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Abstract

Rational design methodologies such as quantitative structure activity relationships

(QSAR) have conventionally focused on screening through several drugs for their activ-

ity against a single target, either a bacterial protein or membrane. Recent concerns in

drug design such as the development of drug resistance by membrane adaptation, or the

undesirable damage to gut microbiota require a paradigm shift in activity prediction.

A complementary approach capable of predicting the activity of a single drug against

diverse targets, the diversity arising from bacterial adaptation or a heterogeneous com-

position with other helpful or harmful bacteria, is needed. As a first predictive step

towards this goal, we develop a quantitative model for the activity of daptomycin on

Streptococcus aureus strains with different membrane compositions, mainly varying in

lysylation. The results of the predictions are good, and within the limits of the scarcely
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available data, hint at an interaction of daptomycin with the inner membrane. The

complementary approach may in principle be extended to estimate the activity against

gut bacterial membranes, when systematic data can be curated for training the model.

Introduction

Antibiotic resistance is one of the major health threats in the decades to come. Rational an-

tibiotic design methodologies use physico-chemical descriptors of drug candidates to predict

their activity against well-defined targets, bacterial proteins or membranes. Many drug can-

didates are rejected for their toxicity, and others which translate as drugs become redundant

with bacterial adaptation. In the last few decades, several pathogenic bacteria developed

resistance to new antibiotics within a few years of their introduction.1 Gut bacteria has been

implicated in several important roles in human health and development2 and their disturbed

balance can lead to seemingly unrelated disorders such as Parkinsons’.3 As such, the effects

of commonly used drugs on gut bacteria4 are being evaluated. Only in the recent times

physico-chemical rational intuitions are being used not just for efficacy prediction, but also

to understand why most of the drug candidates do not reach advanced stages of clinical tri-

als.5 The new generation of antibiotic design thus requires one to go beyond the traditional

design paradigm and address a more comprehensive set of challenges rather than being an

efficient drug against a well-defined target.

Computational methodologies such as quantitative structure activity relationships (QSAR)

also were similarly motivated around designing drugs for well defined targets, by binding

to the active site,6,7 or trapping reaction intermediates8 or acting allosterically.9 When it

was realized that bacteria develop resistance to these enzyme targeting drugs10,11 easily, the

focus of QSAR shifted towards evaluating the activity of cationic antimicrobial peptides

(AMP) which act on bacterial membranes. The charge12 and amphipathic13,14 character of

AMPs helps them disrupt the membrane, and a common bacterial adaptation is by lipid
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lysylation.15 Antimicrobial peptides which are part of the innate defense mechanisms13,16–19

continue to be the hope for treating several resistant strains of bacteria. But the focus20–22

nevertheless remained on screening hundreds of drug candidates against a single target, which

now needs to be complemented with the screening of drugs against multiple targets.

Pathogenic strains of Streptococcus aureus (S. aureus) which can cause severe skin and respi-

ratory infections, develop resistance very fast to new antibiotics, and methicillin resistant S.

aureus (MRSA) infections are especially problematic due to the lack of a suitable vaccine or

antibiotic.23,24 Daptomycin is a cyclic lipopeptide antibiotic,25–27 it binds with the bacterial

membrane in a Ca2+ dependent manner28–32 and the lipophilic acyl tail of daptomycin in-

teracts with the membrane which then leads to K+ leakage and inhibition of protein, DNA,

RNA synthesis.33–35 Daptomycin shows a significant activity against MRSA36,37 and van-

comycin intermediate S. aureus.28,38,39 In this work, with the goal of broadening the scope

beyond a conventional QSAR, we study the activity of daptomycin against strains of S.

aureus characterized by different membrane compositions and adaptation.

Methods

The experimental data on the membrane phospholipid composition of the different S. aureus

strains, including methicillin resistant strain and their corresponding minimum inhibitory

concentration (MIC) of daptomycin was curated from several published works.40–51 These

works reported the total phospholipid composition - phosphatidylglycerol (PG), lysyl-PG

(LPG) and cardiolipin (CL) - in the membrane bilayer (Supplementary Table 1). In

addition, some works44–51 also reported the composition of the inner and outer leaflet LPG

(referred to as iLPG and oLPG respectively) in the overall composition. The data was then

used as follows to obtain the fractions of the phospholipids in the individual leaflets.

Assuming 2N lipid molecules in the bilayer, the composition was used to calculate the number

of molecules (PG, LPG and CL) in the inner and outer leaflet. CL is assumed to be equally
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divided (%CL × N) between the two layers. (%iLPG×2N), (%PG× 2N+%oLPG×2N -

%iLPG×2N)/4N , (%CL× N) are the number of LPG, PG and CL in the inner leaflet

and (%oLPG×2N), (%PG× 2N + %iLPG × 2N - %oLPG×2N)/4N , (%CL ×N) are the

number of LPG, PG and CL in the outer leaflet. The percentage within each leaflet was

then calculated based on these lipid molecule numbers. The phospholipid compositions

thus derived for the inner and outer leaflets of the membrane, and the corresponding with

daptomycin MIC values are given in Supplementary Table 2.

We have performed three separate artificial neural network calculations, using the 72 data

points corresponding to total membrane composition, and 44 data points corresponding to

the inner and outer leaflet compositions. In each of these cases, the data was randomly

split into training, validation and test sets. Out of 72 data points with the total membrane

composition data, 57 were chosen for training, 7 were chosen for validation and remaining 8

were chosen for testing. In the other two calculations using individual leaflet compositions

from 44 membranes, we chose 35 data points for training, 4 for validation and 5 for testing.

Artificial neural network (ANN) model was used to obtain a relation between membrane

composition and activity. The ANN model was based on scikit-learn,52 an open module for

machine learning in Python. Logistic function was used as the activation function and low

memory BFGS optimization algorithm was used as solver for this neural network.

With the total membrane composition data, 2500 trial runs were made, using 50 different

randomized choices for the input biases in the neural network and 50 different randomized

choices for the training and validation set. We used neural network models with an input,

output and a hidden layer with 6, 8 or 10 neurons as an additional parameter. From all these

trials, the best ANN models were selected by screening for two quality criteria, R2
training > 0.7

and R2
validation > 0.6. The same procedure was used when performing the calculations with

the total membrane composition or with just the inner or outer leaflet compositions. One

hidden layer of 8 neurons with an input and output layer gave the best result in our calcula-
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tion for data corresponding total membrane composition and outer leaflet composition. On

the other hand, for the inner leaflet, a hidden layer with 10 neurons gave the best results.

Results

Membrane descriptors

Driven by charges, daptomycin selectively attacks anionic the bacterial membranes, which

are usually composed of phosphatidylglycerol (PG), cardiolipin (CL), lysyl-PG (LPG) and

zwitterionic phosphatidylethanolamine (PE). The different strains of S. aureus which showed

varying levels of drug resistance (MIC) were characterized by the compositions differing in

PG, LPG and CL. We curated this data from 12 different studies40–51 (Supplementary

Table 1). The curated data on average reflects that (Supplementary Figure 1) dapto-

mycin binds and oligomerizes in the PG enriched region,53 and supports the intuition that

the reduced toxicity to mammalian cells is due to their low PG content. CL54 and LPG55

on the other hand are negative factors decreasing the activity of daptomycin. However the

exact relation is non-trivial (Supplementary Figure 1), since it depends on PG, LPG and

CL varying simultaneously, and our goal in this work is to develop such relation.

Membrane bilayer model

ANN model (Methods section) was used for obtaining a relation with MIC summarizing

the activity of daptomycin on the strains characterized by different membrane compositions

(Methods). The experimental MIC versus the MIC calculated using the total membrane

composition of S. aureus is given in Figure 1. We obtained good results for the training

(R2
training = 0.758), validation (R2

validation = 0.749) as well as for the test set predictions

(R2
test = 0.625).
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Figure 1: Comparison of the experimental MIC (µg/mL) and MIC (µg/mL) of daptomycin
calculated using 8 neurons in the hidden layer on different overall membrane compositions.
Training (purple circles), validation (orange squares) and test (green diamonds) sets are
shown. The data used in the analysis is shown in Supplementary Table 1.

Inner and outer leaflet models

In the curated data, the distribution of LPG between the inner and outer leaflets was available

for 44 S. aureus strains. From this data, we derived the individual compositions for the two

leaflets (Methods section, Supplementary Table 2). Using this derived information,

we also performed two independent activity predictions considering only the inner and outer

leaflet membrane compositions. The results are shown in Figure 2. The data analysis shows

that the test predictions using only the inner leaflet (R2
training = 0.910, R2

validation = 0.936,

R2
test = 0.758) were better than those with the outer leaflet compositions (R2

training = 0.767,

R2
validation = 0.642, R2

test = 0.615).

Discussion

One drug multiple membrane targets

In designing drugs to address antibiotic resistance, newer drugs such as antimicrobial pep-

tide56 or their mimics57 which are cationic and effective against anionic bacterial membranes
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Figure 2: Comparison of the experimental (µg/mL) and MIC (µg/ml) of daptomycin cal-
culated on different membrane compositions, using the data only from the a) inner leaflet,
with 10 neurons in the hidden layer or b) the outer leaflet, with 10 neurons in the hidden
layer. Training (purple circles), validation (orange squares) and test (green diamonds) sets
are shown. The data used in the analysis is shown in Supplementary Table 2.

are being developed. As may be expected, bacteria adapt to such drugs, with a surface charge

reduction by lysyl modification of the lipids.15 However, rational design strategies, compu-

tational or experimental have focused mainly on designing the activity against a specific

target, and it is not immediately apparent how effective the same drug remains when the

bacteria adapts by lysylating a fraction of its PG. Procedurally our approach is the same as a

standard QSAR, with a simple shift of focus from considering multiple drugs to multiple tar-

gets. We however believe that this simple change begins a new paradigm about quantitative

structure activity predictions for the activity of a drug towards a broader range of targets,

membranes in this case. Systematic experimental studies with a single drug against multiple

targets have also been limited. To the best of our knowledge only on S. aureus, such data

was available and was spread across several pieces of work. We curated the available data

on daptomycin activity on S. aureus strains to develop a quantitative model. The model

could be relevant for understanding how effective the drug remains as the composition of

the membrane changes in serial passage experiments.44 When systematically studied exper-

imental data is available for training, similar approaches can be taken to study the effect of
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the same drug on membranes characterized by differences in lengths, types and saturation

levels of lipids, potentially extendable to quantifying the unwanted effects of drugs on gut

bacteria.

Predicting daptomycin activity

Using ANN model we developed, we calculated the MIC of daptomycin for a systematic

variation in the composition of the inner leaflet are show in Figure 3 (and from overall

and outer leaflet in Supplementary Figure 2). When the PG content is very high, MIC

value is very low, which is in a good agreement with the previous experimental results. But

when the PG concentration is below 50%, for a given value of LPG, MIC value decreases

with increase in PG percentage and decrease in CL percentage. Interestingly, these non-

monotonous trends are seen both in the experimental data (Supplementary Figure 1) as

well as prediction from inner leaflet composition (Figure 3) This observation suggests that

there are several ‘local equilibria’ in the membrane compositions that an adapting bacterium

may find for improving its resistance (or increasing MIC), depending on the initial conditions

or other constraints.

Possible mechanism of action

Our calculations suggest that the composition of the inner leaflet better predicts the activity

of daptomycin on S. aureus. Earlier experiments have suggested a correlation of the MIC

with the LPG in the outer leaflet.44 However this correlation was based on few data points

they obtained in that specific work, and the conclusions did not hold when the data from

multiple studies were curated. As with the rest of the analysis in this article, the approach

is conceptually new and the data available, especially for the individual leaflets, is limited.

The conclusions need to be re-examined and adapted when more data becomes available.
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Figure 3: Change of daptomycin MIC (µg/mL) values due to different PG and LPG con-
centrations in the inner leaflet of the membrane. The blue-green color represents the CL
percentage for positive and the circle size represents MIC. Since we trained our model on
the non-monotonous trends (Supplementary Figure 1), the model also resulted in a few
negative MIC values (µg/mL), represented in red color, over a small parametric region.

Conclusion

To the best of our knowledge a quantitative model that considers the effect of the same drug

candidate on multiple membrane compositions has not been explored and it was developed

in the present work to characterize the activity of daptomycin on different S. aureus strains.

With the limited systematic data available, we could build a neural network based model

which predicted the activity and suggested that the composition in the inner membrane

is more critical than the overall or in the outer leaflets. The concepts can be strength-

ened and extended by modelling for S. aureus or for a heterogenous population when more

systematic data becomes available for training and validation. While practically this one-

drug-multitarget is a trivial extension of the concept of QSAR, conceptually it addresses an

entirely new class of problems where the membrane adapts or the drug inadvertently acts

on a heterogeneous population of bacteria including beneficial gut bacteria.
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Supplementary Table 1

Strain MIC %LPG %PG %CL %iLPG %oLPG References

C3 0.5 23.5 68.5 8 - - 1

C4 4 25.6 65.7 8.7 - - 1

C5 0.25 14.2 81.8 4 - - 1

C6 3 19.2 77.7 3 - - 1

C9 0.5 19.3 76 4.7 - - 1

C10 3 23.9 71.5 4.7 - - 1

C19 0.38 14.9 75.1 10 - - 1

C21 4 30.9 50.5 18.6 - - 1

C26 0.38 31.8 62.9 5.3 - - 1

C27 2 28.7 68.9 2.4 - - 1

C32 0.5 21.9 71.2 6.9 - - 1

C33 2 24.1 73.1 2.7 - - 1

C36 0.5 15.1 81.5 3.4 - - 1

C37 3 26.1 69 5 - - 1

C40 0.25 26 68.4 5.6 - - 1

C41 3 30 59.7 10.3 - - 1

CB11181 1 12.37 83.96 5.38 11.16 1.21 2

CB2201 1.5 12.29 86.37 3.6 10.92 1.37 2

CB2202 3 13.34 80.95 8.59 11.64 1.7 2

CB2203 6 17.96 72.93 12.7 15.41 2.56 2

CB2205 12 24.61 70.02 7.43 18.61 6 2

1CB1118 strain was used as a parental strain in two independent serial passage studies2 and.3 As noted in
the latter study, the novel mutations evolved in the latter study and led to two notable changes - a decreased
LPG after certain time and an increased production of carotenoid. Since the influence of carotenoids was
an additional parameter for which no other study we considered provided the data, we excluded the latter
study from our analysis.

2

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2018. ; https://doi.org/10.1101/423319doi: bioRxiv preprint 

https://doi.org/10.1101/423319
http://creativecommons.org/licenses/by-nc-nd/4.0/


Strain MIC %LPG %PG %CL %iLPG %oLPG References

1A 0.25 13 81 6 11 2 4,5

1C 4 26 68 6 22 5 4,5

2A 0.5 11 84 5 9 2 4,5

2C 2 24 67 9 19 4 4,5

3A 0.5 22 69 9 19 3 4,5

3B 4 16 80 4 13 3 4,5

CB1483 0.25 15.3 77.21 7.49 13.39 1.91 6

CB185 4 35.96 52.31 11.73 32.1 3.85 6

CB5079 0.5 15.43 72.12 12.44 13.63 1.8 6

CB5080 2 26.18 64.08 9.75 24.78 1.39 6

CB5083 0.25 12.07 83.3 4.63 10.15 1.92 6

CB5082 4 21.61 73.58 4.82 19.24 2.37 6

CB5088 0.5 15.36 77.66 6.97 13.61 1.75 6

CB5089 2-4 24.91 65.93 9.16 22.62 2.29 6

CB1631 0.5 12.08 80.41 7.51 10.25 1.83 6

CB1634 4 20.61 71.75 7.63 18.68 1.93 6

CB1663 0.5 11.96 83.2 4.84 10.24 1.72 6

CB1664 4 16.05 81.33 2.62 14.69 1.36 6

CB5057 0.5 15.91 79.25 4.85 14.32 1.59 6

CB5059 4 27.22 69.92 2.87 24.77 2.44 6

CB5062 0.5 12.71 79.9 7.4 11.49 1.21 6

CB5063 8 31.55 59.01 9.44 29.23 2.33 6

CB5015 1 14.06 83.31 2.63 12.73 1.32 6

CB5016 4 19.27 77.2 3.53 17.61 1.66 6

C11 0.38 18 78 5 - - 7

C12 3 25 68 7 - - 7
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Strain MIC %LPG %PG %CL %iLPG %oLPG References

C28 0.12 15 79 6 - - 7

C29 2 23 70 7 - - 7

C44 0.38 20 74 5 - - 7

C45 4 26 68 6 - - 7

Newman 0.5 17 72 11 - - 8

Newman mprF 0.125 0 86 14 - - 8

CS295L 1 12 82 7 - - 8

CS295L+L826F 0.38 0 91 9 - - 8

CT345A 2 18 72 10 - - 8

CT345A+L826F 0.38 0 91 9 - - 8

None 0.5 13.2 81.5 5.3 11.2 2 9

None 1 15.9 75.5 8.7 13.6 2.3 9

None 2 24.5 68 7.5 22 2.5 9

L271 0.125 14.35 83.05 2.59 13.28 1.07 10

L8 2 31.75 66.78 1.47 30.86 0.89 10

L16 0.75 31.01 66.12 2.87 29.55 1.46 10

L56 2 39.15 58.6 2.26 36.27 2.88 10

L76 0.38 16.81 72.27 11 14.76 2.05 10

SA144 0.75 17.45 74.28 8.27 15.38 2.08 11

SA145 0.75 17.86 69.92 12.22 15.24 2.63 11

SA147 1.5 18.86 69.42 11.72 15.04 3.83 11

MRSA 11/11 1 18.91 75.24 5.86 17.17 1.73 12,13

MRSA 11/17 1 19.63 72.57 7.81 18.16 1.46 12,13

MRSA 11/21 3 34.16 62.45 5.68 32.15 2.72 12,13

REF2145 4 36.66 55.25 7.8 34.67 2.29 12,13

Supplementary Table 1: Total membrane phospholipid composition of the different S.
aureus strain is given in terms of phosphatidylglycerol (PG), lysyl-PG (LPG), cardiolipin
(CL), inner leaflet LPG (iLPG) and outer leaflet LPG (oLPG) and the daptomycin MIC
values are given in µg/mL. 4
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All the obtained experimental data are plotted in Supplementary Figure 1. Bacterial

membrane phospholipid is mainly composed of anionic phosphatidylglycerol (PG), cardi-

olipin (CL) and cationic lysyl-phosphatidylglycerol (LPG).

CL

(a)

CL

(b)

CL

(c)

Supplementary Figure 1: Change in daptomycin MIC values with different a) total mem-
brane, b) inner leaflet and c) outer leaflet phospholipid compositions obtained from exper-
imental data. The radius of the circle represents MIC (µg/ml) and the change in color
represents CL concentration.
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Supplementary Table 2

Strain MIC
Inner leaflet Outer leaflet

References
%LPG %PG %CL %LPG %PG %CL

CB1118 1 21.94 72.77 5.29 2.38 92.33 5.29 2

CB2201 1.5 21.36 75.12 3.52 2.68 93.8 3.52 2

CB2202 3 22.63 69.02 8.35 3.3 88.35 8.35 2

CB2203 6 29.75 57.99 12.26 4.94 82.8 12.26 2

CB2205 12 36.47 56.25 7.28 11.76 80.96 7.28 2

1A 0.25 22 72 6 4 90 6 4

1C 4 43.56 50.5 5.94 9.9 84.16 5.94 4

2A 0.5 18 77 5 4 91 5 4

2C 2 38.38 52.53 9.09 8.08 82.83 9.09 4

3A 0.5 38 53 9 6 85 9 4

3B 4 26 70 4 6 90 4 6

CB1483 0.25 26.78 65.73 7.49 3.82 88.69 7.49 6

CB185 4 64.21 24.06 11.73 7.7 80.57 11.73 6

CB5079 0.5 27.26 60.3 12.44 3.6 83.96 12.44 6

CB5080 2 49.56 40.69 9.75 2.78 87.47 9.75 6

CB5083 0.25 20.3 75.07 4.63 3.84 91.53 4.63 6

CB5082 4 38.48 56.7 4.82 4.74 90.44 4.82 6

CB5088 0.5 27.22 65.81 6.97 3.5 89.53 6.97 6

CB5089 2-4 45.24 45.6 9.16 4.58 86.26 9.16 6

CB1631 0.5 20.5 71.99 7.51 3.66 88.83 7.51 6

CB1634 4 37.36 55.01 7.63 3.86 88.51 7.63 6

CB1663 0.5 20.48 74.68 4.84 3.44 91.72 4.84 6

CB1664 4 29.38 68 2.62 2.72 94.66 2.62 6
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Strain MIC
Inner leaflet Outer leaflet

References
%LPG %PG %CL %LPG %PG %CL

CB5057 0.5 28.64 66.51 4.85 3.18 91.97 4.85 6

CB5059 4 49.54 47.59 2.87 4.88 92.25 2.87 6

CB5062 0.5 22.98 69.62 7.4 2.42 90.18 7.4 6

CB5063 8 58.45 32.11 9.44 4.66 85.9 9.44 6

CB5015 1 25.46 71.91 2.63 2.64 94.73 2.63 6

CB5016 4 35.22 61.25 3.53 3.32 93.15 3.53 6

None 0.5 22.40 72.30 5.30 4.00 90.70 5.30 9

None 1 27.17 64.14 8.69 4.60 86.71 8.69 9

None 2 44.00 48.50 7.50 5.00 87.50 7.50 9

L271 0.125 26.56 70.85 2.59 2.14 95.27 2.59 10

L8 2 61.72 36.81 1.47 1.78 96.75 1.47 10

L16 0.75 59.10 38.03 2.87 2.92 94.21 2.87 10

L56 2 72.53 25.21 2.26 5.76 91.98 2.26 10

L76 0.38 29.50 59.51 10.99 4.10 84.91 10.99 10

SA144 0.75 30.76 60.97 8.27 4.16 87.57 8.27 11

SA145 0.75 30.48 57.30 12.22 5.26 82.52 12.22 11

SA147 1.5 30.08 58.20 11.72 7.66 80.62 11.72 11

MRSA 11/11 1 34.34 59.80 5.86 3.46 90.68 5.86 12,13

MRSA 11/17 1 36.32 55.87 7.81 2.92 89.27 7.81 12,13

MRSA 11/21 3 62.43 32.06 5.51 5.28 89.20 5.51 12,13

REF2145 4 69.33 22.87 7.80 4.58 87.62 7.80 12,13

Supplementary Table 2: Inner and outer leaflet of membrane phospholipid composition of
the different S. aureus strains in terms of lysl- phosphatidylglycerol (lysl-PG), phosphatidyl-
glycerol (PG), cardiolipin (CL) and the daptomycin MIC values in µg/ml.
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Although the calculation shows that the daptomycin activity can be predicted well from

the inner leaflet composition, but the total membrane and outer leaflet composition can also

predict the daptomycin activity to some extent. The prediction for the possible membrane

composition on the basis of total and outer leaflet compositions are shown in Supplemen-

tary Figure 2.

CL(+ve MIC)

CL(-ve MIC)

MIC 

0

40

(a)

MIC 

0

40

CL(+ve MIC)

CL(-ve MIC)

(b)

Supplementary Figure 2: Change of daptomycin MIC (µg/ml) values due to different PG
and LPG concentration of the total membrane. The blue-green and red color represents the
change in CL percentage for postive and negative MIC values respectively and radius of the
circle increases with increase in absolute value of MIC.
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