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Abstract.
Genetic structure in large cohorts results from technical, sampling and demographic variation. Visualisation is therefore a first step in most
genomic analyses. However, existing data exploration methods struggle with unbalanced sampling and the many scales of population struc-
ture. We investigate an approach to dimension reduction of genomic data that combines principal components analysis (PCA) with uniform
manifold approximation and projection (UMAP) to succinctly illustrate population structure in large cohorts and capture their relationships
on local and global scales. Using data from large-scale genomic datasets, we demonstrate that PCA-UMAP effectively clusters closely re-
lated individuals while placing them in a global continuum of genetic variation. This approach reveals previously overlooked subpopulations
within the American Hispanic population and fine-scale relationships between geography, genotypes, and phenotypes in the UK population.
This opens new lines of investigation for demographic research and statistical genetics. Given its small computational cost, PCA-UMAP also
provides a general-purpose approach to exploratory analysis in population-scale datasets.
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Author summary.Because of geographic isolation, individuals tend to be more genetically related 9

to people living nearby than to people living far. This is an example of population structure, a 10

situation where a large population contains subgroups that share more than the average amount of 11

DNA. This structure can tell us about human history, and it can also have a large effect on medical 12

studies. We use a newly developed method (UMAP) to visualize population structure from three 13

genomic datasets. Using genotype data alone, we reveal numerous subgroups related to ancestry 14

and correlated with traits such as white blood cell count, height, and FEV1, a measure used to 15

detect airway obstruction. We demonstrate that UMAP reveals previously unobserved patterns and 16

fine-scale structure. We show that visualizations work especially well in large datasets containing 17

populations with diverse backgrounds, which are rapidly becoming more common, and that unlike 18

other visualization methods, we can preserve intuitive connections between populations that reflect 19

their shared ancestries. The combination of these results and the effectiveness of the strategy on 20

large and diverse datasets make this an important approach for exploratory analysis for geneticists 21

studying ancestral events and phenotype distributions. 22

Introduction.Questions in medicine, anthropology, and related fields hinge on interpreting the 23

deluge of genomic data provided by modern high-throughput sequencing technologies. Because 24

genomic datasets are high-dimensional, their interpretation requires statistical methods that can 25

comprehensively condense information in a manner that is understandable to researchers and 26

minimizes the amount of data that is sacrificed. Both model-based and model-agnostic approaches 27

to summarize data have played important roles in shaping our understanding of the evolution of our 28

species (1). 29

Here we will focus on nonparametric approaches to visualize relatedness patterns among individuals 30

within populations. If we consider unphased single nucleotide polymorphism (SNP) data, an 31

individual genome can be represented as a sequence of integers corresponding to the number of 32

derived alleles carried by the individual at each of the L SNPs for which genotypes are available, 33

with L typically larger than 100, 000. Since each individual is represented as an L-dimensional 34

vector, dimension reduction methods are needed to visualize the data. 35

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 16, 2019. ; https://doi.org/10.1101/423632doi: bioRxiv preprint 

https://doi.org/10.1101/423632


Principal component analysis (PCA) is often the first dimensional reduction tool used for genomic36

data. It identifies and ranks directions in genotype space that explain most-to-least variance37

among individuals. Positions of individuals along directions of highest variance can then be used38

to summarize individual genotypes. PCA coordinates have natural genealogical interpretations39

in terms of times to a most recent common ancestor (TMRCA) (2), and are used empirically to40

reveal admixture (3), continuous isolation-by-distance (4, 5), as well as technical artefacts. PCA41

coordinates are particularly well-suited to correct for population structure in GWAS (6).42

Fig. 1. Four methods of dimension reduction of 1KGP genotype data with population labels (i) PCA maps individuals in a triangle with vertices corresponding to African,
Asian/Native American, and European continental ancestry. Discarding lower-variance PCs leads to overlap of populations with no close affinity, such as Central and South
American populations with South Asians. (ii) t-SNE forms groups corresponding to continents, with some overlap between European and Central and South American people.
Smaller subgroups are visible within continental clusters. The cloud of peripheral points results from the method’s poor convergence. (iii) UMAP forms distinct clusters related
to continent with clearly defined subgroups. Japanese, Finnish, Luhya, and some Punjabi and Telugu populations form separate clusters consistent with their population
history(7). (iv) UMAP on the first 15 principal components forms fine-scale clusters for individual populations. Groups closely related by ancestry or geography, such as
African Caribbean/African American, Spanish/Italian, and Kinh/Dai populations cluster together. Results using t-SNE on principal components are presented in figure S1.
Axes in UMAP and t-SNE are arbitrary. ACB, African Caribbean in Barbados; ASW, African Ancestry in Southwest US; BEB, Bengali; CDX, Chinese Dai; CEU, Utah residents
with Northern/Western European ancestry; CHB, Han Chinese; CHS, Southern Han Chinese; CLM, Colombian in Medellin, Colombia; ESN, Esan in Nigeria; FIN, Finnish;
GBR, British in England and Scotland; GWD, Gambian; GTH, Gujarati; IBS, Iberian in Spain; ITU, Indian Telugu in the UK; JPT, Japanese; KHV, Kinh in Vietnam; LWK, Luhya
in Kenya; MSL, Mende in Sierra Leone; MXL, Mexican in Los Angeles, California; PEL, Peruvian; PJL, Punjabi in Lahore, Pakistan; PUR, Puerto Rican; STU, Sri Lankan
Tamil in the UK; TSI, Tuscani in Italy; YRI, Yoruba in Nigeria

As sample sizes increase, the amount of information encoded in the lower-variance principal43

components increases, and researchers typically examine multiple two-dimensional projections to get44

a sense of the data. While many features of the data can be identified in this manner, other features45
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may be hidden by the projections or hard to interpret. 46

To display more of the high-dimensional features of the data in a two dimensional figure, we can 47

use non-linear transformations that seek to preserve the local structure of the data. A popular 48

method for visualization is t-distributed stochastic neighbour embedding (t-SNE)(8). Whereas 49

PC projection is designed to capture as much variance as possible for a linear transformation, 50

t-SNE seeks a low-dimensional representations of the data that preserves pairwise distances, using 51

a probabilistic heuristic to weight mismatches. t-SNE has been used before to visualize SNPs(9). 52

Using data from the 1000 Genomes Project (1KGP)(7), it groups individuals corresponding roughly 53

to their continent of origin, with smaller ethnic sub-groups visible within the larger continental 54

clusters(10). However, t-SNE struggles with very large datasets, when a large number of locally 55

optimal configurations make convergence to a globally satisfying solution difficult. 56

Uniform Manifold Approximation and Projection (UMAP) is a new dimension reduction technique 57

grounded in Riemannian geometry, algebraic topology, and category theory, and designed to model 58

and preserve the high-dimensional topology of data points in the low-dimensional space(11). The 59

assumption behind UMAP is that data are uniformly distributed on local manifolds in high- 60

dimensional space, which can be approximated as fuzzy sets that are patched together to form a 61

topological representation. One can then construct a low-dimensional topological representation 62

that minimizes the differences between the two representations. With genotype data, UMAP creates 63

a neighbourhood around each individual’s genetic coordinates and identifies a pre-selected number 64

of neighbours to build high-dimensional manifolds. The end result is a low-dimension representation 65

that groups genetically similar individuals together on a local scale while preserving long-range 66

topological connections to more distantly related individuals. The method has been successfully 67

applied to single-cell RNA sequencing datasets(12). 68

A common practice in dimensional reduction is to first apply PCA to reduce the number of 69

dimensions before performing nonlinear dimensional reduction. In addition to being computationally 70

advantageous, this discards statistical noise that can confound nonlinear approaches: Population 71

structure arising from n isolated randomly-mating demes can be described by the leading n − 1 72

PCs, with the following PCs describing stochastic variation in relatedness (6). Selecting the leading 73

PCs therefore has potential to extract meaningful population structure while filtering out stochastic 74

noise. 75

We explore different strategies to pre-process the data and investigate discrete and continuous 76

population structure patterns present in large datasets of human genotypes: the 1KGP, the Health 77

and Retirement Study (HRS)(13), and the UK BioBank (UKBB)(14). 78

Results. 79

Fine-scale visualization of the 1KGP dataset.The 1KGP contains genotype data of 3,450 individuals 80

from 26 relatively distinct labeled populations(7). Figure 1 shows visualizations using PCA, t- 81

SNE, UMAP, and PCA-UMAP (that is, UMAP with PCA pre-processing). Using UMAP and 82

t-SNE on the genotype data presents clusters that are roughly grouped by continent, with UMAP 83

showing a clear hierarchy of population and continental clusters, whereas t-SNE fails to assign many 84

individuals to population clusters. Using either on the top principal components leads to more 85

distinct population clusters and less defined continental structure (see figure S2 for PCA-tSNE). 86

Adding more components results in progressively finer clusters until approximately 20 populations 87

appear using 15 components; further components gradually approach results similar to using the 88

entire genotype data (see figures S1 and S2). 89

Focusing on PCA-UMAP with 15 principal components (figure 1 (iv)), we also find several 90
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Fig. 2. UMAP on the first 10 principal components of HRS data. Coloring individuals by estimated admixture from three ancestral populations reveals considerable diversity
in the Hispanic population. This projection colored by self-identified race and Hispanic status is presented in figure S33.

Fig. 3. Applying UMAP to the top 7 principal components of the self-identified Hispanic population of the HRS reveals a cluster (highlighted). Coloring the points by birthplace
shows they were born almost entirely in the Mountain region of the United States (New Mexico, Arizona, Colorado, Utah, Nevada, Wyoming, Idaho, and Montana). When
populations from the 1KGP are projected onto the UMAP embedding they do not map to the cluster. Six 1KGP populations are presented: CLM, Colombian in Medellin,
Colombia; IBS, Iberian in Spain; MXL, Mexican in Los Angeles, California; PEL, Peruvian; PUR, Puerto Rican; TSI, Tuscani in Italy. Figure S38 presents the same projection
of individuals from the HRS colored by estimated admixture proportions.
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population clusters that reflect shared ancestries. British individuals from England and Scotland 91

form a cluster mixed with those from Utah who claim Northern and Western European ancestry. 92

Toscani and Iberian individuals form a group reflecting their Mediterranean heritage. African 93

Americans in the Southwest US, African Caribbean individuals in Barbados, and some Puerto 94

Ricans also form a cluster. The East Asian super-population forms three sub-populations split by 95

geography: one is largely Han and Southern Han individuals, another is comprised of the Chinese 96

Dai in southern China and the Kinh from Vietnam, and the third is the Japanese population. Looser 97

geographical groupings include Colombians and Peruvians, and the Esan and Yoruba populations of 98

Nigeria; both groupings appear as connected sub-clusters. The South Asian super-population also 99

forms a loose grouping. 100

Only a few individuals cluster differently than the majority of individual bearing the same 101

population label: a few Mexican individuals cluster with Spanish and Italian individuals, and a few 102

Puerto Ricans cluster with the African Americans and African Caribbeans, likely resulting from 103

ancestry proportions that differ from the majority. One Gambian-identified individual is present in 104

a cluster that is otherwise entirely Mende people from Sierra Leone. Only two populations form 105

multiple clusters: Gujarati Indians in Houston, Texas and Punjabi people in Lahore, Pakistan. This 106

clustering is robust to, e.g., the choice of the number of PCs considered (see figure S2). 107

Finally, contrasting UMAP and t-SNE, we find that UMAP preserves more of the global structure 108

of the data than t-SNE, and is more robust to choices of data pre-processing (figure S2). 109

The genetic continuum of admixed populations.The 1KGP sampled individuals from relatively distinct 110

population groups across the world, which makes the data particularly easy to cluster. Most medical 111

cohorts comprise larger numbers of individuals sampled across extended geographical areas. 112

For example, the HRS contains genotype data of 12,454 American individuals across all 50 states 113

who have provided racial identity (10,434 White, 1,652 Black, 368 Other) as well as whether they 114

identify as Hispanic (1,203 total) and, if so, whether they identify as Mexican-American (705 115

total)(13). We crossed these three variables to form a composite self-reported ethnicity resulting 116

in 10 categories (e.g. White Hispanic Mexican-American), and considered birth regions based on 117

the 10 census regions and divisions used by the US Census Bureau. Admixture proportions for 118

each individual were estimated in (15) by assuming ancestral African, Asian/Native American, and 119

European populations using RFMIX (16). We have scaled these three proportions to values between 120

0 and 255, to color individual points by their estimated admixture represented by RGB where red, 121

green, and blue respectively correspond to African, European, and Asian/Native American ancestry. 122

Using the first 10 principal components and UMAP, we demonstrate projections that present a 123

collection of sub-populations and a continuum of genetic variation. 124

The HRS forms several large groupings and clusters, reflecting both ethnicity (figure S33) and 125

admixture proportions (figure 2). Gradients in admixture proportion are visible within the pre- 126

dominantly Hispanic cluster, but not within the predominantly Black cluster, perhaps because the 127

variance in ancestry proportions is greater among Hispanics. The "White Not Hispanic" (WNH) 128

group forms several interconnected clusters, and these do not correspond to broad geographical 129

areas (figure S34). The clarity of the interconnected clusters varies by parameterization, but they 130

consistently form a large, roughly connected group. 131

To investigate possible ancestries related to populations in the 1KGP we took two approaches. In 132

the first we generated PC axes and a UMAP embedding using UMAP and 1KGP data together 133

(figure S36). In the second we used the PC axes and UMAP embedding generated in figure 2 and 134

projected 1KGP data onto it (figure S35). Both approaches reveal substructure within the Hispanic 135

cluster, groupings of Finnish individuals within the WNH groups, as well as Italian and Spanish 136
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individuals grouping near the White Hispanic population. One group of WNH individuals regularly137

appears at the periphery of the main cluster and does not cluster with any 1KGP populations.138

Regional patterns in the American Hispanic population. In contrast to the WNH individuals, applying139

PCA-UMAP to self-identified Hispanic individuals reveals clear groupings related to birth region.140

One separate cluster, highlighted in figure 3, consists almost entirely of individuals born in the141

Mountain Region of the United States. This cluster is not apparent when looking at a grid of142

pairwise plots of the first 8 principal components, provided in figure S37, as the signal is distributed143

along PCs 3, 4, and 6. Even though continental admixture patterns do correlate with UMAP144

position (figure S38), these do not explain the Mountain Region cluster. Individuals from 1KGP145

populations do not appear in the cluster when projected to the UMAP embedding. The cluster146

possibly comprises the Hispano population of the Southwest US, who have been present in the147

Mountain Region area long before the more recent immigrants from Latin America, and whose148

ancestry is expected to reflect both distinct Native ancestry and population-specific drift relative149

to other Hispanic populations. A recent preprint discusses the Mountain Region Hispanics and150

provides a more detailed historical description (17).151

Population structure in the UKBB reflects local and global genetic variation.The UKBB provides geno-152

type data on 488,377 individuals along with self-identified ethnic background in a hierarchical153

tree-structured dictionary. Participants provided ethnic background on two occasions. We used the154

initial ethnicity after finding minimal differences between the two. The dataset is majority White155

(88.3% British, 2.6% Irish, 3.4% other), with large populations identifying as Black (1.6% either156

African, Caribbean, or other), Asian (1.9% either Indian, Pakistani, Bangladeshi, or other), Chinese157

(0.3%), an other ethnic group (0.8%), mixed ethnicity (0.6%), or an unavailable response (0.5%).158

UMAP on the top 10 principal components reveals both continuous and discrete population159

structure (figure 4b): The patchwork of local topologies identifies continuous structure within the160

British population as well as admixture gradients despite the very unbalanced population sizes. The161

result is a comprehensive portrait of genetic variation capturing population relationships not visible162

using other methods, succinctly illustrating the complex structure of large and multi-ethnic datasets.163

The largest body in the figure consists of the White British and Irish populations. The Irish164

population concentrates in a portion of this group, but many individuals are also scattered throughout165

the British-identified population. Individuals identifying as Black African and Black Caribbean166

partially overlap, but admixed individuals form distinct trails leading to Asian and European clusters.167

Chinese individuals form a cluster, within appears to be a broader East Asian super-population;168

Indian, Pakistani, and Bangladeshi populations form a closely bound group as well. The East Asian169

and South Asian super-populations each have large clusters of individuals who identify as having170

an "other Asian background" or belonging to an "other ethnic group". The patchwork of genetic171

neighbourhoods is connected by trails of admixed individuals. These trails come together in a nexus172

of individuals with a variety of ethnicities; many claim mixed ancestry, and there are clear groups of173

individuals who belong to an "other ethnic group". Although their ethnicities are unknown to us,174

given their proximity to African, South Asian, and White individuals, possible candidates for these175

groups are North African, Middle Eastern, and West Asian backgrounds. Additionally, there are176

many individuals whose ethnicity is White but neither British nor Irish (AWB) forming clusters177

distinct from the British and Irish cluster.178

Figure 5 presents the projection in figure 4b colored in by geographical coordinates from the179

Ordnance Survey National Grid (OSGB1936), with distances defined as a north or east position180

relative to the Isles of Scilly. UMAP coordinates within the "White British" cluster broadly map to181
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(a) Principal components 1 and 2

(b) UMAP on first 10 principal components

Fig. 4. The UKBB projected onto two dimensions, colored by self-reported ethnic background. (a) The first two principal components, showing the usual triangle with vertices
corresponding to African, Asian/Native American, and European ancestries, and intermediate values indicating admixture or lack of relationship to the vertex populations. (b)
UMAP on the first 10 principal components. The cluster of White British and White Irish individuals is greatly expanded, with the Irish forming a distinct sub cluster mixed with
the White British population. South Asian and East Asian individuals form their separate clusters, as do individuals of African or Caribbean backgrounds. Population clusters
are connected by "trails" comprised of large proportions of individuals with mixed backgrounds. BA, Black African; BC, Black Caribbean; BG, Bangladeshi; CHN, Chinese;
IND, Indian; PK, Pakistani; WB, White British; WI, White Irish; WBC, White and Black Caribbean; WBA, White and Black African; WAA, White and Asian; AAB, Any other
Asian Background; ABB, Any other Black Background; AWB, Any other White Background; AMB, Any other Mixed Background; OEG, Other ethnic group.
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Fig. 5. The UKBB projected onto two dimensions using PCA-UMAP with each individual colored by their geographical coordinates of residence. Coordinates follow the
UKBB’s OSGB1936 geographic grid system and represent distance from the Isles of Scilly, which lie southwest of Great Britain. The left image colors individuals by their
north-south ("northing") coordinates, and the right image colors them by their east-west ("easting") coordinates. Adding more components creates finer clusters. (figures S4
and S5). Individuals with missing geographic data are not shown. To prevent outlying individuals from washing out the color scheme, northing values were truncated between
100km and 700km, and easting values were truncated between 200km and 600km. To protect participant privacy, data has been randomized as explained in the materials
and methods section.

geographic coordinates, as has been observed in Europe-wide data(4). Most admixture lines connect182

to the South East corner of this cluster, corresponding to the position of the city of London and183

reflecting its high migrant population.184

The detailed shape of extended clusters is not stable as we vary the number of PCs included.185

Figure S3 shows a UMAP plot using the top 20 PCs from the UKBB. The shape of the "White British186

Cluster" is notably different, and we observe finer patterns of geographic variation, yet the qualitative187

observations made above are maintained. As an alternate visualization of diversity’s correlation188

with geography, we performed a 3D UMAP projection and converted the normalized UMAP values189

into RGB values, allowing us to plot individuals on a map of Great Britain, emphasizing both190

spatial gradients of genetic relatedness and increased diversity in urban centers (figure 7). The191

patterns in rural areas observed are similar to those reported in (18) using the haplotype-based192

CHROMOPAINTER on British individuals whose grandparents lived nearby.193

Similarly to UMAP, t-SNE applied to the UKBB data both displays diversity within the "White194

British" population and identifies clusters among other groups. However, it has three drawbacks: it195

is much slower, requiring 2.26 hours for its first thousand iterations alone on 10 principal components196

against UMAP’s 14 minutes; it fails to find a global optimum, which results in a scattering of197

individuals and groups that are not stable across independent runs; and it does not identify continuity198
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Fig. 6. The UKBB projected onto two dimensions using PCA-UMAP (as in 4b), with females colored by age-adjusted difference from mean population height (left) and
leukocyte counts (right). To protect participant privacy, data has been randomized as explained in the materials and methods section.

between different continental groups resulting from admixture (figure S40). 199

Patterns in phenotype related to population structure.Our involvement with the UK biobank data is 200

through a project on autoimmune disease and asthma. More than in geographic coordinates, we 201

are interested in whether genetic population structure correlates with phenotypes and covariates of 202

interest. 203

Covariates such as height (figure 6) and autoimmune and asthma-related measures (figures S7 to 204

S18) correlate strongly with both discrete and continuous population structure. Several populations 205

in figure 6, including South Asian, East Asian, African, and several unidentified ethnic groups 206

have noticeably lower-than-average heights. More subtle patterns are also visible: the area of the 207

projection in figures 4b with the cluster of White Irish people appears more blue than the main body 208

of White British individuals; an unpaired two sample t-test of self-identified White Irish and White 209

British individuals reveals statistically significant differences in age-adjusted mean height between 210

the populations, with British males being taller on average by 0.846cm (p-value 2.10 × 10−23) and 211

British females by 0.763cm (p-value 3.65 × 10−23) (see figures S25 and S26 for boxplots). Height 212

differences between Irish and British populations have been previously observed but the direction of 213

the difference is not consistent(19, 20). 214

Forced expiratory volume in 1 second (FEV1) (figures S11, S12) also shows strong correlations 215

with certain populations — South Asian, African, and Caribbean — having considerably lower 216

measurements on average (see figures S23 and S24 for boxplots and p-values). Notably, there appears 217

to be a juncture in the admixture continuum, highlighted in figure S31, where the distribution of 218

FEV1 changes. This roughly corresponds to the transition from Black African/Caribbean individuals 219
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Fig. 7. A map of Great Britain colored by a 3D UMAP projection. Each individual is assigned a 3D RGB vector based on 3D UMAP coordinates (inset): Individuals who are
closer to each other in the projection will appear to be closer in color. Patterns in genetic similarity are visible in Scotland, South England, the East and West Midlands, and
major urban centres. A flattened 2D view of of the 3D projection used for coloring is presented in the top right. To protect participant privacy, data has been randomized as
explained in the materials and methods.

to those who identified having mixed backgrounds. Boxplots and statistical testing suggest that220

relative to White British populations FEV1 values are significantly lower for Black African and221

Black Caribbean populations, but not for White and Black Caribbean and White and Black African222

populations. Unidentified populations highlighted in figure S32 suggest that one ethnic group close223

to the Chinese may have higher than average FEV1 values compared to the relatively low values224

of the Chinese themselves; while another close to European and British populations has lower225

values relative to the population mean. These results merit further investigation and underscore226

the exploratory value of PCA-UMAP — these populations are largely unidentified and there is no227

straightforward way to separate them within the data otherwise.228

Comparing t-SNE and UMAP.Assessing the relative merits of data visualization methods is notoriously229

difficult, because different users might give different importance to different features of the data.230

Methods differ in their choice of a similarity metric between high- and low-dimensional representation,231

which are hard to assess, but also in their strategy to optimize the metrics, which are amenable232

to direct comparison. This is especially true with UMAP and t-SNE which, despite different233

mathematical motivations, have computationally similar similarity matrices. Given that t-SNE234

generated a smattering of clusters for the minority populations when applied to the UKBB, we235

hypothesized that this was due to a convergence issue rather than a property of the global optimum236

of the t-SNE metric.237

To compare UMAP to t-SNE directly and assess the role of convergence, we ran UMAP and238

Python’s sklearn implementation of t-SNE, and a hybrid approach where the early exaggeration239

phase of t-SNE (typically the first 250 iterations) has been replaced by a full UMAP run (600240

epochs for the 1KGP data and 230 epochs for the HRS and UKBB data). The three approaches241

produce similar results in smaller datasets such as the 1KGP and HRS, with the main differences242

being in run-time and some qualitative factors such as clusters being more interconnected when243
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using UMAP (figures S41, S42). When applied to the UKbiobank, we find (perhaps subjectively) 244

that UMAP provides a more compelling visualization of the data compared to both version of 245

t-SNE. We also find that the hybrid approach produces a better value for the t-SNE metric than 246

the default t-SNE approach (figure S46), confirming that the default t-SNE optimization fails to 247

identify the global t-SNE minimum. Qualitatively, the standard t-SNE initialization generated a 248

large number of arbitrary clusters, while initializing t-SNE with UMAP preserved much of the large 249

scale structure created by the UMAP embedding but broke the global continuity between clusters 250

(figure S43). An animation of t-SNE iterations starting from the UMAP embedding can be seen 251

in the supplementary files. Given the many desirable properties of UMAP, such as computational 252

performance and intuitive placement of individuals within a global genetic continuum, we conclude 253

that UMAP is a superior alternative to t-SNE for large and diverse genomic datasets. 254

Discussion.Understanding population structure is important to identify confounders in medical 255

genomics and studies of anthropology and human evolution. PCA of genomic data reflects genealogical 256

and geographic data, but visualization in large datasets still requires scanning through a large 257

number of pairwise plots. UMAP condenses these components and comprehensively illustrates 258

information — phenotypic, geographic, and ancestral — contained within genotypes on fine-scale 259

levels and within the context of a global population structure. In large datasets where the number 260

of significant PCs is large, the resulting representation has important advantages over PCA alone 261

and provides a superior visualization to t-SNE. 262

Examinations of clustering in the three datasets provided many intriguing clusters that would 263

otherwise have been difficult to identify. In particular, several areas from figure 4b, highlighted in 264

figure S6, show multiple unidentified groups related to each of the East Asian and South Asian 265

super-populations, as well as to either or both of African or admixed populations. Additionally, the 266

Hispanic population of the HRS contains a geographically-restricted cluster that could not have been 267

identified from pairwise examinations of principal components. The 1KGP — frequently used in 268

medical and population studies — contained splits in the Gujarati and Punjabi population samples 269

that were not visible PCA or Admixture analysis alone (although a split among Gujarati is arguably 270

visible in the Admixture analysis with K=12 in (7)). 271

Application to the UKBB underscores the strength of PCA-UMAP in large cohorts. We see 272

clear, fine relationships between genotype and phenotype and geography, and this is presented in 273

a visualization that accounts for natural genetic clustering. Figures 6, S11, and S6 demonstrate 274

phenotypic variation within and across clusters, with phenotypes such as height showing continuous 275

variation across admixture edges, as expected from genetically controlled traits, and others, such as 276

leukocyte counts or FEV1, showing sharper boundaries, as expected from environmentally determined 277

traits. 278

Importantly, using UMAP is straightforward and fast. Most of the plots presented in this article 279

were generated directly from the PCA data using UMAP with default parameters, except that we set 280

the "minimum distance" parameter to 0.5 which made fine features on UMAP more visible (results 281

with default parameter 0.1 provided qualitatively similar results). Given PCA data and a desktop 282

computer, UMAP can be performed in 15 to 25 minutes on a sample of hundreds of thousands of 283

individuals over tens of dimensions. 284

There are downsides to using nonlinear approaches to visualize the data. Both UMAP and t-SNE 285

are sensitive to sample size, and spend more visual real estate for populations with larger sample 286

sizes compared to PCA. This is useful to identify significant patterns in a cohort, but it makes 287

comparing visualization across cohorts difficult. Nonlinearity also complicates the interpretation of 288

results. Distances in UMAP or tSNE space should not be used as a proxy for genetic distance. We 289
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did not assign meaning to wiggles in UMAP figures, which occurred consistently in the UKBB but290

may be an artifact of the dimensional reduction strategy rather than a meaningful feature of the291

data. Hand-waving interpretations of pretty plots has a history of getting population geneticists in292

trouble (as pointed out, e.g., in (21)): visualization is not a replacement for statistical testing.293

Conclusion.With these caveats in mind, a priori data visualization plays a central role in quality294

control, hypothesis generation, and confounder identification for a wide range of genomic applications.295

Nonlinear approaches, despite their limitations, become increasingly useful as the size of datasets296

increases: We have shown that UMAP, in particular, reveals a wide range of features that would not297

be apparent using linear maps. Given its ease of use, breadth of results, and low computational cost,298

we propose that UMAP should become a default companion to PCA in large genomic cohorts.299

Materials and Methods300

We used genotype data from 12,454 individuals from the Health and Retirement Study (HRS), genotyped on301

the Illumina Human Omni 2.5M platform(13). Principal components were computed in PLINK v1.90b5.2302

64-bit(22) using variants with a minor allele frequency greater than 0.05, Hardy-Weinberg p-value of more303

than 1 × 10−6, and genotype missing rate of less than 0.1, and sample with genotype missing rate of less304

than 0.1. We used the principal components of genotype data from 488,377 individuals in the UK BioBank305

(UKBB) as computed by the cohort (14). We used genotype data from 3,450 individuals from the 1KGP306

project using Affy 6.0 genotyping(7).307

Scripts for all tests and plotting functions can be found on https://github.com/diazale/gt-dimred. A demo308

version using freely available 1KGP data is available at https://github.com/diazale/1KGP_dimred. PCA and309

standard t-SNE were done with Scikit-learn(23). UMAP was performed using a Python implementation(11).310

Statistical testing was done in SciPy(24) and StatsModels(25).311

Both UMAP and t-SNE feature a number of adjustable parameters. Among the parameters that we312

varied, the number of PCs used in pre-processing of the data has the largest effect for both methods (see313

figures S1 and S2).314

We tested different choices for perplexity in t-SNE. The default value of 30 provided comparable315

performance to other parameter choices. Similarly, we tested different parameter choices for UMAP, with316

the clearest results generated by specifying 15 nearest neighbours (the default value) and a "minimum317

distance" between points in low dimensions of 0.5. UMAP developers described "sensible" values for nearest318

neighbours as between 5 and 50 and minimum distance between 0.5 and 0.001.319

UMAP and t-SNE projections were carried out on an iMac with a 3.5GhZ Intel Core i7 processor, 32 GB320

1600 MHz DDR3 of RAM, and an NVIDIA GeForce GTX 775M 2048 MB graphics card.321

To reduce the potential risks for re-identification from results in this publication, data has been randomly322

permuted so that the population characteristics are preserved but individual-level data is not presented323

directly in the figures. We rounded each attribute to an attribute-specific number of bins, and then324

permuted the data in the following way: For each point (i.e. each individual) in UMAP visualizations,325

and each attribute, we identified the 9 nearest neighbouring points, and copied the attribute from a326

randomly selected neighbor (thus allowing for the possibility of one value being printed twice). Because327

this process is done independently for each visualization, a given point shown on the figure will copy values328

from different randomly selected individuals. Additionally, spatial coordinates have random noise added329

(normally distributed about 0 with a standard deviation of 50km) before binning to the nearest 50km.330

For each point in figure 7 we identified the nearest 50 neighbouring individuals and copied the color value331

from a randomly selected neighbour.332
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Fig. S1. UMAP (left two columns) and t-SNE (right two columns) applied to the top principal components of the 1KGP labelled by the number of components used. Adding
more components results in progressively finer population clusters using both methods.

Diaz-Papkovich et al.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 16, 2019. ; https://doi.org/10.1101/423632doi: bioRxiv preprint 

https://doi.org/10.1101/423632


Fig. S2. UMAP (left two columns) and t-SNE (right two columns) applied to the top principal components of the 1KGP labelled by the number of components used. Results
are similar until approximately 11 components, where t-SNE breaks apart clusters of South Asian (in green) and Central and South American populations (in pink) while
UMAP preserves them. At approximately 30 components populations begin to drift together with UMAP and disperse with t-SNE.
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Fig. S3. PCA-UMAP on UKBB data, colored by self-identified ethnic background. Images are labelled by the number of components included.
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Fig. S4. PCA-UMAP on UKBB data, colored by northing values, with more blue representing more northern coordinates and more red representing more southern coordinates.
Images are labelled by the number of components included. Data has been randomized as explained in the materials and methods section.
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Fig. S5. PCA-UMAP on UKBB data, colored by easting values, with more yellow representing more eastern coordinates and more pink representing more western coordinates.
Images are labelled by the number of components included. Data has been randomized as explained in the materials and methods section.
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Fig. S6. Zoomed in areas of figure 4b. Sections (i) and (ii) respectively focus on the African and Asian superpopulations, and section (iii) focuses on an area with individuals
from many ethnic backgrounds. Noticeable clusters of unidentified ethnic backgrounds appear and are labelled "OEG" "(Other Ethnic Group)".
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Fig. S7. PCA-UMAP on the top 10 principal components of the UKBB colored by basophil count (female). Data has been randomized as explained in the materials and
methods section.

Fig. S8. PCA-UMAP on the top 10 principal components of the UKBB colored by basophil count (male). Data has been randomized as explained in the materials and
methods section.
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Fig. S9. PCA-UMAP on the top 10 principal components of the UKBB colored by eosinophil count (female). Data has been randomized as explained in the materials and
methods section.

Fig. S10. PCA-UMAP on the top 10 principal components of the UKBB colored by eosinophil count (male). Data has been randomized as explained in the materials and
methods section.
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Fig. S11. PCA-UMAP on the top 10 principal components of the UKBB colored by FEV1 (female). Data has been randomized as explained in the materials and methods
section.

Fig. S12. PCA-UMAP on the top 10 principal components of the UKBB colored by FEV1 (male). Data has been randomized as explained in the materials and methods
section.
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Fig. S13. PCA-UMAP on the top 10 principal components of the UKBB colored by height (female). Data has been randomized as explained in the materials and methods
section.

Fig. S14. PCA-UMAP on the top 10 principal components of the UKBB colored by height (male). Data has been randomized as explained in the materials and methods
section.
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Fig. S15. PCA-UMAP on the top 10 principal components of the UKBB colored by leukocyte count (female). Data has been randomized as explained in the materials and
methods section.

Fig. S16. PCA-UMAP on the top 10 principal components of the UKBB colored by leukocyte count (male). Data has been randomized as explained in the materials and
methods section.
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Fig. S17. PCA-UMAP on the top 10 principal components of the UKBB colored by neutrophil count (female). Data has been randomized as explained in the materials and
methods section.

Fig. S18. PCA-UMAP on the top 10 principal components of the UKBB colored by neutrophil count (male). Data has been randomized as explained in the materials and
methods section.
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Fig. S19. Boxplot of basophil counts by sex and ethnic group, annotated with p-values. Asterisks indicate significant difference from the White British group with a Bonferroni
correction for 12 groups.

Fig. S20. Boxplot of basophil counts by sex and ethnic group, annotated with p-values. Asterisks indicate significant difference from the White British group with a Bonferroni
correction for 12 groups.
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Fig. S21. Boxplot of eosinophil counts by sex and ethnic group, annotated with p-values. Asterisks indicate significant difference from the White British group with a Bonferroni
correction for 12 groups.

Fig. S22. Boxplot of eosinophil counts by sex and ethnic group, annotated with p-values. Asterisks indicate significant difference from the White British group with a Bonferroni
correction for 12 groups.
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Fig. S23. Boxplot of FEV1 by sex and ethnic group, annotated with p-values. Asterisks indicate significant difference from the White British group with a Bonferroni correction
for 12 groups.

Fig. S24. Boxplot of FEV1 by sex and ethnic group, annotated with p-values. Asterisks indicate significant difference from the White British group with a Bonferroni correction
for 12 groups.
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Fig. S25. Boxplot of height by sex and ethnic group, annotated with p-values. Asterisks indicate significant difference from the White British group with a Bonferroni correction
for 12 groups.

Fig. S26. Boxplot of height by sex and ethnic group, annotated with p-values. Asterisks indicate significant difference from the White British group with a Bonferroni correction
for 12 groups.
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Fig. S27. Boxplot of leukocyte counts by sex and ethnic group, annotated with p-values. Asterisks indicate significant difference from the White British group with a Bonferroni
correction for 12 groups.

Fig. S28. Boxplot of leukocyte counts by sex and ethnic group, annotated with p-values. Asterisks indicate significant difference from the White British group with a Bonferroni
correction for 12 groups.
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Fig. S29. Boxplot of neutrophil counts by sex and ethnic group, annotated with p-values. Asterisks indicate significant difference from the White British group with a Bonferroni
correction for 12 groups.

Fig. S30. Boxplot of neutrophil counts by sex and ethnic group, annotated with p-values. Asterisks indicate significant difference from the White British group with a Bonferroni
correction for 12 groups.
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Fig. S31. Individuals of Black African, Black Caribbean, and mixed backgrounds (primarily White and Black Caribbean/African) colored by self-identified ethnic background
(left, from figure 4b), FEV1 (middle), and age-adjusted height (right). An arrow points to an area where the FEV1 distribution appears to change, corresponding to where the
clusters contain more people with self-identified mixed backgrounds.

Fig. S32. Zoomed in section of figure 4b focused on individuals with Chinese (CHI), White British (GBR), any other white background, or any other ethnic group (OEG)
colored by ethnicity (left), FEV1 (middle), and age-adjusted height (right). The OEG cluster next to the Chinese cluster is colored differently, suggesting this population may
have different FEV1 characteristics. A cluster of OEG/other white individuals is more blue, suggesting they may have lower than average FEV1 values relative to the rest of
the British or white population.
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Fig. S33. UMAP applied to the first 10 principal components of HRS data. Points colored by self-identified race, Hispanic status, and Mexican-American status. The cluster
on the left is mostly people who identify as neither Black nor White and were born outside the contiguous United States or in the Pacific census region. Clustering with the
1KGP data places them with Asian-identified populations. BNH, Black (not Hispanic); BHO, Black (Hispanic, Other); WNH, White (not Hispanic); WHM, White (Hispanic,
Mexican-American); WHO, White Hispanic (Other); ONH, Other (not Hispanic); OHM, Other (Hispanic, Mexican-American); OHO, Other (Hispanic, Other).

Fig. S34. UMAP on the top 10 principal components of the HRS dataset, colored by Census Bureau birth region. There is no obvious pattern in the clusters of majority "White
Not Hispanic" individuals.
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Fig. S35. UMAP on the top 10 principal components of the HRS data, with 1KGP data projected onto the embedding. Individuals from the HRS are grey. British (GBR) and
other European (CEU) individuals are scattered throughout the "White Not Hispanic" clusters. Finns (FIN) form clear groupings. Spanish (IBS) and Italian (TSI) individuals
cluster near the Hispanic grouping. There are sub-groups in the Hispanic cluster formed of Puerto Ricans (PUR), Colombians (CLM), Mexicans (MXL), and Peruvians (PEL).
Populations with African ancestry (AFR) appear with Black individuals. East Asian (EAS) populations comprising Chinese, Kinh, and Japanese individuals cluster together
with what appears in figure 2 as a population of mostly Asian ancestry. South Asian (SAS) populations with Indian, Pakistani, and Sri Lankan ancestry cluster in a separate
area. One "White Not Hispanic" cluster at the bottom does not cluster with any 1KGP populations.
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Fig. S36. UMAP projection of the top 10 principal components of the combined HRS and 1KGP datasets. One cluster (in the box) does not group with any of the 1KGP
populations. A cluster of Finnish (FIN) individuals consistently appears in the "White Not Hispanic" (WNH) group. Groups of Central and South American populations from the
1KGP (CLM, Colombian; MXL, Mexican; PEL, Peruvian; PUR, Puerto Rican) form nearby or within the HRS Hispanic cluster (HIS). Iberian individuals (IBS) cluster near the
Hispanic population. Toscani individuals (TSI) form some small clusters and sometimes appear near the Iberian and Hispanic populations. Individuals with British/Scottish
(GBR) or Northern/Western European ancestry (CEU) are scattered throughout the WNH clusters. Individuals with African ancestry from the 1KGP group with Black
Americans from the HRS (AFR). Similar population groupings occur with South Asian (SAS) and East Asian (EAS) individuals.
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Fig. S37. Pairwise plots of the first 8 principal components of the Hispanic subset of the HRS. Those born in the Mountain region are colored green.
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Fig. S38. UMAP of the first 7 principal components of the Hispanic population of the HRS, colored by estimated admixture proportions.
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Fig. S39. Admixture plot of Hispanic individuals in the HRS. Those born in the Mountain census region fall between the white lines (indices 48 to 184)
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Fig. S40. t-SNE applied to the top 10 principal components of the UKBB, colored by ethnic background. The unbalanced populations resulted in many individuals and
populations being orphaned along the periphery of the main cluster.
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Fig. S41. Comparing the visualizations of UMAP, standard t-SNE, and t-SNE initialized with a UMAP projection, on the top 10 principal components of the 1KGP. t-SNE used
5000 iterations.
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Fig. S42. Comparing the visualizations of UMAP, standard t-SNE, and t-SNE initialized with a UMAP projection, on the top 10 principal components of the HRS. t-SNE used
5000 iterations.
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Fig. S43. Comparing the visualizations of UMAP, standard t-SNE, and t-SNE initialized with a UMAP projection, on the top 10 principal components of the UKBB. t-SNE used
20000 iterations
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Fig. S44. Comparing the error terms of standard t-SNE versus t-SNE initialized with a UMAP embedding and no early exaggeration. Done on the 1KGP dataset with 5000
iterations. The UMAP-initialized graph has been shifted by 600 iterations to approximate the 600 epochs UMAP uses for small datasets (n ≤ 10, 000).
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Fig. S45. Comparing the error terms of standard t-SNE versus t-SNE initialized with a UMAP embedding and no early exaggeration. Done on the HRS dataset with 5000
iterations. The UMAP-initialized graph has been shifted by 230 iterations to approximate the 230 epochs UMAP uses for large datasets (n > 10, 000).
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Fig. S46. Comparing the error terms of standard t-SNE versus t-SNE initialized with a UMAP embedding and no early exaggeration. Done on the UKBB dataset with 20000
iterations. The UMAP-initialized graph has been shifted by 230 iterations to approximate the 230 epochs UMAP uses for large datasets (n > 10, 000).
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