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ABSTRACT 14 

The ability of Mycobacterium tuberculosis to infect, proliferate, and survive during long periods 15 
in the human lungs largely depends on the rigorous control of gene expression. Transcriptome-16 
wide analyses are key to understanding gene regulation on a global scale. Here, we combine 5’-17 
end-directed libraries with RNAseq expression libraries to gain insight into the transcriptome 18 
organization and post-transcriptional mRNA cleavage landscape in mycobacteria during log phase 19 
growth and under hypoxia, a physiologically relevant stress condition. Using the model organism 20 
Mycobacterium smegmatis, we identified 6,090 transcription start sites (TSSs) with high 21 
confidence during log phase growth, of which 67% were categorized as primary TSSs for 22 
annotated genes, and the remaining were classified as internal, antisense or orphan, according to 23 
their genomic context. Interestingly, over 25% of the RNA transcripts lack a leader sequence, and 24 
of the coding sequences that do have leaders, 53% lack a strong consensus Shine-Dalgarno site. 25 
This indicates that like M. tuberculosis, M. smegmatis can initiate translation through multiple 26 
mechanisms. Our approach also allowed us to identify over 3,000 RNA cleavage sites, which occur 27 
at a novel sequence motif. The cleavage sites show a positional bias toward mRNA regulatory 28 
regions, highlighting the importance of post-transcriptional regulation in gene expression. We 29 
show that in low oxygen, a condition associated with the host environment during infection, 30 
mycobacteria change their transcriptomic profiles and endonucleolytic RNA cleavage is markedly 31 
reduced, suggesting a mechanistic explanation for previous reports of increased mRNA half-lives 32 
in response to stress. In addition, a number of TSSs were triggered in hypoxia, 56 of which contain 33 
the binding motif for the sigma factor SigF in their promoter regions. This suggests that SigF 34 
makes direct contributions to transcriptomic remodeling in hypoxia-challenged mycobacteria. Our 35 
results show that M. smegmatis and M. tuberculosis share a large number of similarities at the 36 
transcriptomic level, suggesting that similar regulatory mechanisms govern both species. 37 

 38 

INTRODUCTION 39 

Tuberculosis is a disease of global concern caused by Mycobacterium tuberculosis (Mtb). 40 
This pathogen has the ability to infect the human lungs and survive there for long periods, often 41 
by entering into non-growing states. During infection, Mtb must overcome a variety of stressful 42 
conditions, including nutrient starvation, low pH, oxygen deprivation and the presence of reactive 43 
oxygen species. Consequently, the association of Mtb with its host and the adaptation to the 44 
surrounding environment requires rigorous control of gene expression. 45 

As the slow growth rate and pathogenicity of Mtb present logistical challenges in the 46 
laboratory, many aspects of its biology have been studied in other mycobacterial species. One of 47 
the most widely used models is mycobacteria is Mycobacterium smegmatis, a non-pathogenic fast-48 
growing bacterium that shares substantial genomic similarity with Mtb. A PubMed search for 49 
“Mycobacterium smegmatis” returns 3,907 publications, reflecting the sizable body of published 50 
work involving this model organism. While there are marked differences between the genomes, 51 
such as the highly represented PE/PPE-like gene category and other virulence factors present in 52 
Mtb and poorly represented or absent in M. smegmatis, these organisms have at least 2,117 53 
orthologous genes (Prasanna & Mehra, 2013) making M. smegmatis a viable model to address 54 
questions about the fundamental biology of mycobacteria. Indeed, studies using M. smegmatis 55 
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have revealed key insights into relevant aspects of Mtb biology including the Sec and ESX 56 
secretion systems involved in transport of virulence factors  (Coros et al., 2008, Rigel et al., 2009), 57 
bacterial survival during anaerobic dormancy (Dick et al., 1998, Bagchi et al., 2002, Trauner et 58 
al., 2012, Pecsi et al., 2014) and the changes induced during nutrient starvation (Elharar et al., 59 
2014, Wu et al., 2016, Hayashi et al., 2018). However, the similarities and differences between M. 60 
smegmatis and M. tuberculosis at the level of transcriptomic organization have not been 61 
comprehensively reported.  62 

Identification of transcription start sites (TSSs) is an essential step towards understanding 63 
how bacteria organize their transcriptomes and respond to changing environments. Genome-wide 64 
TSS mapping studies have been used to elucidate the general transcriptomic features in many 65 
bacterial species, leading to the identification of promoters, characterization of 5’ untranslated 66 
regions (5’ UTRs), identification of RNA regulatory elements and transcriptional changes in 67 
different environmental conditions (examples include (Albrecht et al., 2009, Mitschke et al., 2011, 68 
Cortes et al., 2013, Schlüter et al., 2013, Dinan et al., 2014, Ramachandran et al., 2014, Sass et 69 
al., 2015, Shell et al., 2015, Thomason et al., 2015, Berger et al., 2016, Čuklina et al., 2016, 70 
D'arrigo et al., 2016, Heidrich et al., 2017, Li et al., 2017). To date, two main studies have reported 71 
the transcriptomic landscape in Mtb during exponential growth and carbon starvation (Cortes et 72 
al., 2013, Shell et al., 2015). These complementary studies revealed that, unlike most bacteria, a 73 
substantial percentage (~25%) of the transcripts are leaderless, lacking a 5’ UTR and consequently 74 
a Shine-Dalgarno ribosome-binding site. In addition, a number of previously unannotated ORFs 75 
encoding putative small proteins were found (Shell et al., 2015), showing that the transcriptional 76 
landscape can be more complex than predicted by automated genome annotation pipelines. Thus, 77 
TSS mapping is a powerful tool to gain insight into transcriptomic organization and identify novel 78 
genes. Less is known about the characteristics of the M. smegmatis transcriptome. A recent study 79 
reported a number of M. smegmatis TSSs in normal growth conditions (Li et al. 2017). However, 80 
this work was limited to identification of primary gene-associated TSSs and lacked of an analysis 81 
of internal and antisense TSSs, as well as characterization of promoter regions and other relevant 82 
transcriptomic features. In addition, Potgieter and collaborators (Potgieter et al., 2016) validated a 83 
large number of annotated ORFs using proteomics and were able to identify 63 previously 84 
unannotated leaderless ORFs. 85 

To achieve a deeper characterization of the M. smegmatis transcriptional landscape, we 86 
combined 5’-end-mapping and RNAseq expression profiling under two different growth 87 
conditions. Here we present an exhaustive analysis of M. smegmatis transcriptome during 88 
exponential growth and hypoxia. Unlike most transcriptome-wide TSS analyses, our approach 89 
allowed us to study not only the transcriptome organization in different conditions, but also the 90 
frequency and distribution of RNA cleavage sites on a genome wide scale. Whereas regulation at 91 
the transcriptional level is assumed to be the main mechanism that modulates gene expression in 92 
bacteria, post-transcriptional regulation is a key step in the control of gene expression and has been 93 
implicated in the response to host conditions and virulence in various bacterial pathogens 94 
(Kulesekara et al., 2006, Mraheil et al., 2011, Heroven et al., 2012, Jurėnaitė et al., 2013, Schifano 95 
et al., 2013, Holmqvist et al., 2016). Some regulatory mechanisms including small non-coding 96 
RNAs, RNases, Toxin-Antitoxin (TA) systems, RNA-binding proteins, and riboswitches have 97 
been described in mycobacteria ((Fields & Switzer, 2007, Warner et al., 2007, Sala et al., 2008, 98 
DiChiara et al., 2010, McKenzie et al., 2012, Winther et al., 2016) and others), emphasizing the 99 
importance of post-transcriptional regulation. Here we show that RNA cleavage decreases during 100 
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adaptation to hypoxia, suggesting that RNA cleavage may be a refinement mechanism contributing 101 
to the regulation of gene expression in harsh conditions. 102 

 103 

MATERIALS AND METHODS 104 

Strains and growth conditions used in this study.  105 

M. smegmatis strain mc2155 was grown in Middlebrook 7H9 supplemented with ADC 106 
(Albumin Dextrose Catalase, final concentrations 5 g/L bovine serum albumin fraction V, 2 g/L 107 
dextrose, 0.85 g/L sodium chloride, and 3 mg/L catalase), 0.2% glycerol and 0.05% Tween 80. 108 
For the exponential phase experiment (Dataset 1), 50 ml conical tubes containing 5 ml of 7H9 109 
were inoculated with M. smegmatis to have an initial OD=0.01. Cultures were grown at 37°C and 110 
250 rpm. Once cultures reached an OD of 0.7 – 0.8, they were frozen in liquid nitrogen and stored 111 
at -80°C until RNA purification. For hypoxia experiments (Dataset 2), the Wayne model (Wayne 112 
& Hayes, 1996) was implemented. Briefly, 60 ml serum bottles (Wheaton) were inoculated with 113 
36.5 ml of M. smegmatis culture with an initial OD=0.01. The bottles were sealed with rubber caps 114 
(Wheaton, W224100-181 Stopper, 20mm) and aluminum caps (Wheaton, 20 mm aluminum seal) 115 
and cultures were grown at 37 °C and 125 rpm to generate hypoxic conditions. Samples were taken 116 
at an early hypoxia stage (15 hours) and at a late hypoxia stage (24 hours). These time points were 117 
experimentally determined according to growth curves experiments (see Figure S1). 15 ml of each 118 
culture were sampled and frozen immediately in liquid nitrogen until RNA extraction. 119 

RNA extraction 120 

RNA was extracted as follows: frozen cultures stored at -80°C were thawed on ice and 121 
centrifuged at 4,000 rpm for 5 min at 4 °C. The pellets were resuspended in 1 ml Trizol (Life 122 
Technologies) and placed in tubes containing Lysing Matrix B (MP Bio). Cells were lysed by 123 
bead-beating twice for 40 sec at 9 m/sec in a FastPrep 5G instrument (MP Bio). 300 µl chloroform 124 
was added and samples were centrifuged for 15 minutes at 4,000 rpm at 4°C. The aqueous phase 125 
was collected and RNA was purified using Direct-Zol RNA miniprep kit (Zymo) according to the 126 
manufacturer’s instructions. Samples were then treated with DNase Turbo (Ambion) for one hour 127 
and purified with a RNA Clean & Concentrator-25 kit (Zymo) according to the manufacturer’s 128 
instructions. RNA integrity was checked on 1% agarose gels and concentrations were determined 129 
using a Nanodrop instrument. Prior to library construction, 5 µg RNA was used for rRNA depletion 130 
using Ribo-Zero rRNA Removal Kit (Illumina) according to the manufacturer’s instructions. 131 

Construction of 5’-end-mapping libraries 132 

After rRNA depletion, RNA samples from each biological replicate were split in three, in 133 
order to generate two 5’-end differentially treated libraries and one RNAseq expression library 134 
(next section). RNA for library 1 (“converted” library) was treated either with RNA 5' 135 
pyrophosphohydrolase RPPH (NEB) (exponential phase experiment, Dataset 1), or with 5’ 136 
polyphosphatase (Epicentre) (hypoxia experiment, Dataset 2), in order to remove the native 5’ 137 
triphosphates of primary transcripts, whereas RNA for Library 2 (“non-converted” library) was 138 
subject to mock treatment. Thus, the converted libraries capture both 5’ triphosphates (converted 139 
to monophosphates) and native 5’ monophosphate transcripts, while non-converted libraries 140 
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capture only native 5’ monophosphates (see scheme in Figure S2.A). Library construction was 141 
performed as described by Shell et al (Shell et al., 2015). A detailed scheme showing the workflow 142 
of 5’-end libraries construction, the primers and adapters used in each step, and modifications to 143 
the protocol are shown in Figure S2.B. 144 

Construction of RNAseq expression libraries 145 

One third of each rRNA-depleted RNA sample was used to construct RNAseq expression 146 
libraries. KAPA stranded RNA-Seq library preparation kit and NEBNext Ultra RNA library prep 147 
kit for Illumina (NEB) were used for Dataset 1 and Dataset 2, respectively, according to 148 
manufacturer’s instructions. The following major modifications were introduced into the 149 
protocols: i) For RNA fragmentation, in order to obtain fragments around 300 nt, RNA was mixed 150 
with the corresponding buffer and placed at 85°C for 6 minutes (Dataset 1), or at 94°C for 12 151 
minutes (Dataset 2). ii) For library amplification, 10 or 19-23 PCR cycles were used for Dataset 1 152 
and Dataset 2, respectively. The number of cycles was chosen according to the amount of cDNA 153 
obtained for each sample. After purification, DNA concentration was measured in a Qubit 154 
instrument before sequencing. 155 

Libraries sequencing and quality assessment 156 

For 5’-end-mapping libraries from Dataset 1, Illumina MiSeq paired-end sequencing 157 
producing 100 nt reads was used. For 5’ end directed libraries from Dataset 2 as well as for all 158 
expression libraries, Illumina HiSeq 2000 paired-end sequencing producing 50 nt reads was used. 159 
Sequencing was performed at the UMass Medical School Deep Sequencing Core Facility. Quality 160 
of the generated fastq files was checked using FastQC. 161 

Identification of 5’ ends and discrimination between transcription start sites (TSSs) and 162 
cleavage sites (CSs) 163 

Paired-end reads generated from 5’-end-directed libraries were mapped to M. smegmatis 164 
mc2155 NC_008596 reference genome. In order to reduce noise from the imprecision of 165 
transcriptional initiation, only the coordinate with the highest coverage in each 5 nt window was 166 
used for downstream analyses. For read filtering, different criteria were used for the 2 datasets 167 
according to the library depth and quality (see Figure S3). In order to discriminate between TSSs 168 
and CSs, the ratio of the coverage in converted/non-converted libraries for each detected 5’ end 169 
was calculated. To focus our analyses on the 5’ends that are relatively abundant in their local 170 
genomic context, we employed a filter based on the ratio of 5’ end coverage to expression library 171 
coverage in the preceding 100nt. 5’ ends for which this ratio was ≤0.05 were removed. After this 172 
filter, 15,720 5’ ends remained and were further analyzed using a Gaussian mixture modelling to 173 
differentiate TSSs from CSs with a high confidence in Dataset 1 (Figure 1A). For this analysis, 174 
we used the iterative expectation maximization (EM) algorithm in the mixtools package (Benaglia 175 
et al., 2009) for R (version 1.1.0) to fit the mixture distributions. 176 

Analysis of expression libraries 177 

Reads were aligned to NC_008596 reference genome using Burrows-Wheeler Aligner (Li 178 
& Durbin, 2009). For comparison of gene expression levels according to presence or absence of 179 
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Shine-Dalgarno sequences, RPKMs were calculated for all genes. The DEseq2 pipeline was used 180 
to evaluate the changes in gene expression in hypoxia (Love et al., 2014). 181 

Transcription start sites categorization 182 

For analysis in Figure 1D, TSSs were classified as follows: those coordinates located ≤ 183 
500 bp upstream from an annotated gene were considered to be primary TSSs (pTSS). Coordinates 184 
located within an annotated gene were classified as internal (iTSS) or N-associated internal TSSs 185 
(N-iTSSs) if they were located within the first 25% of the annotated coding sequence. N-iTSSs 186 
were considered for reannotation as a pTSSs only if their associated gene lacked a pTSS. TSSs 187 
located on the antisense strand of a coding sequence, 5’ UTR, or 3’ UTR were considered as 188 
antisense (aTSS). 5’ UTRs boundaries were assigned after assignment of pTSSs to genes annotated 189 
in the reference genome NC_008596. When a gene had more than one pTSS, the longest of the 190 
possible 5’ UTRs was used for assignment of aTSSs. In the case of genes for which we did not 191 
identify a pTSS, we considered a hypothetical leader sequence of 50 bp for assignment of aTSSs. 192 
For assignment of aTSSs in 3’ UTRs, we arbitrarily considered a sequence of 50 bp downstream 193 
the stop codon of the gene to be the 3’ UTR. Finally, TSSs not belonging to any of the above-194 
mentioned categories were classified as orphan (oTSSs). 195 

Operon prediction 196 

Adjacent genes with the same orientation were considered to be co-transcribed if there 197 
were at least 5 spanning reads between the upstream and the downstream gene in at least one of 198 
the replicates in the expression libraries from Dataset 1. After this filtering, a downstream gene 199 
was excluded from the operon if: 1) it had a TSS ≤ 500 bp upstream the annotated start codon on 200 
the same strand, and/or 2) had a TSS within the first 25% of the gene on the same strand, and/or 201 
3) the upstream gene had a TSS within the last 50-100% of the coding sequence. Finally, the 202 
operon was assigned only if the first gene had a primary TSS with a confidence ≥ 95% according 203 
to the Gaussian mixture modeling. 204 

Cleavage sites categorization 205 

For CS categorization in Figure 4D, we stablished stringent criteria in order to determine 206 
the frequency of CSs in each location category relative to the amount of the genome comprising 207 
that location category. For 3’ UTR regions, we considered only CSs that were located between 2 208 
convergent genes. To assess frequency relative to the whole genome, we considered the sum of all 209 
regions located between two convergent genes. For 5’ UTRs we considered all CSs located 210 
between 2 divergent genes, and the sum of all leader lengths for genes having a pTSS whose 211 
upstream gene is in the opposite strand (divergent) determined in this study was used for assessing 212 
relative frequency. For 5’ ends corresponding to cleavages between co-transcribed genes we used 213 
the operon structures determined in this study, and the sum of all their intergenic regions was used 214 
for assessing relative frequency. Finally, for CSs located within coding sequences all genes were 215 
considered, as all of them produced reads in the expression libraries. The sum of all coding 216 
sequences in NC_008596 genome was used for assessing relative frequency, after subtracting 217 
overlapping regions to avoid redundancy.  218 

Martini et al Transcriptomic landscape of M. smegmatis

6

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 23, 2018. ; https://doi.org/10.1101/423392doi: bioRxiv preprint 

https://doi.org/10.1101/423392


RESULTS 219 

1. Mapping, annotation and categorization of transcription start sites 220 

In order to study the transcriptome structure of M. smegmatis, RNAs from triplicate 221 
cultures in exponential phase were used to construct 5’ end mapping libraries (Dataset 1, D1) 222 
according to our previously published methodologies (Shell et al., 2015, Shell et al., 2015) with 223 
minor modifications. Briefly, our approach relies on comparison of adapter ligation frequency in 224 
a dephosphorylated (converted) library and an untreated (non-converted) library for each sample. 225 
The converted libraries capture both 5’ triphosphate and native 5’ monophosphate-bearing 226 
transcripts, while the non-converted libraries capture only native 5’ monophosphate-bearing 227 
transcripts (Figure S2). Thus, assessing the ratios of read counts in the converted/non-converted 228 
libraries permits discrimination between 5’ triphosphate ends (primary transcripts from 229 
transcription start sites) and 5’ monophosphate ends (cleavage sites). By employing a Gaussian 230 
mixture modeling analysis (Figure 1A) we were able to identify 5,552 TSSs in M. smegmatis with 231 
an observed probability of being a TSS ≥0.95 (high confidence TSSs, Table S1). A second filtering 232 
method allowed us to obtain 222 additional TSSs from Dataset 1 (Figure S3). A total of 5,774 233 
TSSs were therefore obtained from Dataset 1. In addition, data from separate libraries constructed 234 
as controls for the hypoxia experiment (Dataset 2, D2) in Section 8 were also included in this 235 
analysis to obtain TSSs. After noise filtering (Figure S3), 4,736 TSSs from D2 were identified. 236 
The union of the two datasets yielded a total of 6,090 non-redundant high confidence TSSs, of 237 
which 4,420 were detected in both datasets (Figure S4, Table S1). 238 

Although not all 5’ ends could be classified with the Gaussian mixture modeling, we were 239 
able to assign 57% of the 5’ ends in Dataset 1 to one of the two 5’ end populations with high 240 
confidence (5,552 TSSs and 3,344 CSs). To validate the reliability of the Gaussian mixture 241 
modeling used to classify 5’ ends, we performed two additional analyses. First, according to 242 
previous findings in Mtb (Cortes et al., 2013) and other well studied bacteria (Sass et al., 2015, 243 
Berger et al., 2016, Čuklina et al., 2016, D'arrigo et al., 2016), we anticipated that TSSs should be 244 
enriched for the presence of the ANNNT -10 promoter consensus motif in the region upstream. 245 
Evaluation of the presence of appropriately-spaced ANNNT sequences revealed that 5’ ends with 246 
higher probabilities of being TSSs are enriched for this motif, whereas for those 5’ ends with low 247 
probabilities of being TSSs (and thus high probabilities of being CSs) have ANNNT frequencies 248 
similar to that of the M. smegmatis genome as a whole (Figure 1B). Secondly, we predicted that 249 
TSSs should show enrichment for A and G nts at the +1 position, given the reported preference 250 
for bacterial RNA polymerases to initiate transcription with these nts (Lewis & Adhya, 2004, 251 
Mendoza-Vargas et al., 2009, Mitschke et al., 2011, Cortes et al., 2013, Shell et al., 2015, 252 
Thomason et al., 2015, Berger et al., 2016). Thus, we analyzed the base enrichment in the +1 253 
position for the 5’ ends according the p-value in the Gaussian mixture modeling (Figure 1C). 254 
These results show a clear increase in the percentage of G and A bases in the position +1 as the 255 
probability of being a TSS increases, while the percentage of sequences having a C at +1 increases 256 
as the probability of being a TSS decreases. These two analyses show marked differences in the 257 
sequence contexts of TSSs and CSs and further validate the method used for categorization of 5’ 258 
ends.  259 

To study the genome architecture of M. smegmatis, the 6,090 TSSs were categorized 260 
according to their genomic context (Figure 1D and 1E, Table S1). TSSs located ≤500 nt upstream 261 
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of an annotated gene start codon in the M. smegmatis NC_008596 reference genome were 262 
classified as primary TSSs (pTSS). TSSs within annotated genes on the sense strand were denoted 263 
as internal (iTSS). When an iTSS was located in the first quarter of an annotated gene, it was sub-264 
classified as N-terminal associated TSS (N-iTSS), and was further examined to determine if it 265 
should be considered a primary TSS (see below). TSSs located on the antisense strand either within 266 
a gene or within a 5’ UTR or 3’ UTR were grouped as antisense TSSs (aTSSs). Finally, TSSs 267 
located in non-coding regions that did not meet the criteria for any of the above categories were 268 
classified as orphan (oTSSs). When a pTSS also met the criteria for classification in another 269 
category, it was considered to be pTSS for the purposes of downstream analyses. A total of 4,054 270 
distinct TSSs met the criteria to be classified as pTSSs for genes transcribed in exponential phase. 271 
These pTSSs were assigned to 3,043 downstream genes, representing 44% of the total annotated 272 
genes (Table S2). This number is lower than the total number of genes expressed in exponential 273 
phase, in large part due to the existence of polycistronic transcripts (see operon prediction below). 274 
Interestingly, 706 (23%) of these genes have at least two pTSSs and 209 (7%) have three or more, 275 
indicating that transcription initiation from multiple promoters is common in M. smegmatis. 276 

A total of 995 iTSSs (excluding the iTSSs that were also classified as a pTSS of a 277 
downstream gene, see Figure S5 for classification workflow) were identified in 804 (12%) of the 278 
annotated genes, indicating that transcription initiation within coding sequences is common in M. 279 
smegmatis. iTSSs are often considered to be pTSSs of downstream genes, to be spurious events 280 
yielding truncated transcripts, or to be consequences of incorrect gene start annotations. However, 281 
there is evidence supporting the hypothesis that iTSSs are functional and highly conserved among 282 
closely related bacteria (Shao et al., 2014), highlighting their potential importance in gene 283 
expression. 284 

We were also able to detect antisense transcription in 12.5 % of the M. smegmatis genes. 285 
Antisense transcription plays a role in modulation of gene expression by controlling transcription, 286 
RNA stability, and translation (Morita et al., 2005, Kawano et al., 2007, Andre et al., 2008, Fozo 287 
et al., 2008, Giangrossi et al., 2010) and has been found to occur at different rates across bacterial 288 
genera, ranging from 1.3% of genes in Staphylococcus aureus to up to 46% of genes in 289 
Helicobacter pylori (Beaume et al., 2010, Sharma et al., 2010). Of the 1,006 aTSSs identified here 290 
(excluding those that were primarily classified as pTSSs), 881 are within coding sequences, 120 291 
are within 5’ UTRs and 72 are located within 3’ UTRs (note that some aTSS are simultaneously 292 
classified in more than one of these three subcategories, Figure S6). While we expect that many 293 
of the detected antisense transcripts have biological functions, it is difficult to differentiate 294 
antisense RNAs with regulatory functions from transcriptional noise. In this regard, Lloréns-Rico 295 
and collaborators (Llorens-Rico & Cano, 2016) reported that most of the antisense transcripts 296 
detected using transcriptomic approaches are a consequence of transcriptional noise, arising at 297 
spurious promoters throughout the genome. To investigate the potential significance of the M. 298 
smegmatis aTSSs, we assessed the relative impact of each aTSS on local antisense expression 299 
levels by comparing the read depth upstream and downstream of each aTSS in our RNAseq 300 
expression libraries. We found 318 aTSSs for which expression coverage was ≥10-fold higher in 301 
the 100 nt window downstream of the TSS compared to the 100 nt window upstream (Table S3).  302 
Based on the magnitude of the expression occurring at these aTSS, we postulate that they could 303 
represent the 5’ ends of candidate functional antisense transcripts rather than simply products of 304 
spurious transcription. However, further work is needed to test this hypothesis. Finally, 78 oTSSs 305 
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were detected across the M. smegmatis genome. These TSSs may be the 5’ ends of non-coding 306 
RNAs or mRNAs encoding previously unannotated ORFs. 307 

Out of the 995 iTSSs identified, 457 were located within the first quarter of an annotated 308 
gene (N-iTSSs). In cases where there was no pTSS, we considered the possibility that the start 309 
codon of the gene was misannotated and the N-iTSS was in fact the primary TSS. Although we do 310 
not discount the possibility that functional proteins can be produced when internal transcription 311 
initiation occurs far downstream of the annotated start codon, we only considered N-iTSSs 312 
candidates for gene start reannotation when there was a start codon (ATG, GTG or TTG) in-frame 313 
with the annotated gene in the first 30% of the annotated sequence. In this way, we suggest re-314 
annotations of the start codons of 213 coding sequences (see Table S4). These N-iTSSs were 315 
considered to be pTSSs (N-iTSSs à pTSSs) for all further analyses described in this work. 316 

2. Operon prediction 317 

To predict operon structure, we combined 5’ end libraries and RNAseq expression data. 318 
We considered two or more genes to be co-transcribed if (1) they had spanning reads that 319 
overlapped both the upstream and downstream gene in the expression libraries, (2) at least one 320 
TSS was detected in the 5’ end-directed libraries for the first gene of the operon, and (3) the 321 
downstream gene(s) lacked pTSSs and iTSSs (for more detail, see Materials and Methods).  Thus, 322 
we were able to identify and annotate 294 operons with high confidence across the M. smegmatis 323 
genome (Table S5). These operons are between 2 and 4 genes in length and comprise a total of 324 
638 genes. Our operon prediction methodology has some limitations. For example, operons not 325 
expressed in exponential growth phase could not be detected in our study. Furthermore, internal 326 
promoters within operons can exist, leading to either monocistronic transcripts or suboperons 327 
(Guell et al., 2009, Paletta & Ohman, 2012, Skliarova et al., 2012). We limited our operon 328 
predictions to genes that appear to be exclusively co-transcribed, excluding those cases in which 329 
an internal gene in an operon can be alternatively transcribed from an assigned pTSS. Finally, our 330 
analysis did not capture operons in which the first gene lacked a high-confidence pTSS. Despite 331 
these limitations, our approach allowed us to successfully identify new operons as well as 332 
previously described operons. Previously reported operons that were captured by our predictions 333 
included the furA-katG (MSMEG_6383-MSMEG_6384) operon involved in oxidative stress 334 
response (Milano et al., 2001), the vapB-vapC (MSMEG_1283-MSMEG_1284) Toxin–Antitoxin 335 
module (Robson et al., 2009) operon, and the ClpP1-ClpP2 (MSMEG_4672-MSMEG_4673) 336 
operon involved in protein degradation (Raju et al., 2012). 337 

3. Characterization of M. smegmatis promoters reveals features conserved in M. tuberculosis 338 

Most bacterial promoters have two highly conserved regions, the -10 and the -35, that 339 
interact with RNA polymerase via sigma factors. However, it was reported that the -10 region is 340 
necessary and sufficient for transcription initiation by the housekeeping sigma factor SigA in 341 
mycobacteria, and no SigA -35 consensus motifs were identified in previous studies (Cortes et al., 342 
2013, Newton-Foot & Gey van Pittius, 2013, Zhu et al., 2017). to characterize the core promoter 343 
motifs in M. smegmatis on a global scale we analyzed the 50 bp upstream of the TSSs. We found 344 
that 4,833 of 6,090 promoters analyzed (79%) have an ANNNT motif located between positions -345 
6 to -13 upstream the TSSs (Figure 2A). In addition, 63% of the promoters with ANNNT motifs 346 
have a thymidine preceding this sequence (TANNNT). This motif is similar to that previously 347 
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described in a transcriptome–wide analysis for Mtb (Cortes et al., 2013) and for most bacterial 348 
promoters that are recognized by the σ70 housekeeping sigma factor (Ramachandran et al., 2014, 349 
Sass et al., 2015, Berger et al., 2016, Čuklina et al., 2016, D'arrigo et al., 2016). However, no 350 
apparent bias towards specific bases in the NNN region was detected in our study or in Mtb, while 351 
in other bacteria such as E. coli, S. enterica, B. cenocepacia, P. putida, and B. subtillis an A/T 352 
preference was observed in this region (Jarmer et al., 2001, Ramachandran et al., 2014, Sass et al., 353 
2015, Berger et al., 2016, D'arrigo et al., 2016). We were unable to detect a consensus motif in the 354 
-35 region either using MEME server (Bailey et al., 2015) or manually assessing the possible base-355 
enrichment in the -35 region. Analysis of the sequences in the immediate vicinity of TSSs revealed 356 
that G and A are the most frequent bases at the +1 position, and C is considerably more abundant 357 
at -1 (Figure 2B).  358 

Interestingly, we identified several alternative motifs in the -10 promoter regions of 359 
transcripts lacking the ANNNT motif (Figure 2A). One of these, (G/C)NN(G/C)NN(G/C), is 360 
likely the signature of M. smegmatis’ codon bias in the regions upstream of iTSSs. The other three 361 
sequences are candidate binding sites for alternative sigma factors, which are known to be 362 
important in regulation of transcription under diverse environmental conditions. However, the 363 
identified consensus sequences differ substantially from those previously described in 364 
mycobacteria (Raman et al., 2001, Raman et al., 2004, Sun et al., 2004, Lee et al., 2008, Lee et 365 
al., 2008, Song et al., 2008, Veyrier et al., 2008, Humpel et al., 2010, Gaudion et al., 2013). The 366 
TSSs having these sigma factor motifs and the associated genes are listed in Table S6. We next 367 
examined the relationship between promoter sequence and promoter strength, as estimated by the 368 
read depths in the 5’ end converted libraries. As shown in Figure 2C, the expression levels of 369 
transcripts with ANNNT -10 motifs are on average substantially higher than those lacking this 370 
sequence. In addition, promoters with the full TANNNT motif are associated with more highly 371 
abundant transcripts compared to those having a VANNNT sequence, where V is G, A or C. These 372 
results implicate TANNNT as the preferred -10 sequence for the housekeeping sigma factor, SigA, 373 
in M. smegmatis. As shown in Figure 2C, expression levels of transcripts having the motif 2 in 374 
Figure 2A were significantly increased when compared to those lacking the ANNNT motif. 375 

4. Leaderless transcription is a prominent feature of the M. smegmatis transcriptome 376 

5’ UTRs play important roles in post-transcriptional regulation and translation, as they may 377 
contain regulatory sequences that can affect mRNA stability and/or translation efficiency. 378 
Whereas in most bacteria 5’-UTR bearing (“leadered”) transcripts predominate, this is not the case 379 
for Mtb, in which near one quarter of the transcripts have been reported to be leaderless (Cortes et 380 
al., 2013, Shell et al., 2015). To investigate this feature in M. smegmatis, we analyzed the 5’ UTR 381 
lengths of all genes that had at least one pTSS. We found that for 24% of the transcripts the TSS 382 
coincides with the translation start site or produces a leader length ≤5 nt, resulting in leaderless 383 
transcripts (Figure 3A). A total of 1,099 genes (including those re-annotated in section 1) have 384 
leaderless transcripts, and 155 of those (14%) are also transcribed as leadered mRNAs from 385 
separate promoters. For leadered transcripts, the median 5’ UTR length was 69 nt. Interestingly, 386 
15% of the leaders are > 200 nt, suggesting that these sequences may contain potential regulatory 387 
elements. We then sought to compare the leader lengths of M. smegmatis genes with the leader 388 
lengths of their homologs in Mtb. For this analysis we used two independent pTSS mapping Mtb 389 
datasets obtained from Cortes et al, 2013 and Shell et al, 2015 (Figure 3B). To avoid ambiguities, 390 
we used only genes that had a single pTSS in both species. Our results show a statistically 391 
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significant correlation of leader lengths between species, suggesting that similar genes conserve 392 
their transcript features and consequently may have similar regulatory mechanisms. Additionally, 393 
comparison of leaderless transcription in M. smegmatis and Mtb revealed that 62% or 73% of the 394 
genes that are only transcribed as leaderless in M. smegmatis also lack a 5’ UTR in MTB, according 395 
to Cortes et al, 2013 or Shell et al, 2015, respectively (Table S7). We next assessed if leaderless 396 
transcripts are associated with particular gene categories, and found the distribution across 397 
categories was uneven (Figure 3C). The three categories “DNA metabolism,” “Amino acid 398 
biosynthesis,” and “Biosynthesis of cofactors, prosthetic groups and carriers” were significantly 399 
enriched in leaderless transcripts (p-value < 0.05, hypergeometric test), while “Signal 400 
transduction,” “Transcription,” and “Transport and binding proteins” appear to have less leaderless 401 
transcripts. 402 

We next evaluated the presence of the Shine-Dalgarno ribosome-binding site (SD) 403 
upstream of leadered coding sequences. For this analysis, we considered those leaders containing 404 
at least one of the three tetramers AGGA, GGAG or GAGG (core sequence AGGAGG) in the 405 
region -6 to -17 relative to the start codon to possess canonical SD motifs. We found that only 47% 406 
of leadered coding sequences had these canonical SD sequences. Thus, considering also the 407 
leaderless RNAs, a large number of transcripts lack canonical SD sequences, suggesting that 408 
translation initiation can occur through multiple mechanisms in M. smegmatis. We further 409 
compared the relative expression levels of leaderless and leadered coding sequences subdivided 410 
by SD status. Genes expressed as both leadered and leaderless transcripts were excluded from this 411 
analysis. We found that on average, expression levels were significantly higher for those genes 412 
with canonical SD sequences than for those with leaders but lacking this motif and for those that 413 
were leaderless (Figure 3D). Together, these data suggest that genes that are more efficiently 414 
translated have also higher transcript levels. Similar findings were made in Mtb, where proteomic 415 
analyses showed increased protein levels for genes with SD sequences compared to those lacking 416 
this motif (Cortes et al., 2013). 417 

5. Identification of novel leaderless ORFs in the M. smegmatis genome 418 

As GTG or ATG codons are sufficient to initiate leaderless translation in mycobacteria 419 
(Shell et al., 2015, Potgieter et al., 2016), we used this feature to look for unannotated ORFs in the 420 
M. smegmatis NC_008596 reference genome. Using 1,579 TSSs that remained after pTSS 421 
assignment and gene reannotation using N-iTSSs (see Figure S5) we identified a total of 66 422 
leaderless ORFs encoding putative proteins longer than 30 amino acids, 5 of which were 423 
previously identified (Shell et al., 2015). 83% of these ORFs were predicted in other annotations 424 
of the M. smegmatis mc2155 or MKD8 genome (NC_018289.1, (Gray et al., 2013)), while 10 of 425 
the remaining ORFs showed homology to genes annotated in other mycobacterial species and 426 
Helobdella robusta and two ORFs did not show homology to any known protein. These results 427 
show that automatic annotation of genomes can be incomplete and highlight the utility of 428 
transcriptomic analysis for genome (re)annotation. Detailed information on these novel putative 429 
ORFs is provided in Table S8. 430 

6. Endonucleolytic RNA cleavage occurs at a distinct sequence motif and is common in 431 
mRNA regulatory regions 432 
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As our methodology allows us to precisely map RNA cleavage sites in addition to TSSs, 433 
we sought to analyze the presence and distribution of cleavage sites in the M. smegmatis 434 
transcriptome. mRNA processing plays a crucial role in regulation of gene expression, as it is 435 
involved in mRNA maturation, stability and degradation (Arraiano et al., 2010). Mixture modeling 436 
identified 3,344 CSs with a posterior probability ≥0.9 (high confidence CSs) (Figure 1A, Table 437 
S9). To determine the sequence context of the CSs, we used the regions flanking the 5’ ends to 438 
generate a sequence logo (Figure 4A). There was a strong preference for a cytosine in the +1 439 
position (present in more than the 90% of the CSs) (Figure 4B), suggesting that it may be 440 
structurally important for RNase recognition and/or catalysis.  441 

Cleaved 5’ ends can represent either degradation intermediates or transcripts that undergo 442 
functional processing/maturation. In an attempt to investigate CS function, we classified them 443 
according to their locations within mRNA transcripts (Figure 4C, Table S9). We found that, after 444 
normalizing to the proportion of the expressed transcriptome that is comprised by each location 445 
category, cleaved 5’ ends are more abundant within 5’ UTRs and intergenic regions of operons 446 
than within coding sequences and 3’ UTRs (Figure 4D). Stringent criteria were used in these 447 
analyses to avoid undesired bias (Figure 4C and Materials and Methods). While one would expect 448 
the CSs associated with mRNA turnover to be evenly distributed throughout the transcript, 449 
enrichment of CSs within the 5’ UTRs as well as between two co-transcribed genes may be 450 
indicative of cleavages associated with processing and maturation. Alternatively, these regions 451 
may be more susceptible to RNases due to lack of associated ribosomes. Here we predicted with 452 
high confidence that at least 101 genes have one or more CSs in their 5’ UTRs (Table S10).   453 

We detected cleaved 5’ ends within the coding sequences of 18% of M. smegmatis genes, 454 
ranging from 1 to over 40 sites per gene. We analyzed the distribution of CSs within coding 455 
sequences (Figure S7), taking into consideration the genomic context of the genes. When 456 
analyzing the distribution of CSs within the coding sequences of genes whose downstream gene 457 
has the same orientation, we observed an increase in CS frequency in the region near the stop 458 
codon (Figure S7.A). However, when only coding sequences having a downstream gene on the 459 
opposite strand (convergent) were considered, the distribution of CSs through the coding 460 
sequences was significantly different (p-value <0.0001, Kolmogorov-Smirnov D test) with the CSs 461 
more evenly distributed throughout the coding sequence (Figure S7.B). This suggests that the 462 
cleavage bias towards the end of the genes observed in Figure S7.A may be due to the fact that 463 
many of these CSs are actually occurring in the 5' UTRs of the downstream genes. In cases where 464 
the TSS of a given gene occurs within the coding sequence of the preceding gene, a CS may map 465 
to both the coding sequence of the upstream gene and the 5’ UTR of the downstream gene. In these 466 
cases, we cannot determine in which of the two transcripts the cleavage occurred. However, 467 
cleavages may also occur in polycistronic transcripts. We therefore assessed the distributions of 468 
CSs in the operons predicted above. The distribution of CSs in genes co-transcribed with a 469 
downstream gene showed a slight increase towards the last part of the gene (Figure S7.C). This 470 
may reflect cases in which polycistronic transcripts are cleaved near the 3’ end of an upstream 471 
gene, as has been reported for the furA-katG operon, in which a cleavage near the stop codon of 472 
furA was described (Milano et al., 2001, Sala et al., 2008, Taverniti et al., 2011). The furA-katG 473 
cleavage was identified in our dataset, located 1 nt downstream of the previously reported position. 474 
A similar enrichment of CSs towards stop codons was also observed in a recent genome-wide 475 
RNA cleavage analysis in Salmonella enterica (Chao et al., 2017), although in this case the high 476 
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frequency of cleavage may be also attributed to the U preference of RNase E in this organism, 477 
which is highly abundant in these regions.  478 

7. Prediction of additional TSSs and CSs based on sequence context 479 

The sequence contexts of TSSs (Figure 2B) and CSs (Figure 4A) were markedly different, 480 
as G and A were highly preferred in the TSS +1 position whereas C was highly preferred in the 481 
CS +1 position, and TSSs were associated with a strong overrepresentation of ANNNT -10 sites 482 
while CSs were not. These sequence-context differences not only provide validation of our 483 
methodology for distinguishing TSSs from CSs, as discussed above, but also provide a means for 484 
making improved predictions of the nature of 5’ ends that could not be categorized with high 485 
confidence based on their converted/non-converted library coverage alone. Taking advantage of 486 
these differences, we sought to obtain a list of additional putative TSSs and CSs. Thus, of the 5’ 487 
ends that were not classified by high confidence by mixture modeling, we selected those that had 488 
an appropriately positioned ANNNT motif upstream and a G or an A in the +1 position and 489 
classified them as TSSs with medium confidence (Table S11). In the same way, 5’ ends with a C 490 
in the +1 position and lacking the ANNNT motif in the region upstream were designated as 491 
medium confidence CSs (Table S12). In this way, we were able to obtain 576 and 4,838 medium 492 
confidence TSSs and CSs, respectively. Although we are aware of the limitations of these 493 
predictions, these lists of medium confidence 5’ ends provide a resource that may be useful for 494 
guiding further studies. 5’ ends that did not meet the criteria for high or medium confidence TSSs 495 
or CSs are reported in Table S13. 496 

8. The transcriptional landscape changes in response to oxygen limitation 497 

We sought to study the global changes occurring at the transcriptomic level in oxygen 498 
limitation employing the Wayne model (Wayne & Hayes, 1996) with some modifications (see 499 
Materials and Methods). Two timepoints were experimentally determined in order to evaluate 500 
transcriptomic changes during the transition into hypoxia (Figure S1). A different enzyme was 501 
used for conversion of 5’ triphosphates to 5’ monophosphates in these 5’-end libraries, and it 502 
appeared to be less effective than the enzyme used for the 5’ end libraries in dataset 1. As a 503 
consequence, our ability to distinguish TSSs from CSs de novo in these datasets was limited. 504 
However, we were able to assess changes in abundance of the 5’ ends classified as high-confidence 505 
TSSs or CSs in Dataset 1, as well as identify a limited number of additional TSSs and CSs with 506 
high confidence (Figure S4, Table S1). Corresponding RNAseq expression libraries revealed that, 507 
as expected, a large number of genes were up and downregulated in response to oxygen limitation 508 
(Figure S8, Table S14). We next investigated the transcriptional changes in hypoxia by assessing 509 
the relative abundance of TSSs in these conditions. We found 318 high-confidence TSSs whose 510 
abundance varied substantially between exponential phase and hypoxia (Table S15). A robust 511 
correlation was observed between the pTSS peak height in the 5’-end-directed libraries and RNA 512 
levels in the expression libraries for hypoxia (Figure S9). In an attempt to identify promoter motifs 513 
induced in hypoxia, we analyzed the upstream regions of those TSSs whose abundance increased 514 
(fold change ≥2, adjusted p-value ≤0.05). Interestingly, we detected a conserved GGGTA motif in 515 
the -10 region of 56 promoters induced in hypoxia using MEME (Figure 5A, Table S15). This 516 
motif was reported as the binding site for alternative sigma factor SigF (Rodrigue et al., 2007, 517 
Hartkoorn et al., 2010, Humpel et al., 2010). Additionally, the extended -35 and -10 SigF motif 518 
was found in 44 of the 56 promoter sequences. (Figure 5A, Table S15). SigF was shown to be 519 
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induced in hypoxia at the transcript level in Mtb (Iona et al., 2016) and highly induced at the 520 
protein level under anaerobic conditions using the Wayne model in M. bovis BCG strain (Michele 521 
et al., 1999) (Galagan et al., 2013). In M. smegmatis, SigF was shown to play a role under oxidative 522 
stress, heat shock, low pH and stationary phase (Gebhard et al., 2008, Humpel et al., 2010, Singh 523 
et al., 2015) and sigF RNA levels were detected in exponential phase at a nearly comparable level 524 
to sigA (Singh & Singh, 2008). Here, we did not detect significant changes in expression of the 525 
sigF gene in hypoxia at the transcript level. However, this is consistent with reported data showing 526 
that sigF transcript levels remain unchanged under stress conditions in M. smegmatis (Gebhard et 527 
al., 2008), as it was postulated that SigF is post-transcriptionally modulated via an anti-sigma 528 
factor rather than through sigF transcription activation (Beaucher et al., 2002). We noted that, in 529 
the case of TSSs whose abundance was reduced in hypoxia, almost the totality of the promoters 530 
contains the -10 ANNNT σ70 binding motif. We then examined the presence of SigF motif in the 531 
regions upstream of 5’ ends that were not classified as high confidence TSSs. We speculate that 532 
5’ ends associated with this motif may be potential TSSs triggered by hypoxia. We found 96 533 
additional putative TSSs that were (1) overrepresented in hypoxia and (2) associated with 534 
appropriately-spaced SigF motifs (Table S16). Three of the hypoxia-induced genes with SigF 535 
motifs have homologous genes induced in hypoxia in Mtb (Park et al., 2003, Rustad et al., 2008). 536 

It is well known that under anaerobic conditions mycobacteria induce the DosR regulon, a 537 
set of genes implicated in stress tolerance (Rosenkrands et al., 2002, O'Toole et al., 2003, Park et 538 
al., 2003, Roberts et al., 2004, Rustad et al., 2008, Honaker et al., 2009, Leistikow et al., 2010). 539 
The DosR transcriptional regulator was highly upregulated at both hypoxic timepoints in the 540 
expression libraries (13 and 18-fold at 15 and 24 hours, respectively). Thus, we hypothesized that 541 
the DosR binding motif should be present in a number of regions upstream the TSSs that were 542 
upregulated in hypoxia. Analysis of the 200 bp upstream the TSSs using the CentriMo tool for 543 
local motif enrichment analysis (Bailey & Machanick, 2012) allowed us to detect putative DosR 544 
motifs in 13 or 53 promoters, depending on whether a stringent (GGGACTTNNGNCCCT ) or a 545 
weak (RRGNCYWNNGNMM) consensus sequence was used as input (Lun et al., 2009, Berney 546 
et al., 2014, Gomes et al., 2014) (Table 15). At least two of the 13 genes downstream of these 547 
TSSs were previously reported to have DosR motifs by Berney and collaborators (Berney et al., 548 
2014) and RegPrecise Database (Novichkov et al., 2013) and two others are homologs of genes in 549 
the Mtb DosR regulon that were not previously described in M. smegmatis as regulated by DosR 550 
(Table S15). 551 

We then used CentriMo to search for DosR motifs in the regions upstream of 5’ ends that 552 
were not classified as high confidence TSSs, given that TSSs derived from hypoxia-specific 553 
promoters may have been absent from Dataset 1. We found 36 putative TSSs associated with 20 554 
different genes (Table S17), of which 11 have been shown to have DosR binding motifs (Berney 555 
et al., 2014).  Five of these are homologs of genes in the Mtb DosR regulon.  556 

9. M. smegmatis decreases RNA cleavage under oxygen limitation 557 

There is evidence that mRNA is broadly stabilized under hypoxia and other stress 558 
conditions (Rustad et al., 2013, Ignatov et al., 2015). Thus, we anticipated that RNA cleavage 559 
should be reduced under hypoxia as a strategy to stabilize transcripts. We compared the relative 560 
abundance of each high confidence CS in stress and in exponential phase (Figure 5B) and found 561 
that RNA cleavage is significantly reduced in both hypoxia 15h and 24h on a global scale (Figure 562 

Martini et al Transcriptomic landscape of M. smegmatis

14

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 23, 2018. ; https://doi.org/10.1101/423392doi: bioRxiv preprint 

https://doi.org/10.1101/423392


5C). In contrast, relative abundance of TSSs did not decrease in these conditions, indicating that 563 
the reduction in CSs is not an artefact of improper normalization (Figure 5B). When the ratios of 564 
CSs abundance in hypoxia/normal growth of individual genes were analyzed, we observed the 565 
same behavior (Figure S10). These results indicate that the number of cleavage events per gene 566 
decreases during adaptation to hypoxia, which could contribute to the reported increases in half-567 
life (Rustad et al, 2012). 568 

 569 

DISCUSSION 570 

In the past years, genome-wide transcriptome studies have been widely used to elucidate 571 
the genome architecture and modulation of transcription in different bacterial species (Albrecht et 572 
al., 2009, Mendoza-Vargas et al., 2009, Mitschke et al., 2011, Cortes et al., 2013, Schlüter et al., 573 
2013, Dinan et al., 2014, Ramachandran et al., 2014, Innocenti et al., 2015, Sass et al., 2015, 574 
Thomason et al., 2015, Berger et al., 2016, Čuklina et al., 2016, D'arrigo et al., 2016, Heidrich et 575 
al., 2017, Li et al., 2017, Zhukova et al., 2017). Here we combined 5’-end-directed libraries and 576 
RNAseq expression libraries to shed light on the transcriptional and post-transcriptional landscape 577 
of M. smegmatis in different physiological conditions.  578 

The implementation of two differentially treated 5’-end libraries followed by Gaussian 579 
mixture modeling analysis allowed us to simultaneously map and classify 5’ ends resulting from 580 
nucleolytic cleavage and those resulting from primary transcription with high confidence. We were 581 
able to classify 57% of the 5’ ends in Dataset 1 with high confidence. In addition, we elaborated a 582 
list of medium confidence TSSs and CSs (Tables S11 and S12). These lists constitute a valuable 583 
resource for the research community. 584 

Analysis of TSS mapping data allowed us to identify over 4,000 primary TSSs and to study 585 
the transcript features in M. smegmatis. The high proportion of leaderless transcripts, the lack of a 586 
consensus SD sequence in half of the leadered transcripts, and the absence of a conserved -35 587 
consensus sequence indicate that the transcription-translation machineries are relatively robust in 588 
M. smegmatis. The robustness of transcription and translation are features shared with Mtb, where 589 
25% of the transcripts lack a leader sequence (Cortes et al., 2013, Shell et al., 2015). In addition, 590 
high abundances of transcripts lacking 5’ UTRs have been reported in other bacteria including 591 
Corynebacterium diphtheria, Leptospira interrogans, Borrelia burgdorferi, and Deinococcus 592 
deserti, the latter having 60% leaderless transcripts (de Groot et al., 2014, Adams et al., 2017, 593 
Zhukova et al., 2017, Wittchen et al., 2018). Considering the high proportion of leaderless 594 
transcripts and the large number of leadered transcripts that lack a SD sequence (53%), it follows 595 
that an important number of transcripts are translated without canonical interactions between the 596 
mRNA and anti-Shine-Dalgarno sequence, suggesting that M. smegmatis has versatile 597 
mechanisms to address translation. A computational prediction showed that the presence of SD 598 
can be very variable between prokaryotes, ranging from 11% in Mycoplasma to 91% in Firmicutes 599 
(Chang et al., 2006). Cortes et al (Cortes et al., 2013) reported that the 55% of the genes transcribed 600 
with a 5’ UTR lack the SD motif. These similarities between M. smegmatis and M. tuberculosis, 601 
along with the correlation of leader lengths for homologous genes between species shown in 602 
Figure 3B, provide further evidence that many transcriptomic features are conserved between 603 
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mycobacterial genomes. These data support the idea that in many cases, similar mechanisms 604 
govern modulation of gene expression in both species. 605 

In an attempt to understand the role of RNA cleavage in mycobacteria, we identified and 606 
classified over 3,000 CSs throughout the M. smegmatis transcriptome, presenting the first report 607 
of an RNA cleavage map in mycobacteria. The most striking feature of the CSs was a cytidine in 608 
the +1 position, which was true in over 90% of the cases. While the RNases involved in global 609 
RNA decay in mycobacteria have not been yet elucidated, some studies have implicated RNase E 610 
as a major player in RNA processing and decay (Kovacs et al., 2005, Zeller et al., 2007, Csanadi 611 
et al., 2009, Taverniti et al., 2011), given its central role in other bacteria such as E. coli and its 612 
essentiality for survival in both M. smegmatis and Mtb (Sassetti et al., 2003, Sassetti & Rubin, 613 
2003, Griffin et al., 2011, Taverniti et al., 2011, DeJesus et al., 2017). It is therefore possible that 614 
mycobacterial RNase E, or other endonucleases with dominant roles, favor cytidine in the +1 615 
position. Interestingly, the sequence context of cleavage found here is different from that described 616 
for E. coli, for which the consensus sequence is (A/G)N↓AU (Mackie, 2013) or  S. enterica, in 617 
which a marked preference for uridine at the +2 position and AU-rich sequences are important for 618 
RNase E cleavage (Chao et al., 2017).  619 

RNA cleavage is required for maturation of some mRNAs (Li & Deutscher, 1996, Condon 620 
et al., 2001, Gutgsell & Jain, 2010, Moores et al., 2017). Therefore, the observation that CSs are 621 
enriched in 5’ UTRs and intergenic regions suggests that processing may play roles in RNA 622 
maturation, stability, and translation for some transcripts in M. smegmatis. A high abundance of 623 
processing sites around the translation start site was also observed in P. aeruginosa and S. enterica 624 
in transcriptome-wide studies (Chao et al., 2017, Gill et al., 2018), suggesting that 5’ UTR 625 
cleavage may be a widespread post-transcriptional mechanism for modulating gene expression in 626 
bacteria.  627 

Regulation of RNA decay and processing plays a crucial role in adaptation to 628 
environmental changes. We present evidence showing that RNA cleavage is markedly reduced in 629 
conditions that result in growth cessation. It was previously demonstrated that in low oxygen 630 
concentrations mycobacteria reduce their RNA levels (Ignatov et al., 2015) and mRNA half-life 631 
is strikingly increased (Rustad et al., 2013), likely as a mechanism to maintain adequate transcript 632 
levels in the cell without the energy expenditures that continuous transcription would require. 633 
While several traits are involved in the regulation of transcript abundance and stability, the 634 
observation that cleavage events are pronouncedly reduced in these conditions pinpoint this 635 
mechanism as a potential way to control RNA stability under stress. In agreement with this 636 
hypothesis, RNase E was modestly but significantly decreased at the transcript level in early and 637 
late hypoxia (fold change = 0.63 and 0.56, respectively, p-value adjusted <0.05), suggesting that 638 
reducing the RNase E abundance in the cell may be a strategy to increase transcript half-life. 639 
Further study is needed to better understand the relationship between transcript processing and 640 
RNA decay in normoxic growth as well as stress conditions. 641 

Hypoxic stress conditions were also characterized by major changes in the TSSs. 5’-end-642 
mapping libraries revealed that over 300 TSSs varied substantially when cultures were limited in 643 
oxygen. We found that 56 transcripts triggered in hypoxia contain the SigF promoter binding 644 
motif, indicating that this sigma factor plays a substantial role in the M. smegmatis hypoxia 645 
response. While previous work revealed increased expression of SigF itself in hypoxia in Mtb 646 
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(Galagan et al., 2013, Iona et al., 2016, Yang et al., 2018), this is the first report demonstrating the 647 
direct impact of SigF on specific promoters in hypoxic conditions in mycobacteria. Further work 648 
is needed to better understand the functional consequences of SigF activation in both organisms in 649 
response to hypoxia.  650 
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Figure 1. Mapping and categorization of transcription start sites in M. smegmatis. A) Diagram 
showing the ratios of coverage in the converted/non-converted libraries for each coordinate. Gaussian 
mixture modeling was used to discriminate between TSSs and CSs. For this analysis, the 15,720 
coordinates from Dataset 1 were used. B) Abundance of the ANNNT promoter motif located between 
bases -13 to -6 upstream of the 15,720 coordinates. The light blue dashed line indicates the percentage 
of coordinates in the genome of M. smegmatis that have at least one ANNNT motif located between bases 
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-13 to -6 upstream (9.7%). C) Base frequency at the +1 position among the 15,720 5’ ends from Dataset 
1. Probabilities of a 5’ end being a TSS were calculated by Gaussian Mixture modeling. D) Categories for 
TSS annotation based on the genomic context. TSSs were classified according to their relative position to 
genes as primary (red), internal (green), antisense (light blue) and orphan (violet). E) Distribution of TSSs 
among the different categories. 
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Figure 2. M. smegmatis promoter -10 regions are dominated by the ANNNT motif. A) Identification 
of promoter motifs. Consensus motifs were identified by using MEME. The 20 nt upstream the 6,090 
TSSs were used for the initial analysis. Those sequences lacking an ANNNT -10 motif between 
positions -13 and -6 (1,257) were used to identify other conserved promoter sequences. Motif 2 (20 nt 
length) and Motif 4 (18 nt length) are located immediately upstream of the TSS (at the -1 position), while 
the spacing of Motif 5 varies from -4 to -1 relative to the TSS, with -3 being the dominant position (75% 
of the motifs). B) The sequences flanking 3,500 randomly chosen TSSs were used to create a sequence 
logo by WebLogo 3 (Crooks et al, 2004), revealing the two dominant spacings for the ANNNT motif and 
base preferences in the immediate vicinity of the TSS. C) Comparison of apparent promoter activity for 
different motifs. Mean normalized read depth in the converted libraries from Dataset 1 was compared 
for TSSs having or lacking the ANNNT motif in the -10 region, and ANNNT-associated TSSs were 
further subdivided into those containing the extended TANNNT motif or conversely the VANNNT 
sequence (where V = A, G or C). Motifs 2, 4 and 5 in Figure 2A are also included. ****p <0.0001, ***p 
<0.001, **p <0.01, *p <0.05 (Kruskal-Wallis test with post-test for multiple comparisons). 
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Figure 3. Leader features are conserved in mycobacteria. A) Leader length distribution. The 4,054 
pTSSs and the pTSSs of the 213 reannotated genes (N-iTSSsàpTSSs) were used for this analysis. B) 
Leader length correlation between M. smegmatis and Mtb genes. The leader sequences of genes having 
a single unique pTSS in both species (leader length ≥0 and ≤500 nt) were used for this analysis. 508 
homologous genes in Cortes et al, 2013 (left figure) and 251 homologous genes in Shell et al, 2015 (right 
figure) were used. When a gene in M. smegmatis had more than one homolog in Mtb, that with the highest 
identity was considered. Spearman r p-value <0.00001 in both cases. C) Distribution of leaderless 
transcripts among different functional TIGRfam functional categories. A total of 557 genes having a 
TIGRfam category were used for this analysis. Genes having both leadered and leaderless transcripts 
were excluded from this analysis. The black dashed line indicates the expected proportion of leaderless 
genes (25%) according to the global analysis performed in this study. The numbers above each bar 
indicate the total number of genes used for this analysis in each category (leaderless + leadered). ****p 
<0.0001, ***p <0.001 (Chi-Square test with Bonferroni correction for multiple comparisons). D) RNA levels 
vary according to leader status. Mean expression levels were compared for genes expressed with leaders 
containing a canonical SD sequence (SD) or not (No SD) or lacking leaders (leaderless). Gene expression 
was quantified as RPKMs using RNAseq expression data. Genes were classified as containing an SD 
sequence if at least one of the three tetramers AGGA, GGAG or GAGG (core sequence AGGAGG) were 
present in the region -6 to -17 nt relative to the start codon. rRNAs, tRNAs, sRNAs, and genes expressed 
as both leadered and leaderless transcripts were excluded from this analysis. ****p <0.0001; **p <0.005; 
ns: not significant. (Kruskal-Wallis test with post-test for multiple comparisons). 
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Figure 4. Cleavage site positions are biased with respect to sequence context and genetic 
location. A) Sequence context of cleavage sites. The sequences flanking the 3,344 high-
confidence CSs were used to create the sequence logo with WebLogo 3 (Crooks et al, 2004). B) 
Base preference for RNA cleavage. The base frequencies for the -2 to +2 positions were 
determined. C) Cleavage site categories based on the genetic context. CSs are denoted with 
arrows. 5’ UTR: the CS is within the leader of a gene, and the genes upstream and downstream 
of the CS are divergent (Gene 1 and Gene 2, red arrow). CDS: The CS is within a coding 
sequence (green arrow). 3’ UTR: the genes upstream and downstream of the CS are convergent 
(Gene 2 and Gene 3, light blue arrow). Operon: The CS is between two genes with the same 
orientation and the first gene in the operon has a pTSS according to Table S5 (violet arrow). D) 
Distribution of cleavage sites. The frequency of CSs in each location was normalized to the 
proportion of the genome that the location category comprised. The proportions were then 
normalized to the CDS category, which was set as 1. ****p <0001, *p <0.01 (Chi-square test).  
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Figure 5. The transcriptional landscape substantially changes upon oxygen limitation. A) 
TSSs significantly increased or decreased in hypoxia. 132 TSSs were overrepresented (upper 
panel) and 186 were underrepresented (lower panel) in different hypoxia stages. The upstream 
regions of these TSSs were used to search for promoter motifs using MEME. B) The mean 
normalized read depths for each 5’ end in the non-converted libraries were compared between 
hypoxia and normoxia. Graphics show the Log2 of the ratios of read depth for each CSs at 15 h 
(upper left) and 24 h (upper right), and the Log2 of the ratios of the read depth for each TSSs at 
15 h (lower left) and 24 h (lower right) compared to normoxia. C) Normalized read depth at high-
confidence cleavage sites under normoxia and the transition into hypoxia. ****p <0.0001, ***p 
<0.001, ns: not significant (Non-parametric Wilcoxon matched-pairs signed rank test).  
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Supplementary Figures 

 

 

 

Supplementary Figure 1. Wayne hypoxia model. Cultures were grown in sealed flasks to 
produce a gradual reduction in oxygen. Samples were taken at 15 (S1) and 24 (S2) hours after 
bottles were sealed. For control, cultures were sampled at an OD = 0.8.  
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Figure S2. Construction of 5’-end-directed libraries. A) RNA samples were split in two parts 
and treated differentially. RNA for Library 1 (converted) was treated with RPPH to convert 
triphosphates in monophosphates, allowing the capture of 5’ end that are primary transcripts or 
cleaved RNAs. RNA for Library 2 (non-converted) was mock-treated, allowing the capture of 
cleaved transcripts. B) Workflow of 5’-end-directed libraries. After RPPH or 5’ polyphosphatase 
treatment, adapter SSS392 (TCCCTACACGACGCTCTTCCGAUCU) was ligated to the 5’ 
monophosphate ends (1). Then, RNA was fragmented by heating at 85°C for 6 min (log phase 
experiment) or at 94°C for 11 min (hypoxia experiment) (2) and first strand cDNA synthesis was 
carried out using the degenerate primer SSS397 
(CTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNN) (3). RNA was then degraded and 
DNA was amplified using universal adapter sequence SSS398 
(AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTC) and primers 
bearing Illumina indexes (4). Adapter-bearing products were PCR-amplified using outer primers 
SSS401 (AATGATACGGCGACCACCGAGATC) and SSS402 
(CAAGCAGAAGACGGCATACGAGAT) to enrich for full-length fragments. 4 (log phase 
experiment) or 16 (hypoxia experiment) PCR cycles were performed (5). Finally, libraries were 
sequenced using Illumina technology (6).  
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Figure S3. Workflow for noise filtering and TSS prediction in the different datasets.  
 

 

 

 
Supplementary Figure 4. TSSs identified in the different datasets. Dataset 1: exponential 
phase (5,774 TSSs), Dataset 2: a separate exponential phase dataset (aka normoxia) obtained 
as a control for a matched hypoxia dataset (4,736 TSSs). 
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Figure S5. Workflow used for TSS classification.  A complete scheme of the procedure used 
to classify TSSs is shown. TSSs located within 0-500 nt upstream of an annotated coding 
sequence were classified as pTSSs. TSSs located within annotated coding sequences were 
classified as iTSSs. iTSSs located within the first 25% of an annotated coding sequence were 
subclassified as N-iTSSs. When a gene lacked a pTSS, had an N-iTSS, and had an in-frame start 
codon downstream of the N-iTSS and within the first 30% of the coding sequence, the start codon 
of the gene was re-annotated. aTSSs (TSSs located on the antisense strand of a coding 
sequence, 5’ UTR, or 3’ UTR) and oTSSs (TSSs not belonging to any of the above-mentioned 
categories) were assigned as described in Figure 1D and Materials and Methods. 
 

 

 

 
 
 
 
 
 
 
 
 
 

Figure S6. Distribution of antisense TSSs.  The 1,006 aTSSs were classified according to their 
positions in 5’ UTRs, 3’ UTRs, and CDSs (coding sequences). 
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Supplementary Figure 7. Cleavage sites distribution within genes according to coding 
sequence context. The number of cleavage sites according to the relative position in the coding 
sequence is represented considering A) only coding sequences whose downstream gene is on 
the same strand, B) only coding sequences whose downstream gene is in the opposite strand 
(convergent), and C) only genes having a downstream gene transcribed as an operon. The CS 
distribution is significantly different between graphics A and B (p-value <0.0001, Kolmogorov 
Smirnov D test). 
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Supplementary Figure 8. Gene expression levels in RNAseq expression libraries in 
hypoxia. Changes in transcript levels were obtained by DEseq2 analysis, comparing each 
indicated condition to the control experiment. Genes upregulated and downregulated with a fold 
change ≥2 are highlighted in green and red, respectively. 

 
 

Supplementary Figure 9. Correlation between expression data and 5’ end-directed libraries 
data in hypoxia. The X axis represents the Log2 of the fold change in the expression libraries 
from hypoxia/normoxia datasets and the Y axis represents the Log2 of the fold change in read 
depth in hypoxia/normoxia 5’-end-directed libraries. The analysis was done for hypoxia at 15 
hours (A) and 24 hours (B). Genes having only one pTSS were used. The correlation is significant 
in both cases, with a p-value <0.00001. 
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Supplementary Figure 10. Changes in RNA cleavage within coding sequences in hypoxic 
conditions. The number of cleavage events within each coding sequence was compared through 
the different conditions. The Log2 of the ratio of the number of cleavages in hypoxia/control are 
shown. Each dot represents a specific gene. A) Hypoxia 15 hours, B) Hypoxia 24 hours. 
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