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Abstract

Cross-linked flexible filaments deformed by active molecular motors occur in many natural and

synthetic settings including eukaryotic flagella, the cytoskeleton and in vitro motor assays. In

these systems, an important quantity that controls spatial coordination and emergent collective

behavior is the length scale over which elastic strains persist. We estimate this quantity in the

context of ordered composites comprised of cross-linked elastic filaments sheared by active motors.

Combining a mean-field theory valid for negligibly noisy systems with discrete simulations for noisy

systems, we show that the effect of localized strains – be they steady or oscillatory – persist over

distances determined by motor kinetics, motor elasticity and filament extensibility. The cut-off

length that emerges from these effects controls the transmission of mechanical information and

determines the criterion for spatially separated motor groups to stay synchronized. Our results

generalize the notion of persistence in passive, Brownian filaments to active, cross-linked filaments.
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FIG. 1. (a) An active, motor-filament composite with spatially separated motor aggregates, (I) and

(II). The softer the intervening filament segment connecting (I) and (II), the higher the tendency

of the motor groups to lose coherence. (b) A close-up of the blue box illustrates the geometry we

study. The continuous, ordered composite filament is comprised of a thin sheet of width w and

lateral width b� w that is a distance D above a rigid substrate. This distance is spanned by active

motors generating an active force density Fm. (c) Blow-up of the blue box in (b) illuminates the

discrete elements comprising the continuous filament. Shown are the passive linkers (N, red) and

active motors (subscript m, green) spanning the distance D. Motors attach with a pre-extension

dm and then move along the upper filament with speed vh relative to their base. Motor extension

is y and the local filament displacement is U . (d) The computational version of the composite

has 80 (1 ≤ n ≤ 80) rigid segments connected by linear springs of stiffness K. Motors (green) are

active linearly springs (spring constant km) which attach with probability pon and detach with load

dependent probability poff . The free end (last segment) is subjected to a periodic displacement

while the first segment is clamped.

I. INTRODUCTION

Semi-flexible and flexible filaments interacting with active molecular motors arise natu-

rally as constituents of the cell and its organelles [1–5] as well as in reconstituted in-vitro

motor assays [6, 7]. An example is the structurally ordered eukaryotic flagella and cilia.

These conserved structures with ubiquitous functions stemming from already being present

in the last eukaryote common ancestor [8], provide a great opportunity to study the inte-

gration of mechanics and control at the cell level. Cilia are comprised of almost inextensible

microtubule filaments, active ATPase dynein motor proteins and passive elastic nexins which

in concert deform (bend) and oscillate with well defined wavelengths and frequencies. The
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dynamics of this and of similar active and activated synthetic systems, are controlled by

localized forces due to active motors mediated by passive filament elasticity, geometric con-

straints and noise.

To understand the onset and persistence of such coordinated deformation, a variety of

models with varying degrees of complexity have been proposed. Most of these models [9–15],

assume the motor activated filaments to be inextensible – that is, local extensional strains

imposed on the filament can propagate an infinite distance along its contour. Any propen-

sity to bend or elongate however removes this divergence. Indeed, in a passive context [12],

it has been demonstrated that when filament bundles are bent, the shearing forces between

them are mediated by extensibility, leading to a characteristic scale over which mechani-

cal information is transmitted. A recent study also indicates significant influence of finite

extensibility of actin filaments in inter-filament friction [16]. In active contexts such as for

eukaryotic flagella, models ignoring extensibility predict that the wavelengths characterizing

the beating filament scale with the flagella length [9]. Experimental evidence however indi-

cates that actual wavelengths are self-limiting [2, 10] even as the flagella themselves range

from tens of microns to nearly a centimeter long. This strongly suggests a finite elasticity

dependent length scale for propagation of mechanical information along the flagella.

Figure 1(a) depicts an active composite filament of fixed width comprised of two filaments

cross-linked by active motor groups. Consider now the interaction between two spatially

separated, distinct, motor patches (I, II). For inextensible filaments, mechanical activity

by group (I) leads to local shear and slide; these mechanical signals are transmitted over

arbitrarily long distances and can thus be detected by the motor group at (II) however large

the separation. For extensible filaments - even when the extensibility is weak - the interplay

between sliding deformation and filament elongation modes along the contour eventually

results in degradation of mechanical signals transmitted along the filament. This decay

of mechanical information limits the range over which motor coordination may occur. In

short, softness leads to de-coherence and stiffness ensures coherence. Additionally, kinetics

of motor activity set by ATP hydrolysis rates can couple back to effective extensibility by

introducing shear stiffening thus enhancing or disrupting coherence between the separated

motor groups.

Here, we address two questions. First, what sets the length scale over which elastic defor-

mations persist in such systems? Second, how do elasticity and motor kinetics control the
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spatial coordination and coherence of collective dynamics? Recognizing that motor groups

interacting with an assumed infinitely-stiff filament will immediately coordinate their dy-

namics, we hypothesize that elasticity - be it extensional elasticity, active elasticity or shear

softening - can mediate interactions between spatially separated regions of the filament.

Building on this allows us to identify both passive and active ingredients that control trans-

mission and degradation of mechanical information. We then analyze a minimal, mean-field

theory in the limit of weak noise and focusing on extensional systems to extract the length

scale(s) over which actively generated strains persist. Finally, we corroborate our theory

using discrete simulations that extend our results to moderately stiff and/or noisy systems.

II. ANALYTICAL MODEL AND EQUATIONS

We begin by defining the geometry of the model composite active filament illustrated in

Fig.1(b). A weakly extensible filament of length `, thickness w � `, Young’s modulus E

and lateral extent b is held a fixed distance D (w ≤ D � `) above a rigid filament, also of

thickness w. Connecting the two filaments and maintaining D constant are passive, linearly

elastic permanent cross-linkers spaced uniformly with areal density ρN and spring stiffness

kN. The passive elasticity of the composite is a combination of (i) weak extensibility of the

filament as characterized by its stretching/extensional modulus K, and (ii) the shear mod-

ulus per unit width, G due to the permanent cross-linkers. Consistent with the previously

studied cross-linked railway track model [11], we define K = Ew and G = ρNkN.

Active forces are generated by the binding of uniformly spaced, unidirectional molecular

motors having areal density ρm to the upper filament. The base of the motors (tails) are

grafted to the lower filament while the heads attach periodically to the upper filament thus

exerting a force. Each motor is characterized by an internal variable – its extension – that

serves as a indicator of how much it is stretched. Motors attach in a pre-strained state

with an (initial) extension dm. Once attached, in order to relax the pre-stress, the head

slides along the filament, resulting in a changing motor extension y 6= dm and thus exerts

an active force. Following previous work [13], we treat the active motors as linear springs

with spring constant km, and assume that motors are characterized by a linear force-velocity

relationship with stall force Fs and a zero-load speed vo. This then yields for the speed of
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the motor head (SI-§IA),

∂ty = ∂tU + vo (1− kmy/Fs) (1)

where U(s, t) is the displacement of the material point on the filament where the motor is

attached, s is the arc-length variable parametrizing location of material points along the

filament and t the time. For inter-link and inter-motor spacings much smaller than the

filament length and when b � max(w,D) a continuum, one-dimensional description of the

passively cross-linked, motor-filament aggregate is appropriate with the activity now treated

as arising from an internally distributed force density per motor, Fm (Fig. 1b). This density

is related to the average fraction of attached motors, N via

Fm = kmN〈y〉. (2)

Since most motor-filament interactions occur in the over-damped limit with the total sum

of forces on the filament vanishing, stress balance yields

∂s(K∂sU)−GU + ρmFm = 0. (3)

In the absence of activity Fm = 0; (3) then predicts that local perturbations in U decay

exponentially with a length scale `E ≡ (K/G)
1
2 = (Ew/ρNkN)

1
2 .

To complete equations (1)-(3), we need to determine how the the fraction of attached

motors, N , evolves. In the mean-field limit at high motor densities (large ρm) fluctuations of

N about the mean are negligible with the attachment and detachment motor fluxes simply

related to the mean attachment ωoon and detachment ωoff rates. Let δm be the characteristic

motor extension at which attached motors detach; the potential energy that is lost when

a motor detaches is then E = kmδ
2
m/kBT , with T being the temperature. Ignoring motor

diffusion, we ensemble average the microscopic balance equations (SI-§1B & 1C) to obtain

evolution equations for N and for the scaled extension, Y ≡ 〈y〉/δm,

∂tN = ωoon(1−N)− ωoffN (4)

∂tY =
∂tU

δm
+A1ω

o
off (A2 − Y ) + ωoon

A3 − Y
N/(1−N)

. (5)

The first term on the right hand side of the equation (5) is the passive convection of the motor
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head due to filament extension, and the second and third terms reflect the active interaction

between the motor head and the filament. Without loss of generality, we treat the mean

attachment rate ωoon as constant, while the mean detachment rate ωoff = ωooffF(E , 〈y〉/δm)

is allowed to vary with motor extension Y and the energy scale E through the function F .

Here, we choose F(E , 〈y〉/δm) = cosh(E〈y〉/δm). Choosing a different functional form does

not introduce qualitative differences. Equations (2)-(5) then involve three dimensionless

parameters A1 ≡ vokm/(ω
o
offFs), A2 ≡ Fs/(kmδm) and A3 ≡ dm/δm apart from the purely

kinetics based motor duty ratio that is related to Ψ ≡ ωooff/ω
o
on. To ascertain the role of

pre-strain, we note that when A1 � 1 the motor extension is dominated by the pre-strain

dm; conversely, when A3 � 1, pre-strain has negligible influence.

Our model complements and differs from previous attempts in a few important ways.

First, consistent with experiments suggesting that bond failure is more naturally dependent

on the extension and only weakly on the rate of extension, we have chosen ωooff to depend

on motor extension [13, 14] and not the rate of extension [15]. Second, non-linear coupling

between passive and active deformations in (3)-(5) distinguishes our model from previous

studies of motor mediated bending of filaments [15]. Finally, our model filament is weakly

extensible, bolstered by recent experimental evidence [10, 12, 16].

III. PERSISTENCE LENGTHS IN WEAKLY ELASTIC SYSTEMS

As a first step towards understanding persistence of strains in long elastic composite

filaments and the evolution of global strain fields, we analyze conditions for the emergence

of localized strains in a stationary filament. Referring to the blue box in Fig 1(b), we focus

on a small localized patch of motors interacting with and animating a fragment of length

`s � (K/G)
1
2 . This fragment, which strains negligibly and is therefore rigid to leading

order, then tries to move relative to its neighbors on either side. The ensuing dynamics

can be mapped to that of an animated rigid segment working against an effective spring

with passive and active components. We lump these contributions using an effective spring

constant Ks and write for the displacement of the segment

−KsU + ρmkmδmNY = 0. (6)
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FIG. 2. Simulation results: Scaled mean steady extension as a function of position from the

clamped end. Vertical bars correspond to the RMS deviation. (a) Extensions are uncorrelated

for soft assemblies (K/km = 0.01) with domains fluctuating independently. (b) For stiff filaments

(K/km = 10), extensions are highly correlated but without a decay length. (inset) The extension at

the free end as a function of attachment probability pon for soft (K/km = 0.01, circles, online-blue)

and stiff (K/km = 10, squares, online-red) filaments.

For the physically relevant condition Ks > 0, global filament translation is prevented, and

the non-linear equations (4)-(6) admit two stable solutions – a stable, stationary constant

displacement of the rigid filament or stable time-periodic, oscillations. The static state

to found to be linearly unstable (SI-§ IIA & IIB) to oscillatory states via supercritical

Hopf-Poincare bifurcations similar to that predicted in models for flagellar [15] and spindle

oscillations [13]. We have thus demonstrated that localized steady or oscillatory extensional

strains may spontaneously emerge in a small fragment of a larger active composite. For a

filament with infinite elastic modulusK →∞, the effect of localized strains is felt everywhere

along the filament; this enables spatially separated motor groups to act coherently.

Starting from this limit of perfect coherence, we now analyze how weak elasticity mod-

ulates the decay of strains, introduces a persistence length and disrupts coherent behavior.

We begin by identifying a suitable base state that sets the strain field over the length of the

composite filament. Stationary, steady filament displacement, U0, attached motor fraction,
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N0, and motor strain, Y0 fields are obtained from (3)-(5)

K∂ssU0 −GU0 +GactδmN0Y0 = 0, (7)

N0 = (1 + ΨF0)−1, (8)

Y0 = (A1A2 + A3F0)(A1 + F0)−1, (9)

where Gact = ρmkm is the active analogue of the passive shear modulus, G and F0 = F(Y0).

We choose boundary conditions consistent with s = 0 held fixed (U0(0) = 0) and s = ` left

free (∂sU0(`) = 0), and solve (7) to obtain

U0 =
GactδmN0Y0

G

(
1− α es/`E − (1− α) e−s/`E

)
(10)

where α ≡ e−2`/`E/(1 + e−2`/`E) and the decay length `E =
√
K/G. While surprising at first

sight, the expression for the decay length is rationalized by recognizing that attached motors

sense only strain rates and not the actual strain; and in steady extension these strains rates

are zero. The decay length is modified substantially when the motors are in rigor. Setting

the attachment and detachment rates to zero as is appropriate, we find that the decay

length is now given by
√
K/(GactN0 +G) (SI-§IIIA, [17]) and thus strongly influenced by

the fraction of attached motors at rigor.

We next analyze the decay of oscillations strains in a filament. To do so, we modify the

boundary condition at s = ` to enable imposed oscillations there, while still respecting the

constraints that lead to (10). This is achieved by subjecting the free end to a small amplitude

oscillatory displacement with frequency ω and amplitude εUI � U0(`) with ε � 1. The

boundary conditions then take the form U(0, t) = 0 and U(`, t) = U0(`) + εUIReal[eiωt]. To

study the frequency-locked (adiabatically slaved) response of the filament to this localized

imposed oscillation, we write (U,N, Y ) = (U0, N0, Y0) + eiωtε(Û , N̂ , Ŷ ) and substitute this

form in equations (2)-(5). Retaining terms to O(ε), we find

K ∂ssÛ −GÛ −GactχÛ = 0 (11)

N̂iω + N̂ωoon(1 + ΨFo) + ωoonΨNoF ′oŶ = 0 (12)

iŶ ω

ωoon

+ ŶΨA1Fo + (A3 − Y0)
N̂

N2
0

=
iωÛ

δmωoon

. (13)
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FIG. 3. (a) Averaged amplitude of the oscillations in the strain field along the filament a function

in the limit of extreme softness, K/km = 10−3. An exponential decay length is indicated with

variances shown as vertical bars. The area near the clamped end is not shown for clarity. (b)

Decay length of the amplitude in the propagated oscillatory strain as a function of K/km for

various pon/poff . System size effects result in the saturation of the decay length for K/km � 1.

where the compliance function χ = −δm(N0Ŷ +Y0N̂)/Û determines the linear viscoelasticity

of the composite filament and depends on motor characteristics such as the stall force Fs,

and free velocity, v0 and the duty ratio Ψ. Examining the function, we deduce that the

frequency-locked response is possible only when Real[χ] is negative. The criterion for non-

trivial solutions to exist (see SI-§ III) then provides the expression for the effective persistence

length scale:

λE =
√

2 `E

(√
1 + β2|χ|2 + 2βReal[χ] + 1 + β Real[χ]

)− 1
2

(14)

with β ≡ Gact/G, controlling the relative importance of active to passive shear stiffening.

In the absence of activity, the decay length reduces to its value for a passive filament - i.e,

λE = `E. Expanding (14) for weak activity (β � 1) and strong activity (β � 1) ([18], [19],

SI-§III D & E) shows that activity can either enhance or reduce persistence length due to

transient shear stiffening provided by the motors – an effect that depends strongly on the

frequency ω and the ratio Gact/K.
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IV. PERSISTENCE LENGTHS IN NOISY SYSTEMS

The mean field prediction (14) ignores thermal fluctuations in the active force density

Fm, motor noise due to discreteness of binding and unbinding events, fluctuations in the

number of attached motors and synergistic interactions between attachment probabilities

and filament elasticity. To highlight the effects of motor noise, activity and moderate softness

on the persistence length, we study a discrete model filament-motor composite (see Fig.1(d)),

using Brownian-MPC simulations ([20, 21], SI-§IVA) with G = 0 with K > 0 and Gact > 0.

Results are summarized in Figures 2 and 3.

We find that the decay of steady, motor-mediated, localized extensions – Fig. 2(a) and

Fig. 2(b) – is controlled by K/km and the ratio of detachment to attachment probabilities,

poff/pon, [21] for both stiff (K/km = 10) and soft (K/km = 10−2) filaments. The mean

field prediction (10) for G = 0, U0(s) ∝ ρm (km/K) s(2`− s) is qualitatively consistent with

the simulation results for poff/pon ∼ 1 with deviations seen for large contrasts between the

probabilities. Increasing the attachment probability results in a larger fraction of attached

motors with sharper gradients near s = 0 and flatter profiles near ` consistent with analytical

predictions ([17]). The extension at s = ` increases with increasing pon/poff consistent with

higher levels of motor attachment [22] yielding longer extensions. Motor noise results in

large fluctuations in the mean extension, noticeable especially for the soft filaments and also

results in uncorrelated spatial domains in extension [23]. The decay of localized oscillatory

strains was also analyzed by introducing an localized oscillation U(`, t) = ∆ sin(ωt) about

the pre-strained state U0(s) with ω chosen to be smaller than the turnover frequency of

motors so as to maintain the frequency-locked response. The extensional field Û(s) decays

exponentially as seen in fig. 3(a). Plotting the values of λE for various values of K/km in

Fig.3(b), we find that over the range of poff/pon and ω we studied, λE has a rather weak

dependence on motor activity. Surprisingly, the decay length follows the prediction of (14)

λE ∼
√

2K/km very well over a wide range of filament softness. We note that very soft

filaments, motor noise causes fluctuations in both amplitude and phase with sections of the

filament demonstrating significantly de-correlated response.

To summarize, with motor properties held fixed, the decay length sets a finite range of

correlated activity that is relevant for naturally ordered active matter such as eukaryotic

flagella [24]. Our results for the persistence length can be tested experimentally by examin-
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ing spatially separated motor bundles interacting with the same filament [6, 7]. In ordered

systems such as flagella and muscle, experiments probing the maximum flagellar wavelengths

and maximum muscle fiber lengths will serve to test our theory. A simple estimate approx-

imating the flagellum as an actively driven filament [9, 10, 25–27] yields `E ∈ [80 − 200]

µm - a range within physically observed lengths. Our results are also relevant to under-

standing the role of extensibility in soft filaments subject to follower forces [28] as well as to

actively deformed two and three dimensional motor-filament networks [29, 30] where motor

properties may vary in response to the network elasticity.
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√
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