning of the PDAC 

samples from the non-cancer equally well, using statistically filtered genes that form a 

biologically relevant set. Furthermore, the 320 genes were employed in a hierarchical clustering 
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analysis, which enabled better partitioning of the pancreas and healthy 5hmC data from Song 

et al22 compared with similar data from Li et al24 (Figure 3E). In summary, we have been able to 

find a differentially represented gene set whose biological functions are congruent with both 

pancreatic development and cancer more broadly and the hydroxymethylation densities of 

these genes alone enable the partitioning of PDAC from non-cancer. 

 

Predictive models for the detection of pancreatic cancer in cfDNA 

We performed regularized logistic regression analysis in order to determine whether gene-

based features are present in the PDAC and non-cancer cohorts that enable the classification of 

patient samples. The full set of 92 patient samples were partitioned into a training and test set 

comprising 75% and 25% of the patient data respectively and 65% of the genes with the most 

variable 5hmC count were employed for model selection. Two methods of regularization were 

employed, elastic net (glmnet) and lasso (glmnet2)31.  Other modeling approaches were 

explored such as random forest, support vector machines and neural nets in a preliminary 

analysis and were found to have inferior performance on the training data. 

Both regularization methods require specifying hyper-parameters which control the level of 

regularization used in the fit. These hyper-parameters were selected based on out-of-fold 

performance on 30 repetitions of 10-fold cross-validated analysis of the training data. Out-of-

fold assessments are based on the samples in the left-out fold at each step of the cross-

validated analysis. The training set yielded an out-of-fold performance metric, Area Under 

Curve (AUC), of 0.96 (elastic net and lasso) with an internal sample test AUC of 0.84 (elastic net) 

and 0.88 (lasso) (Fig 4B). The distribution of probability scores indicated that within the training 
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data both models classify well (Figure 4B) but that improved robustness and stability of scoring 

was found with the elastic net model as evidenced by reduced variation in probability scores 

observed during repeated cross-validations. Next, the training model was tested on two 

external validation set of patient samples. These include pancreatic cancer and healthy samples 

from Li et al24 (pancreas subtype was not specified, 23 pancreas, 53 healthy) and Song et al22 

(pancreas subtype specified as adenocarcinoma, 7 pancreas, 10 healthy – Supplemental Figure 

2). The validation set exhibited a performance with AUC = 0.78 (elastic net and lasso) in the Li et 

al data and AUC = 0.99 (elastic net) and 0.97 (lasso) in the Song et al data (Figure 4C).  

 

The effect of feature selection on prediction performance was evaluated by filtering the initial 

set of significant genes (Figure 3B) to satisfy a 1.5 fold differential 5hmC representation in the 

PDAC cohort with median representation of gene counts of log2 average 5hmC representation 

> 4. This filtering approach was applied on 75% sample data, reserving the remaining 25% for 

subsequent testing (see below).  The same regularized regression models were built using this 

set of 287 genes with increased 5hmC and 343 genes with decreased 5hmC density, employing 

a similar setup for training and testing as defined previously and found training set AUC = 0.96 

(elastic net) and 0.94 (lasso).  Not surprisingly, internal testing yielded a high performance with 

AUC = 0.92 (elastic net) and 0.93 (lasso). Of greater interest, was the performance on external 

data sets with AUC = 0.74 (elastic net) and 0.67 (lasso) for Li et al data and AUC = 0.97 (elastic 

net) and 0.94 (lasso) for Song et al data. This suggests that statistically filtered genes that are 

biologically relevant to pancreatic cancer and/or pancreas development do not perform much 
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better than an algorithmically driven selection of features during regression training, as has 

been shown elsewhere32.  

 

The final models fitted to the 65% most variable 5hmC gene features in the training set, using 

hyper-parameter values determined from the training set data analysis, were fitted to the 

whole cohort of PDAC and non-cancer samples and this yielded models with 109 genes (elastic 

net) and 47 genes (lasso). The genes in the models were found to possess PDAC versus non-

cancer t-scores that are concordant with both the Li et al and Song et al data sets (Figure 5).  
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Discussion 
 

This study was focused on the discovery of cfDNA specific hydroxymethylation-based 

biomarkers that may facilitate the development of molecular diagnostic tests to detect 

pancreatic cancer at earlier stages. Our data highlight the ability to detect differentially 

hydroxymethylated genes whose underlying biology shows association with both pancreas and 

cancer development as well as established trends in chromatin mark maps and other functional 

regions of the genome. Furthermore, regularized regression methods were used to build 

models from (i) statistically filtered genes that form a biologically relevant set and (ii) a 

comprehensive gene set found to be highly variable, and this yielded models with AUC = 0.94-

0.96 with an external data set validation AUC = 0.74-0.97 (elastic net models). 

 

The 5hmC signal was readily found to be enriched in gene-centric sequence types (promoter, 

exons, UTR and TTS), as well as transposable elements like SINEs (enriched) and LINEs 

(depleted) (Figure 2A, B). Such hydroxymethylcytosine changes in functional regions have been 

reported in cfDNA from colorectal24, esophageal23,33 and lung cancer23. In a similar manner, 

PDAC specific gains or losses in hydroxymethylation were observed in functional regions in our 

data.  In addition to enrichment and depletion of 5hmC in functional regions, there was a novel 

PDAC specific 5hmC increase in exons, TTS and 3’UTR and a 5hmC decrease in promoters and 

LINE elements (Figure 2 C).  In embryonic stem cells, 5-hydromethylation decreases in the 

promoter region have been shown to associate with gene transcription34. An increase in disease 

relevant transcription may be implicitly supported in our PDAC data by the 5hmC increase in 
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gene-centric features mentioned earlier, as well as an apparent decreasing trend of 5hmC in 

promoter regions toward late stage PDAC (Figure 2 D). 

Dynamic changes in chromatin have been shown to control cell development and transition of 

cells with oncogenic potential35.  The PDAC specific decrease of 5hmC in H3K4me3 loci appear 

to be coincident with a non-statistically significant increase of 5hmC in H3K4me1 (Figure 2 E). 

These DNA hydroxymethylation patterns appear to complement each other in genomic location 

and also the histone marks they occupy (Figure 2 F) and also suggest disease specific increases 

in gene transcription via chromatin modifications, given the known permissive transcriptional 

function associated with H3K4me3/me136. Precise 5hmC patterning around known functional 

elements of the genome suggests a broader function for hydroxymethylation in the epigenetic 

control of transcriptional processes. Additional work will reveal the extent to which models 

predictive of PDAC can be built from a combination of gene-specific, chromatin mark and 

transposable elements detected in cfDNA. 

In this study, we employed coarse resolution of hydroxymethylation at the gene-based level in 

PDAC and yet were able to find genes whose increased 5hmC signals in highlighted pathways 

implicated in liver cancer (Table 2). We note that MSigDB does not currently contain pathways 

annotated for pancreatic cancer37 and further that pancreas typically has groups of expressed 

genes shared with liver and salivary gland 

(https://www.proteinatlas.org/humanproteome/pancreas).  We employed two approaches for 

gene set enrichment analysis, either using genes with differentially decreased 5hmC or via 

performing GSEA on all reporting genes, and found close to one third of immune system 

pathways were implicated. Assuming the strong association between 5hmC density and gene 
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transcription, one interpretation of this result is that immune system function is decreased in 

PDAC patients.  Inspection of individual genes that were either significantly increased or 

decreased in 5hmC density reveals genes implicated in normal pancreas development, for 

instance the transcription factors GATA4, GATA6, PROX1, ONECUT1/2, and also genes whose 

increased expression is implicated in cancer like YAP1, TEAD, PROX1, ONECUT2, ONECUT1, IGF1 

and IGF2. The impact of increased relative 5hmC representation of transcription factor genes 

like GATA4, GATA6, PROX1, ONECUT1/2 in PDAC patient, whose involvement in early pancreatic 

development, suggest a reversion to a stem-like state. This is further supported by the fact that 

some of the significant genes with increased 5hmC representation identify a stem cell pathway 

(BOQUEST_STEM_CELL_UP, in top 20 mSigDB pathways from 142 genes with increased 5hmC in 

PDAC). 

 

Identifying genes whose 5hmC densities are significantly changed in PDAC, leads to an 

enrichment of genes with annotated relevant biology which can be used to build regularized 

regression models, whose performance matched models built on the more comprehensive set 

of variable genes. This gives us good confidence that our models, whose performance is high 

(training AUC = 0.94-0.96 with an external data set validation AUC = 0.74-0.97), are measuring 

underlying biological signals relevant to PDAC. Our current external data set performance may 

be somewhat explained by the small sample size of external data sets (Li et al, 23 pancreas, 53 

healthy and Song et al, 7 pancreas, 10 healthy). Also, whilst our external validation AUC on Li et 

al data was generally lower than for Song et al data, we note that Li et al pancreatic data were 

distributed with a mode around stage 3 disease versus a mode at stage 2 for this study (Song et 
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al was broadly distributed across all stages – Supplementary Figure 2), thus our predictive 

model may be better suited for the detection of earlier versus later stage disease. Other patient 

characteristics (such as histological subtype and smoking, etc.) may have also differed in these 

independent study sets. 

 

Despite the large number of differentially hydroxymethylated genes the regularized regression 

models included 100 genes or less. However the fact that 13,180 differentially 

hydroxymethylated genes were detected suggest that other biological signals may also reside in 

our data set. Smoking status is a known risk factor for PDAC up to 20 years post smoking 

cessation and DNA methylation changes have been associated with tobacco-based toxins38. In 

our retrospective case-control designed study, ever smokers constituted 59% and 49% of PDAC 

and non-cancer cohorts respectively, indicating that ever smokers are well represented in each 

cohort. Consequently, we do not suspect that smoking association in our PDAC cohort could 

account for the significantly hydroxymethylated genes found.  However, a more extensive 

future study focused on sub-partitioning PDAC and non-cancer patient into never and ever 

smokers with pack-year characteristics will enable us to address the impact of smoking on the 

hydroxymethylome in PDAC patients. These pancreatic cancer risk parameters combined into a 

clinical relevant, intent to test population based study, will further our current set of findings 

beyond our current case-control cohort study, which numbers less than 100 participants. 

Further consideration of disease-related clinical parameters will enable us to explore 

hydroxymethylcytosine features with the aim of yielding refined signals capable of earlier 

diagnosis of PDAC.   
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Methods 
 

Clinical cohorts and study design – A case-control study was performed using plasma obtained 

from subjects without (termed non-cancer) and with pancreatic cancer who provided informed 

consent and contributed biospecimens in studies approved by the Institutional Review Boards 

(IRBs) at participating sites in the United States and Germany.  Plasma samples for the non-

cancer cohort were obtained from subjects enrolled prospectively at five sites in the United 

States, following review and approval of the study protocol by each site's participating 

investigator(s). 

Cancer cohort - Plasma samples for the cancer cohort were obtained from subjects who had 

undergone management for pancreatic cancer in the United States or Germany, and also 

provided consent for use of blood specimens for archival storage and retrospective analyses.     

Criteria for subject eligibility for inclusion in the analysis included age greater than or equal to 

21 years for all subjects, with additional requirements for the cancer cohort including: 1) no 

cancer treatment, e.g., surgical, chemotherapy, immunotherapy, targeted therapy, or radiation 

therapy, prior to study enrollment and blood specimen acquisition; and 2) a confirmed 

pathologic diagnosis of adenocarcinoma inclusive of all subtypes.   

Non-cancer cohort - Subject exclusion criteria for the non-cancer cohort also included any of 

the following: prior cancer diagnosis within prior six months; surgery or invasive procedure 

requiring general anesthesia within prior month; non-cancer systemic therapy associated with 

molecularly targeted immune modulation; concurrent or prior pregnancy within previous 12 

months; history of organ tissue transplantation; history of blood product transfusion within one 

month; and major trauma within six months.  Clinical data required for all subjects included 
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age, gender, smoking history, and both tissue pathology and grade, and were managed in 

accordance with the guidance established by the Health Insurance Portability and 

Accountability Act (HIPAA) of 1996 to ensure subject privacy. 

 

Plasma collection - Plasma was isolated from whole blood specimens obtained by routine 

venous phlebotomy at the time of subject enrollment.  For cancer subjects, whole blood was 

collected in K3EDTA tubes (Sarstedt, Nümbrecht, Germany) with isolation of plasma within 4 h 

of phlebotomy by centrifugation at 1,500g for 10 min at RT, followed by transfer of the plasma 

layer to a new tube for centrifugation at 3,000g for 10 min at RT, with plasma aliquots used for 

isolation of cell-free DNA (cfDNA) or stored at -80°C. 

For non-cancer subjects, whole blood was collected in Cell-Free DNA BCT® tubes according to 

the manufacturer's protocol (Streck, La Vista, NE) (https://www.streck.com/collection/cell-free-

dna-bct/).  Tubes were maintained at 15 °C to 25 °C with plasma separation performed within 

24 h of phlebotomy by centrifugation of whole blood at 1600 x g for 10 min at RT, followed by 

transfer of the plasma layer to a new tube for centrifugation at 16,000 x g for 10 min.  Plasma 

was aliquoted for subsequent cfDNA isolation or storage at -80°C.   

 

cfDNA isolation – cfDNA was isolated using the QIAamp Circulating Nucleic Acid Kit (QIAGEN, 

Germantown, MD) following the manufacturer’s protocol excepting the omission of carrier RNA 

during cfDNA extraction. Two milliliter plasma volumes (cancer) or four milliliter plasma 

volumes (non-cancer) were lysed for 30 minutes prior to collection of nucleic acids; all cfDNA 

eluates were collected in a volume of 60 µl buffer. All cfDNA eluates were quantified by 
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Bioanalyzer dsDNA High Sensitivity assay (Agilent Technologies Inc, Santa Clara, CA) and Qubit 

dsDNA High Sensitivity Assay (Thermo Fisher Scientific, Waltham, MA) was employed to ensure 

the absence of contaminating high molecular weight DNA emanating from white blood cell 

lysis. 

  

5-hydroxymethyl Cytosine (5hmC) assay enrichment – Sequencing library preparation and 

5hmC enrichment was performed as described previously (Song et al). cfDNA was normalized to 

10 ng total input for each assay and ligated to sequencing adapters. 5hmC bases were 

biotinylated via a two-step chemistry and subsequently enriched by binding to Dynabeads 

M270 Streptavidin (Thermo Fisher Scientific, Waltham, MA). All libraries were quantified by 

Bioanalyzer dsDNA High Sensitivity assay (Agilent Technologies Inc, Santa Clara, CA) and Qubit 

dsDNA High Sensitivity Assay (Thermo Fisher Scientific, Waltham, MA) and normalized in 

preparation for sequencing. 

  

DNA sequencing and alignment – DNA sequencing was performed according to manufacturer’s 

recommendations with 75 base-pair, paired-end sequencing using a NextSeq550 instrument 

with version 2 reagent chemistry (Illumina, San Diego, CA). Twenty four libraries were 

sequenced per flowcell and raw data processing and demultiplexing was performed using the 

Illumina BaseSpace Sequence Hub to generate sample-specific FASTQ output. Sequencing reads 

were aligned to the hg19 reference genome using BWA-MEM with default parameters39. 
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Peak Detection  

BWA-MEM read alignments were employed to identified regions or peaks of dense read 

accumulation that mark the location of a hydroxymethylated cytosine residue in a CpG content. 

Prior to identified peaks BAM files containing the locations of aligned reads were filtered for  

poorly mapped (MAPQ < 30) and not properly paired reads. 5hmC peak calling was carried out 

using MACS2 (https://github.com/taoliu/MACS) with a p-value cut off = 1.00e-5. Identified 

5hmC peaks residing in “blacklist regions” as defined elsewhere  

(https://sites.google.com/site/anshulkundaje/projects/blacklists) and read date on 

chromosomes X, Y and mitochondrial genome were also removed.  Computation of genomic 

feature enrichment overlap 5hmC peaks were performed using the HOMER software 

(http://homer.ucsd.edu/homer/) with default parameters. 

Chromatin modifications (H3K4me1, H3K4me3 and H3K27ac) were identified in histone maps of 

the pancreatic cancer cell line PANC-1 and were downloaded from ENCODE ChIP-Seq repository 

(https://genome.ucsc.edu/encode/dataMatrix/encodeChipMatrixHuman.html  Determination 

of enrichment were calculated via Odds ratio using the Fisher Exact Test  via the program 

bedtools fisher.  For comparisons between PDAC and non-cancer, the Wilcoxon test was used,  

and for across stages comparison, the Kruskal-Wallis Test was employed. 

 

Differential Representation Analysis  

For the purpose of reliably identifying gene bodies with differential representation between the 

PDAC and the non-cancer groups, we closely followed the RNA-Seq workflow outlined in Law et 

al. 201640, including much of the preliminary QC steps. In brief, the analysis includes data pre-
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processing by adopting the following workflow: (i) transforming the data from raw counts 

to log2(counts per million), (ii) removing genes that are weakly represented, (iii) normalizing 

the gene representation distributions, and (iv) performing unsupervised clustering of samples. 

To accomplish differential representation analysis, we applied the following steps:  (i) creating a 

design matrix and PDAC vs non-cancer cohorts, (ii) removing heteroscedascity from the data, 

(iii) fitting the linear models for the comparison of interest, PDAC vs non-cancer, (iv) examining 

the number of differentially represented genes. 

In most of these analysis steps the default settings were used when appropriate. To remove 

weakly represented genes, we excluded genes that did not have greater than 3 counts per 

million reads in at least 20 samples. This filter excludes roughly 12% of the genes. For the 

identification of the significantly differentially represented regions we used the method of 

Benjamini and Hochberg41 to obtain p-values adjusted for multiple comparisons. In this report 

we use adjusted p-value and false discovery rate (FDR) interchangeably. 

 

Predictive Modelling 

For the purpose of assessing the feasibility of building classifiers that can discriminate between 

PDAC and non-cancer samples based on the 5hmC representation of gene bodies, we evaluated 

to performance of two forms of regularized logistic regression models commonly used in the 

classification context, where the number of examples are few and the number of features large; 

the lasso and the elastic net. See Friedman et al. (2010)31 for a description of the general elastic 

net precedure of which the lasso is a special case. Software implementation of these methods 

can be found at https://cran.r-project.org/web/packages/glmnet/index.html. Weakly 
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represented genes were excluded from analysis as described in the section on Differential 

Representation Analysis. 

All training and fitting was done on 75% of the samples selected at random in a balanced way to 

keep the ratio of the number of PDAC to non-cancer samples similar in both the training and 

testing subsets. Before any fitting, genes were filtered to include the 65% most variable genes 

for the model fitting task. The filter was designed using the training samples only and was done 

in a way to ensure that genes of all levels of representation were included. 

Both regularization methods assessed, the lasso and the elastic net, require specifying hyper-

parameters which control the level of regularization used in the fit. Hyper-parameters were 

selected based on out-of-fold performance on 30 repetitions of 10-fold cross-validated analysis 

of the training data. Out-of-fold assessments are based on the samples in the left-out fold at 

each step of the cross-validated analysis. The out-of-fold performance of the models fitted with 

hyper-parameter values set at the optimal values might yield a slightly optimistic assessment of 

performance. The performance of these models applied to the test set should provide less 

biased estimate of performance, although generalizability to external datasets is not always 

guaranteed. 

The hyper-parameter values that lead to the best out-of-fold performance were then used to fit 

the final models which were fitted to the entire set of samples including both training and 

testing subsets. The performance of these final models can thus only be evaluated based on 

their performance on external data sets. These do provide a sense of the generalizability of the 

performance observed in the local training and testing data sets. 
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To evaluate the effect of feature selection on prediction performance, we repeated the training 

and evaluation task based on a filtered set of genes that included genes found to be 

significantly differentially represented, having a 1.5 fold differential 5hmC representation, and a 

level of representation exceeding the median level (log2 CPM ³ 4). This filter was designed 

based on training data statistics only. 
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Figures 

 

Figure 1: Study Design and Patient Cohorts Employed. 

A. Schematic depicting study cohorts employed. PDAC, n = 51, Non-cancer, n=41 and 

pooled non-cancer replicates were include across multiple 5hmC assay processing 

and sequencing batches. 

B. Schematic depicting sample processing workflow incorporating alternating flowcell 

constructs according to subject sex for detection of sample swaps. 

 

Figure 2. Differential enrichment of 5hmC in functional genomic regions in PDAC compared 

with non-cancer (NC) samples. 

 

A. 5hmC peak distribution in genomic features, note non-coding feature have larger 

number of peaks. 

B. Enrichment analysis (Y-axis = log2 (PDAC/non-cancer)) shows that gene-based 

features, SINEs and Alus are enriched in 5hmC peaks in both PDAC and non-cancer 

cohorts. Intergenic, LINEs and L1s are depleted of 5hmC peaks. 

C. Box plots depicting statistically significant changes of 5hmC peaks in promoter and 

LINE elements in pancreas cancer samples (decrease accumulation). Exons, 3’UTR 

and translation termination sites are enriched in cancer samples. Y-axis = log2 

(PDAC/non-cancer) 

D. Box plots depicting statistically significant changes of 5hmC peaks in functional 

regions across pancreatic cancer stages.  

E. Box plots depicting 5hmC peak depletion in H3K4me3 and H3K27ac histone marks in 

the PDAC cohort (top panel) and ongoing H3K4me3 depletion observed in later stage 

disease (bottom panel). 

F. 5hmC occupancy in the PANC- 1 cell line and normal pancreas histone map depicting 

variable occupancy in H3K4Me3 with depletion at the center of the mark and 

complementary increase in 5hmC in H3K4Me1. This supports increasing gene 
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transcription preferentially in the PDAC cohort. Y-axis = normalized density of 5hmC 

counts in 10 bp windows. Dotted red lines = PDAC patient, one per line, dotted blue 

lines = non-cancer patients, one per line. Solid red line = average density of 

normalize 5hmC counts across all PDAC patients, solid blue line = average density of 

normalize 5hmC counts across all non-cancer patients. 

 

Figure 3 Identification of statistical significant 5hmC changes in genes in the PDAC cohort, 

biological significant of the gene set and ability to partition between PDAC and non-cancer 

samples using 5hmC counts. 

 

A. MA-Plot showing all differential represented genes and heatmap showing 5hmC 

representation on the most significant genes. Adjusted p-value < 0.05, NC = non-

cancer cohort. Red points mark genes with increased 5hmC density in PDAC versus 

NC. Green points mark genes with decreased 5hmC density in PDAC versus NC. Red 

and Green are significant at the adjusted p-value < 0.05. 

B. GSEA using differentially 5hmC enriched genes reveals >20% KEGG pathways are 

both up and down-represented via 5hmC changes in pancreas cancer versus non-

cancer samples.  Also >30% immune pathways are down-represented in pancreas 

cancer versus non-cancer samples. Hallmark =, C2 = Curated gene sets inclusive of 

Biocarta, KEGG and Reactome, C5.BP =  GO Biological processes, C6 = Oncogenic 

signatures, C7 = Immunologic signatures. 

C. MDS using log (counts per million)  of 13,180 genes with statistically significant 

(FDR= 0.05) increase or decrease in 5hmC. Note reasonable partitioning of PDAC 

from non-cancer samples. 

D. PCA using log (counts per million) of 320 genes with statistically significant (FDR= 

0.05) and filtered for increased PDAC representation ( |log2(5hmCPDAC/5hmCnon-

cancer)| >= 0.58 and log2(average representation) >= 4) increase or decrease in 

5hmC. Note reasonable partitioning of PDAC from non-cancer samples despite an 

order of magnitude smaller gene set than Figure 3 C. 
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E. Heatmaps depicting hierarchical clustering results employing 320 genes (rows in 

heatmaps) to show how labelled samples (columns in heatmap) can be partitioned 

using log(CPM) 5hmC counts.  Note almost perfect partitioning of the Song et al data 

set  (top heatmap) versus incomplete partitioning of the Li et al data set (bottom 

heatmap). 

 

 

Figure 4: Identification of a 5hmC signature that differentiates PDAC  from non-cancer samples. 

 

A. Predictive modeling using two regularization models (Elastic Net and Lasso) on 75% 

of the data (training) data - left panel. Test performed on the remaining 25% of 

original data – right panel. 

B. Probability scores derived for each sample in the training dataset using the Elastic 

net and Lasso regularization models. Probability scores towards 1 are predicted 

cancer samples whereas probability scores close to 0 are non-cancer samples. Red 

line – identified Q3 probability score of the non-cancer samples.  

C. Validation of predictive models using Li et al (2017) and Song et al (2017) pancreas  

and healthy sample data sets. 

 

Figure 5. Comparison of t-scores of 5hmC density fold difference between PDAC and non-

cancer (NC) cohorts as found in (A) Song et al and (B) Li et al, each compared to this study. All 

genes score are represented in grey, elastic net model genes in green and lasso model genes in 

red. The size of each green and red dot represents the relative contribution of that gene in the 

model. 
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Tables 
 

Table 1. Clinical Characteristics of Non-Cancer and Cancer Subject Cohorts. 

 

  Non-Cancer Cancer 
Age+   
 66.0 71.2 
Gender(%)   
    Male 60.0 45.1 
Smoking History   
Status(%)   
   Current 19.5 19.6 
   Former 29.3 37.3 
   None 51.2 43.1 
Pack-Years+   
   Current 5.3 29.6 
   Former 20.5 24.2 
   None NA NA 
Pack-Years+   
   All 14.4 25.7 
Time Since Cessation+    
  Month 264.2 272.3 
Stage(%)   
   I NA 18 
   II NA 61 
   III NA 7.8 
   IV NA 14 

           + mean of Non-Cancer and Cancer groups. 
           Other values are percentages of each category in “Non-Cancer” and “Cancer” groups. 
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Table 2. Top 10 pathways represented by 142 genes with increased 5hmC density in PDAC 
samples versus non-cancer samples.  
 

  

Gene Set Name Description k/K p-value FDR q-value

SERVITJA_LIVER_HNF1A_TARGETS_DN
Genes down-regulated in liver tissue upon knockout of HNF1A 
[GeneID=6927]. 0.0892 3.92E-17 5.61E-13

LEE_LIVER_CANCER
Genes down-regulated in tumor compared to non-tumor liver 
samples from patients with hepatocellular carcinoma (HCC). 0.2041 2.35E-16 1.68E-12

GO_SMALL_MOLECULE_METABOLIC_PROCESS

The chemical reactions and pathways involving small 
molecules, any low molecular weight, monomeric, non-
encoded molecule. 0.0175 5.53E-16 2.64E-12

HSIAO_LIVER_SPECIFIC_GENES Liver selective genes 0.0615 7.60E-16 2.72E-12

HOSHIDA_LIVER_CANCER_SUBCLASS_S3
Genes from 'subtype S3' signature of hepatocellular carcinoma 
(HCC): hepatocyte differentiation. 0.0564 2.73E-15 7.81E-12

ACEVEDO_LIVER_TUMOR_VS_NORMAL_ADJACENT_TISSUE_DN
Genes down-regulated in liver tumor compared to the normal 
adjacent tissue. 0.0547 4.22E-15 1.01E-11

GO_LIPID_METABOLIC_PROCESS

The chemical reactions and pathways involving lipids, 
compounds soluble in an organic solvent but not, or sparingly, 
in an aqueous solvent. Includes fatty acids; neutral fats, other 
fatty-acid esters, and soaps; long-chain (fatty) alcohols and 
waxes; sphingoids and other long-chain bases; glycolipids, 
phospholipids and sphingolipids; and carotenes, polyprenols, 
sterols, terpenes and other isoprenoids. 0.0216 5.47E-15 1.12E-11

GO_ORGANIC_ACID_METABOLIC_PROCESS
The chemical reactions and pathways involving organic acids, 
any acidic compound containing carbon in covalent linkage. 0.0241 7.39E-15 1.32E-11

GO_RESPONSE_TO_ENDOGENOUS_STIMULUS

Any process that results in a change in state or activity of a cell 
or an organism (in terms of movement, secretion, enzyme 
production, gene expression, etc.) as a result of a stimulus 
arising within the organism. 0.0179 1.08E-13 1.71E-10

VECCHI_GASTRIC_CANCER_EARLY_DN
Down-regulated genes distinguishing between early gastric 
cancer (EGC) and normal tissue samples. 0.0409 2.98E-13 4.27E-10
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Table 3. Top 10 pathways represented by 178 genes with decreased 5hmC density in PDAC  
samples versus non-cancer samples.  
 
 

  

Gene Set Name Description k/K p-value FDR q-value
REACTOME_HEMOSTASIS Genes involved in Hemostasis 0.0708 1.80E-33 2.58E-29
GO_REGULATION_OF_IMMUNE_SYSTEM_PROCESS Any process that modulates the frequency, rate, or extent of 

an immune system process. 0.0314 1.06E-29 7.56E-26
WIERENGA_STAT5A_TARGETS_DN Genes down-regulated in CD34+ [GeneID=947] cells by 

intermediate activity levels of STAT5A [GeneID=6776]; 
predominant long-term growth and self-renewal phenotype. 0.108 9.52E-28 4.54E-24

GO_IMMUNE_SYSTEM_PROCESS Any process involved in the development or functioning of the 
immune system, an organismal system for calibrated 
responses to potential internal or invasive threats. 0.0242 1.62E-27 5.79E-24

GO_REGULATION_OF_BODY_FLUID_LEVELS Any process that modulates the levels of body fluids. 0.0553 1.76E-25 5.05E-22
GO_CELL_ACTIVATION A change in the morphology or behavior of a cell resulting 

from exposure to an activating factor such as a cellular or 
soluble ligand. 0.0511 2.19E-25 5.23E-22

GO_POSITIVE_REGULATION_OF_IMMUNE_SYSTEM_
PROCESS

Any process that activates or increases the frequency, rate, or 
extent of an immune system process. 0.0381 8.38E-25 1.71E-21

GO_REGULATION_OF_CELL_ACTIVATION Any process that modulates the frequency, rate or extent of 
cell activation, the change in the morphology or behavior of a 
cell resulting from exposure to an activating factor such as a 
cellular or soluble ligand. 0.0558 1.11E-24 1.98E-21

REACTOME_PLATELET_ACTIVATION_SIGNALING_AND
_AGGREGATION

Genes involved in Platelet activation, signaling and 
aggregation 0.0962 3.27E-23 5.19E-20

GO_REGULATION_OF_CELL_ADHESION Any process that modulates the frequency, rate or extent of 
attachment of a cell to another cell or to the extracellular 
matrix. 0.0429 1.04E-21 1.49E-18
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Table 4. MSigDB pathways containing genes with modification in 5hmC in PDAC. Down = 

number of pathways with genes that have reduced 5hmC in PDAC, Up =  number of pathways 

with genes that have increased 5hmC in PDAC, [Up, Down]/Total.pathway = Down and Up 

values expressed as a ratio. Hallmark =, C2 = Curated gene sets inclusive of Biocarta, KEGG and 

Reactome, C5.BP =  GO Biological processes, C6 = Oncogenic signatures, C7 = Immunologic 

signatures. Note that largest magnitude of change in the most gene rich set is a decreased 

5hmC in immunologic genes. 

 

  

Total.pathway* Down Up Down/Total.pathway Up/Total.pathway

Hallmark 50 18 14 0.360 0.280

C2 3762 566 167 0.150 0.044

C5.BP 3426 251 123 0.073 0.036

C6 187 11 0 0.059 0.000

C7 4782 1545 287 0.317 0.059
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