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ABSTRACT2

Dopamine (DA) neurons in the ventral tegmental area (VTA) are thought to encode reward3
prediction errors (RPE) by comparing actual and expected rewards. In recent years, much work4
has been done to identify how the brain uses and computes this signal.While several lines of5
evidence suggest the the interplay of he DA and the inhibitory interneurons in the VTA implements6
the RPE computaiton, it still remains unclear how the DA neurons learn key quantities, for7
example the amplitude and the timing of primary rewards during conditioning tasks. Furthermore,8
exogenous nicotine and endogenous acetylcholine, acting on both VTA DA and GABA (γ -9
aminobutyric acid) neurons via nicotinic-acetylcholine receptors (nAChRs), also likely affect these10
computations. To explore the potential circuit-level mechanisms for RPE computations during11
classical-conditioning tasks, we developed a minimal computational model of the VTA circuitry.12
The model was designed to account for several reward-related properties of VTA afferents and13
recent findings on VTA GABA neuron dynamics during conditioning.14

With our minimal model, we showed that the RPE can be learned by a two-speed process15
computing reward timing and magnitude. Including a model of nAChR-mediated currents in16
the VTA DA-GABA circuit, we also showed that nicotine should reduce the acetylcholine action17
on the VTA GABA neurons by receptor desensitization and therefore potentially boost the DA18
responses to reward information. Together, our results delineate the mechanisms by which19
RPE are computed in the brain, and suggest a hypothesis on nicotine-mediated effects on20
reward-related perception and decision-making.21

Keywords: dopamine, reward-prediction error, ventral tegmental area, acetylcholine, nicotine22

1 INTRODUCTION

To adapt to their environment, animals constantly compare their predictions with new environmental23
outcomes (rewards, punishments, etc). The difference between prediction and outcome is the prediction24
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error, which in turn can serve as a teaching signal to allow the animal to update its predictions and render25
previously neutral stimuli predictive of rewards into reinforcers of behavior. Particularly, the dopamine26
(DA) neuron activity in the Ventral Tegmental Area (VTA) have been shown to encode the reward prediction27
error (RPE), or the difference between the actual reward the animal receives and the expected reward28
(Schultz et al., 1997; Schultz, 1998; Bayer and Glimcher, 2005; Day and Carelli, 2007; Enomoto et al.,29
2011; Matsumoto and Hikosaka, 2009; Eshel et al., 2015; Keiflin and Janak, 2015). During, for example,30
classical conditioning with appetitive rewards, unexpected rewards elicit strong transient increases in VTA31
DA neuron activity, but as a cue fully predicts the reward, the same reward produces little or no DA neurons32
response. Finally, after learning, if the reward is omitted, DA neurons pause their firing at the moment33
reward is expected (Schultz et al., 1997; Schultz, 1998; Keiflin and Janak, 2015; Watabe-Uchida et al.,34
2017). Thus DA neurons should either receive or compute the RPE. While several lines of evidence have35
pointed towards the RPE being computed by the VTA local circuitry, exactly how this is done vis-a-vis36
the inputs and how this computation is modulated by the endogenous acetylcholine and the endogenous37
substances that affect the VTA, e.g. nicotine, remains to be defined. Here we proceed to address these38
questions using a minimal computational modelling methodology.39

In order to compute the RPE, the VTA should receive the relevant information from it inputs. Intuitively,40
distinct biological inputs to the VTA must differentially encode actual and expected rewards that are finally41
subtracted by a downstream target, the VTA DA neurons. For the last two decades, a great amount of42
experimental studies depicted which brain areas send this information to the VTA. Notably, a subpopulation43
of pedunculopontine tegmental nucleus (PPTg) has been found to send the actual reward signal to dopamine44
neurons (Kobayashi and Okada, 2007; Okada et al., 2009; Keiflin and Janak, 2015), while other studies45
showed that the prefrontal cortex (PFC) and the nucleus accumbens (NAc) respond to the predictive cue46
(Keiflin and Janak, 2015; Oyama et al., 2015; Funahashi, 2006; Connor and Gould, 2016; Le Merre et al.,47
2018), highly depending on VTA DA feedback projections in the PFC (Puig et al., 2014; Popescu et al.,48
2016) and the NAc (Yagishita et al., 2014; Keiflin and Janak, 2015; Fisher et al., 2017). However, how49
each of these signals are integrated by VTA DA neurons during classical-conditioning remains elusive.50

Recently, VTA GABA neurons were shown to encode reward expectation with a persistent cue response51
proportional to the expected reward (Cohen et al., 2012; Eshel et al., 2015; Tian et al., 2016). Additionally,52
selectively exciting and inhibiting VTA GABA neurons during a classical-conditioning task, Eshel et al.53
(2015) revealed that these neurons are likely source of the substraction operation, contributing to the54
inhibitory expectation signal in the RPE computation by DA neurons.55

Furthermore, the presence of nicotinic acetylcholine receptors (nAChRs) in the VTA (Pontieri et al.,56
1996; Maskos et al., 2005; Changeux, 2010; Faure et al., 2014) provides a potential common route for57
acetylcholine (ACh) and nicotine (Nic) in modulating dopamine activity during a Pavlovian-conditioning58
task. Particularly, the high-affinity α4β2 subunit-containing nAChRs desensitizing relatively slowly ('59
sec) and located post-synaptically on VTA DA and GABA neurons have been shown to have the most60
prominent role in nicotine-induced DAergic bursting activity and self-administration, as suggested by61
mouse knock-out experiments (Maskos et al., 2005; Changeux, 2010; Faure et al., 2014) and recent direct62
optogenetic modulation of these somatic receptors (Durand-de Cuttoli et al., 2018).63

We have previously developed and validated a population level circuit dynamics model (Graupner et al.,64
2013; Tolu et al., 2013; Maex et al., 2014; Dumont et al., 2018) of the influence nicotine and Ach interplay65
may have on the VTA dopamine cell activity. Using this model we showed that Nic action on α4β2 could66
result in either direct stimulation or disinhibition of DA neurons. The latter scenario suggests that relatively67
low nicotine concentrations (˜500 nM) during and after smoking preferentially desensitize α4β2 nAChRs68
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on GABA neurons (Fiorillo et al., 2008). The endogenous cholinergic drive to GABA neurons would69
then decrease, resulting in decreased GABA neurons activity, and finally a disinhibition of DA neurons as70
confirmed in vitro (Mansvelder et al., 2002) and suggested by Graupner et al. (2013); Tolu et al. (2013);71
Maex et al. (2014); Dumont et al. (2018) modeling work. Interestingly, this scenario requires that the high72
affinity nAChRs are in a pre-activated state, so that nicotine can desensitize them, which in turn implies a73
sufficiently high ambient cholinergic tone in the VTA. However, when the ACh tone is not sufficient, in this74
GABA-nAChR scenario, nicotine would lead to a significant inhibition of the DA neurons. Furthermore, a75
recent study showed that optogenetic inhibition of PPTg cholinergic fibers inhibit only the VTA non-DA76
neurons (Yau et al., 2016), suggesting that ACh acts preferentially on VTA GABA neurons. However,77
the effects of Nic and ACh on dopamine responses to rewards via α4β2-nAChRs desensitization during78
classical-conditioning have remained elusive.79

In addition to the above issues, a non-trivial question comes from the timing structure of the conditioning80
tasks. Typically, the reward to be consumed is delivered after a temporal delay after the conditioning cue,81
which begs important related questions: how is the reward information transferred from the reward-delivery82
time to the earlier reward-predictive stimulus and how does the brain compute the precise timing of83
reward? In other words, how is the relative co-timing of the reward and the reinforcer learned in the84
brain? These issues generate further lines of enquiry on how this learning process may be altered by85
nicotine. In order to start clarifying the possible neural mechanisms underlying the observed RPE-like86
activity in DA neurons, we propose here a simple neuro-computational model inspired from Graupner87
et al. (2013), incorporating the mean dynamics of four neuron populations: the prefrontal cortex (PFC), the88
pedunculopontine tegmental nucleus (PPTg), the VTA dopamine and GABA neurons. Taking into account89
recent neurobiological data, particularly showing the activity of VTA GABA neurons (Cohen et al., 2012;90
Eshel et al., 2015) during classical-conditioning, we qualitatively and quantitively reproduce several aspects91
of a Pavlovian-conditioning task - which we take as a paradigmatic example of reward-based conditioning -92
such as the phasic components of dopaminergic activation with respect to reward magnitude, omission and93
timing, the working-memory activity in the PFC, the response of the PPTg to primary rewards, and the94
dopamine-induced plasticity in cortical and corticostriatal synapses. Finally, we qualitatively assessed the95
potential effects of Nic-induced desensitization of GABA α4β2-nAChRs, leading to a disinhibition of DA96
burst-response to rewarding events.97

2 METHODS: COMPUTATIONAL MODEL AND SIMULATED BEHAVIORAL TASKS

In order to examine the effects of nicotine on VTA activity during classical-conditioning, we built a neural98
population model of the VTA and its afferent inputs inspired the mean-field approach from Graupner et al.99
(2013). This model incorporates the DA and GABA neuronal populations in the VTA and their glutamatergic100
and cholinergic afferents from the PFC and the PPTg (Fig. 1). Based on recent neurobiological data, we101
propose a model for the activity of the PFC and PPTg inputs during classical-conditioning contributing to102
the observed VTA GABA and DA activity. Additionally, the activation and desensitization dynamics of103
the nAChR-mediated currents in response to Nic and ACh were described by a 4-state model taken from104
Graupner et al. (2013).105

2.1 Mean-field description of VTA neurons and their afferents106

First, the model from Graupner et al. (2013) describing the dynamics of VTA neuron populations and the107
effects of Nic and ACh on nAChRs was re-implemented with several quantitative modifications according108
to experimental data.109
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The temporal dynamics of the average activities of DA and GABA neurons in the VTA taken from110
Graupner et al. (2013) are described by the following equations:111


τD
dνD

dt
= −νD + F (BD − IGABA + IGlu-D + rIα4β2)

τG
dνG

dt
= −νG + Φ(BG + IGlu-G + (1− r)Iα4β2),

(1)

where νD and νG are the mean firing rates of the DA and GABAergic neuron populations, respectively.112
τD = 30 ms and τG = 30 ms are the membrane time constants of both neuron populations specifying113
how quickly the neurons integrate input changes. IGlu characterize the excitatory inputs from PFC and114
PPTg mediated by glutamate receptors. Iα4β2 represent the excitatory input mediated by α4β2-containing115
nAChRs, activated by PPTg ACh input and Nic. IGABA is the local feed-forward inhibitory input to DA116
neurons emanating from VTA GABA neurons. BD = 18 and BG = 14 are the baseline firing rates of each117
neuron population in the absence of external inputs, according to Eshel et al. (2015) experimental data -118
with external inputs, the baseline activity of DA neurons is around 5 Hz.119

The parameter r sets the balance of α4β2 nAChR action through GABA or DA neurons in the VTA. For120
r = 0, they act through GABA neurons only, whereas for r = 1 they influence DA neurons only. Φ(.) is121
the linear rectifier function, which only keeps the positive part of the operand and outputs 0 when it is122
negative. F (.) is a non-linear sigmoid transfer function for the dopaminergic neurons enabling to describe123
the high firing rates in the bursting mode and the low frequency activity in the tonic (pacemaker) mode,124
and their slow variation below their baseline activity with external inputs (' 5 Hz):125

F (x) =
ω

1 + exp(−β(x− γ))
, (2)

where ω = 30 represent the maximum firing rate, γ = 8 is the inflexion point and β = 0.3 is the slope.126
These parameters were chosen in order to account for bursting activity of DA neurons starting from a127
certain threshold (γ) of input and their maximal activity observed in vivo (Hyland et al., 2002; Eshel et al.,128
2015). Indeed, physiologically, high firing rates (> 8 Hz) are only attained during DA bursting activity and129
not tonic activity (' 5 Hz).130

The input currents in Eq. 1 are given by:131


IGABA(t) = wG · νG(t)

IGlu-D(t) = wPFC(n) · νPFC(t) + wPPT-D · νPPT(t)

IGlu-G(t) = wPFC(n) · νPFC(t) + wPPT-G · νPPT(t)

Iα4β2(t) = wα4β2 · vα4β2(t),

(3)

where wx’s (with x = G, PFC, PPT-D, PPT-G, α4β2) specify the total strength of the respective input (Fig.132
1, Table 1). The weight of α4β2-nAChRs, wα4β2 = 15 was chosen in order to account for the increase of133
baseline firing rates compared to (Graupner et al., 2013) where wα4β2 = 1, BD = 0.1 and BG = 0.134

Inhibitory input to DA cells, IGABA, depends on GABA neuron population activity, νG (Eshel et al.,135
2015). Excitatory input to DA and GABA cells depends on PFC-NAc (Ishikawa et al., 2008; Keiflin and136
Janak, 2015) and PPTg (Lokwan et al., 1999; Yoo et al., 2017) glutamatergic inputs activities, νPFC and137
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νPPT respectively (see next section). The activation of α4β2 nAChRs, vα4β2, determines the level of direct138
excitatory input Iα4β2 evoked by nicotine or acetylcholine (see last section).139

2.2 Neuronal activities during classical-conditioning140

As described above, previous studies identified signals from distinct areas that could be responsible for141
VTA DA neurons activity during classical conditioning. We thus consider a simple model that particularly142
accounts for Eshel et al. (2015) experimental data on VTA GABA neurons activity. In this approach, we143
propose that the sustained activity reflecting reward expectation in GABA neurons comes from the PFC144
(Schoenbaum et al., 1998; Le Merre et al., 2018), that sends projections on both VTA DA and GABA145
neurons through the NAc (Morita et al., 2013; Keiflin and Janak, 2015). The PFC-NAc pathway thus drives146
feed-forward inhibition onto DA neurons by exciting VTA GABA neurons that in turn inhibit DA neurons147
(Fig. 1). Second, we consider that a subpopulation of the PPTg provides the reward signal to the dopamine148
neurons at the US (Kobayashi and Okada, 2007; Okada et al., 2009).149

2.2.1 Classical-conditioning task and the associated signals150

We modeled a VTA neural circuit (Fig. 1) while mice are classically conditioned with a tone stimulus151
that predicts an appetitive outcome as in (Eshel et al., 2015), but with 100% probability. Each simulated152
behavioral trial begins with a conditioned stimulus (CS; a tone, 0.5 s), followed by an unconditioned153
stimulus (US; the outcome, 0.5 s) separated by an interval of 1.5 s. (Fig. 2A). This type of task, implying a154
delay between the CS offset and the US onset (here, 1 s), is then a trace-conditioning task, that differs from155
a delay-conditioning task where the CS and US overlap (Connor and Gould, 2016).156

As the animal learns that a fixed reward constantly follows a predictive tone at a specific timing, our157
model proposes possible underlying biological mechanisms of Pavlovian-conditioning in PPTg, PFC, VTA158
DA and GABA neurons (Fig. 1).159

As represented in previous models (O’Reilly et al., 2007; Vitay and Hamker, 2014), the CS signal is160
modeled by a square function (νCS(t)) equal to 1 during the CS presentation (0.5 s) and to 0 otherwise (Fig.161
2A). The US signal is modeled by a similar square function (νUS(t)) as the CS but is equal to the reward162
size during the US presentation (0.5 s) and 0 otherwise (Fig. 2A).163

2.2.2 Neural representation of US signal in the PPTg164

Dopamine neurons in the VTA exhibit a relatively low tonic activity (around 5 Hz), but respond phasically165
with a short-latency (< 100 ms), short-duration (< 200 ms) burst of activity in response to unpredicted166
rewards (Schultz, 1998; Eshel et al., 2015). These phasic bursts of activity are dependent on glutamatergic167
activation by a subpopulation of PPTg (Okada et al., 2009; Keiflin and Janak, 2015; Yoo et al., 2017) found168
to discharge phasically at reward delivery, with the levels of activity associated with the actual reward and169
not affected by reward expectation.170

To integrate the US input into a short-term phasic component we use the function Gτ (x(t)) (Vitay and171
Hamker, 2014) defined as follows:172


τ ẋ1(t) = −x1(t) + x(t)

τ ẋ2(t) = −x2(t) + x1(t)

Gτ (x(t)) = Φ(x1(t)− x2(t)).
(4)
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Here when x(t) switches from 0 to 1 at time t = 0, Gτ (x(t)) will display a localized bump of activation173
with a maximum at t = τ . This function is thus convenient to integrate the square signal νUS(t) (Fig. 2A)174
into a short-latency response.175

Furthermore, dopamine response amplitudes to unexpected rewards follow a simple saturating function176
(fitted by a Hill function in Fig. 2B) (Eshel et al., 2015, 2016). We thus consider that PPTg neurons respond177
to the reward delivery signal (US) in a same manner as DA neurons i.e. with a saturating dose-response178
function:179 

νPPTg(t) = GτPPTg [f(νUS(t))]

f(x) = fmax(
x0.5

x0.5 + h0.5
),

(5)

where νPPTg is the mean activity of the PPTg neurons population, τPPTg = 100 ms (the short-latency180
response), and f(x) is a Hill function with two parameters: fmax, the saturating firing rate; and h, the181
reward size that elicits half-maximum firing rate. Here, we chose fmax = 70 and h = 20 in order to obtain182
a similar dose-response curve once PPTg activity is transferred to DA neurons as in (Eshel et al., 2016)183
(Fig. 2B).184

2.2.3 Neural representation of CS signal in the PFC185

In addition to their response to unpredicted rewards, DA neurons learn to respond to reward-predictive186
cues and to reduce their response at the US (Schultz et al., 1997; Schultz, 1998; Matsumoto and Hikosaka,187
2009; Eshel et al., 2015). Neurons in the PFC respond to these cues through a sustained activation188
starting at the CS onset and ending at the reward-delivery (Connor and Gould, 2016; Le Merre et al.,189
2018). Furthermore, this activity has been shown to increase in the early stage of a classical-conditioning190
learning task (Schoenbaum et al., 1998; Le Merre et al., 2018). Especially, the PFC participates in the191
association of temporally separated events in trace-conditioning task through working-memory mechanisms192
(Connor and Gould, 2016), maintaining a representation of the CS accross the the CS-US interval, and193
this timing-association is dependent on dopamine modulation in the PFC (Puig et al., 2014; Popescu et al.,194
2016).195

We thus assume that the PFC integrates the CS signal and learns to maintain its activity until the reward196
delivery. Consistently with previous neural-circuit working-memory models (Durstewitz et al., 2000),197
we minimally described this mechanism by a neural population with recurrent excitation and a slower198
adaptation inspired from (Gerstner et al., 2014):199 

τPFC
dνPFC

dt
= −νPFC(t) + F [wCS · νCS(t) + JPFC(n) · νPFC(t)− a(t)]

τa
da

dt
= a∞(νPFC)− a(t),

(6)

where τPFC = 100 ms (short-latency response), a(t) describes the amount of adaptation that neurons have200
accumulated, a∞ = c · νPFC is the asymptotic level of adaptation that is attained by a slow time constant201
τa = 1000 ms (Gerstner et al., 2014) if the population continuously fires at a contant rate νPFC, JPFC(n)202
represents the strength of the recurrent excitation exerted by the PFC depending on the learning trial n203
(initially J(1) = 0.2), wCS the strength of the CS input. F (x) is the non-linear sigmoid transfer function204
defined in Eq. 2 allowing the emergence of bistability network. We chose ω = 30, γ = 8 and β = 0.5 in205
order to account for the PFC activity changes in working-memory tasks (Connor and Gould, 2016).206
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2.2.4 Learning of the US timing in the PFC207

The dynamic system described above typically switches between two stables states: quasi absence of208
activity or maximal activity in the PFC. The latter stable state particularly appears as JPFC(n) increases209
with learning:210

JPFC(n+ 1)← JPFC(n) + αT ·∆tDA, (7)

where αT = 0.2 is the timing learning rate, ∆tDA = t2 − t1 measures the difference between the time at211
which PFC activity declines (t1 such as νPFC(t1) ' γ after CS onset) and the time of DA maximal activity212
at the US, t2. This learning mechanism of reward timing, simplified from Luzardo et al. (2013), triggers213
the increase of the recurrent connections (JPFC) through dopamine-mediated modulation in the PFC (Puig214
et al., 2014; Popescu et al., 2016) such as νPFC collapses at the time of reward delivery. This learning215
process occurs in the early stage of the task (Le Merre et al., 2018) and is therefore much faster than the216
learning of reward expectation.217

2.2.5 Learning of reward expectation in cortico-striatal connections218

According to studies showing a DA-dependent cortico-striatal plasticity (Yagishita et al., 2014; Keiflin219
and Janak, 2015), we assumed that the reward value predicted from the tone (CS) is stored in the strength of220
cortico-striatal connections (wPFC(n)), i.e. between the PFC and the NAc, and is updated through plasticity221
mechanisms depending on phasic dopamine response after reward delivery as in the following equation222
proposed by (Morita et al., 2013):223

wPFC(n+ 1)← wPFC(n) + αV · δ(n), (8)

where αV is the cortico-striatal plasticity learning rate related to reward magnitude, δ(n) is a deviation from224
the DA baseline firing rate, computed by the area under curve of νD in a 200 ms time-window following US225
onset, above a baseline defined by the value of νD at the time of US onset. δ(n) is thus the reward-prediction226
error signal that updates the reward-expectation signal stored in the strength of the PFC input wPFC(n)227
until the value of the reward is learned (Rescorla and Wagner, 1972).228

This assumption was taken from Morita et al. (2013) modeling work and various hypotheses on dopamine-229
mediated plasticity in associative-learning (Keiflin and Janak, 2015) and recent experimental data (Yagishita230
et al., 2014; Fisher et al., 2017). It implies that the excitatory signal from the PFC first activates the nucleus231
accumbens (NAc) and is then transferred via the direct excitatory pathway to the VTA. Here, we then232
considered that wPFC is provided by the PFC-NAc pathway but we did not explicitly represent the NAc233
population (Fig. 1).234

2.2.6 Cholinergic input activity235

Our model also reflects the cholinergic (ACh) afferents to the DA and GABA cells in the VTA (Dautan236
et al., 2016; Yau et al., 2016). The α4β2 nAChRs are placed somatically on both the DA and the GABA237
neurons and their activity depends on ACh and Nic concentration within the VTA (see last section). As238
PPTg was found to be the main source of cholinergic input to the VTA, we assume that ACh concentration239
directly depends on PPTg activity, as modeled by the following equation:240

ACh(t) = wACh · νPPTg(t), (9)

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 25, 2018. ; https://doi.org/10.1101/423806doi: bioRxiv preprint 

https://doi.org/10.1101/423806
http://creativecommons.org/licenses/by-nc-nd/4.0/


Deperrois and Gutkin Nicotinic Modulation of Dopaminergic Reward Computation Circuitry

where wACh = 1 μM is the amplitude of the cholinergic connection that tunes concentration of241
acetylcholine ACh (in μM) at a physiologically relevant concentration (Graupner et al., 2013).242

2.3 Modeling the activation and desensitization of nAChRs243

We implemented nAChR activation and desensitization from (Graupner et al., 2013) as transitions of244
two independent state variables: an activation gate and a desensitization gate. The nAChR receptors can245
then be in four different states: deactivated/sensitized, activated/sensitized, activated/desensitized and246
deactivated/desensitized. The receptors are activated in response to both Nic and ACh, while desensitization247
is driven by Nic only (if η = 0). Once Nic or ACh is removed, the receptors can switch from activated to248
deactivated and from desensitized to sensitized.249

The mean total activation level of nAChRs (να4β2) is modeled as the product of the activation rate a250
(fraction of receptors in the activated state) and the sensitization rate s (fraction of receptors in the sensitized251
state). The total normalized nAChR activation is therefore: να4β2 = a · s. The time course of the activation252
and the sensitization variables is given by:253

dy

dt
=
y∞(Nic,ACh)− y
τy(Nic,ACh)

, (10)

where τy(Nic,ACh) refers to the Nic/ACh concentration-dependent time constant at which the steady-254
state y∞(Nic,ACh) is achieved. The maximal achievable activation or sensitization, for a given Nic/ACh255
concentration, a∞(Nic,ACh) and s∞(Nic,ACh) are given by Hill equations of the form:256


a∞(Nic,ACh) =

(ACh+ αNic)na

EC50
na + (ACh+ αNic)na

s∞(Nic,ACh) =
IC50

ns

IC50
ns + (Nic+ ηACh)ns

,

(11)

where EC50 and IC50 are the half-maximal concentrations of nAChR activation and sensitization,257
respectively. The factor α > 1 accounts for the higher potency of Nic to evoke a response as compared258
to ACh: αα4β2 = 3. na and ns are the Hill coefficients of activation and sensitization. η varies between 0259
and 1 and controls the fraction of the ACh concentration driving receptor desensitization. Here, as we only260
consider Nic-induced desensitization, we set η = 0.261

As the transition from the deactivated to the activated state is fast (˜μs), the activation time constant τa262
was simplified to be independent on ACh and Nic concentration: τa(Nic,ACh) = τa = const. The time263
course of Nic-driven desensitization is characterized by a concentration-dependent time constant264

τd(Nic,ACh) = τ0 + τmax
Kτ

nτ

Kτ
nτ + (Nic+ ηACh)nτ

, (12)

where τmax refers to the recovery time constant from desensitization in the absence of ligands, τ0 is the265
fastest time constant at which the receptor is driven into the desensitized state at high ligand concentrations.266
Kτ is the concentration at which the desensitization time constant attains half of its minimum. All model267
assumptions are further described in Graupner et al. (2013).268
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2.4 Simulated experiments269

2.4.1 Optogenetic inhibition of VTA GABA neurons270

In order to qualitatively reproduce Eshel et al. (2015) experimental data, we simulated the photo-inhibition271
effect in a subpopulation of VTA GABA neurons with an exponential decrease between t = 1.5 s and272
t = 2.5s ( ±500 ms around reward-delivery). First, the light was modeled by a square signal νlight equal273
to the laser intensity I = 4 for 1.5 < t < 2.5 and zero otherwise. Then, we subtracted this signal to VTA274
GABA neuron activity as follows:275

 τs
ds

dt
= −s(t) + νlight(t)

νG-opto = νG-control − s(t),
(13)

where s is the subtracted signal that integrates the light signal νlight with a time constant τs = 300276
ms, νG-opto is the photo-inhibited GABA neurons activity, and νG-control is the normal GABA neurons277
activity with no opto-inhibition. All parameters (I , τs) were chosen in order to reproduce qualitatively278
the photo-inhibition effects revealed by Eshel et al. (2015) experiments (Fig. ??C). Furthermore, as the279
effects of GABA photo-inhibition onto DA neurons appear to be relatively weak (Fig. ??D, green trace),280
we assumed that only a subpopulation of the total GABA neurons are photo-inhibited and we therefore281
applied Eq. 13 for only 20% of the VTA GABA population. This assumption was based on the partial282
expression of Archeorhodopsin (ArchT) in GABA neurons (Eshel et al. (2015), Extended Data Fig. 1) and283
the other possible optogenetic effects (recording distance, variability of the response among the population,284
laser intensity, etc.).285

2.4.2 Nicotine injection in the VTA286

In order to model chronic nicotine injection in the VTA while mice perform classical-conditioning tasks287
with water reward, the above equations were simulated but after 5 min of 1 μM Nic injection in the model288
for each trial. This process allowed to focus only on the effects of α4β2-nAChRs desensitization (see next289
section) during conditioning trials.290

2.4.3 Decision-making task291

We simulated a protocol designed by Naudé et al. (2016) recording simultaneously the sequential choices292
of a mouse between three differently rewarding locations (associated with reward size) in a circular open-293
field (Fig. 7A). These three locations form an equilateral triangle and provide respectively 2, 4, 8 μL water294
rewards. Each time the mouse reaches one of the rewarding locations, the reward is delivered. However,295
the mouse receives the reward only when it alternates between rewarding locations.296

Before the simulated task, we considered that the mouse has already learned the value of each location297
(pre-training) and thus knows the expected associated reward. Each value was computed taking the maximal298
activity of DA neurons within a time window following the CS onset (here, the view of the location) for299
the three different reward sizes after learning. We also considered that each time the mouse reaches a new300
location, it enters in a new state i. Decision making-models inspired from Naudé et al. (2016) determine301
the probability Pi of choosing the next state i as a function of the expected value of this state. Because mice302
could not return to the same rewarding location, they had to choose between the two remaining locations.303
We thus modeled decisions between two alternatives. The probability Pi was computed according to the304
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softmax choice rule:305

Pi =
1

exp(b(Vj − Vi)
, (14)

where Vi and Vj are the values of the states i and j (the other option) respectively, b is an inverse306
temperature parameter reflecting the sensitivity of choice to the difference between both values. We chose307
b = 0.4 which corresponds to a reasonable exploration-exploitation ratio.308

We simulated the task over 10,000 simulations and computed the number of times the mouse chose each309
location. We thus obtained the average repartition of the mouse over the three locations. A similar task was310
simulated for mice after 5 min Nic ingestion (see below).311

3 RESULTS

We used the model developed above to understand the learning dynamics within the PFC-VTA circuitry312
and the mechanisms by which the RPE in the VTA is constructed. Our minimal circuit dynamics model of313
the VTA was inspired from Graupner et al. (2013) and modified according to recent neurobiological studies314
(see Methods) in order to reproduce RPE computations in the VTA. This model reflects the glutamatergic315
(from PFC and PPTg) and cholinergic (from PPTg) afferents to VTA DA and GABA neurons, as well316
as local inhibition of DA neurons to GABA neurons. We also included the activation and desensitization317
dynamics of α4β2 nAChRs from (Graupner et al., 2013), placed somatically on both DA and GABA318
neurons, depending on a fraction parameter r. We simulated the proposed PFC and PPTg activity during319
the task, where corticostriatal connections between the PFC and the VTA and recurrent connections among320
the PFC were gradually modified by dopamine in the NAc. Finally, we studied the potential influence of321
nicotine exposure on DA responses to rewarding events.322

We should note that most experiments we simulated herein concern the learning task of a CS-US323
association (Fig. 2). The learning procedure consists of a conditioning phase where a tone (CS) and a324
constant water-reward (US) are presented together for 50 trials. Within each 3 s-trial, the CS is presented at325
t = 0.5 s (Fig. 3, 5, 6, dashed grey line) followed by the US at t = 2 s (Fig. 3, 5, 6, dashed cyan line).326

3.1 Pavlovian-conditioning task and VTA activity327

DA activity during a classical-conditioning task was first recorded by Schultz (1998) and tested in further328
several studies. Additionally, Eshel et al. (2015) also recorded the activity of their putative neighbor329
neurons, the VTA GABA neuron population. Our goal was first to qualitatively reproduce VTA GABA and330
DA activity during associative learning of a pavlovian-conditioning task.331

In order to understand how different brain areas interact during conditioning and reward omission, we332
examined the simulated time course of activity of four populations (PFC, PPTg, VTA DA and GABA), Fig.333
3, at the initial conditioning trial (n = 1, light color curves), an intermediary trial (n = 6, medium color334
curves) and at the final trial (n = 50, dark color curves). In line with experiments, the reward delivery335
(Fig. 3, dashed cyan lines) activates the PPTg nucleus (Fig. 3C) at each conditioning trial. These neurons336
activate in turn VTA DA and GABA neurons through glutamatergic connections, causing a phasic burst in337
DA neurons at the US when the reward is unexpected (Fig. 3D, n = 1), and a small excitation in GABA338
neurons (Fig. 3B, n = 1). PPTg fibers also stimulate VTA neurons through ACh-mediated α4β2 nAChRs339
activation, with a larger influence on GABA neurons (r = 0.2 in Fig. 1).340
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Early in the conditioning task, simulated PFC neurons respond to the tone (Fig. 3A, n = 1), and this341
activity builds up until being maintained during the whole CS-US interval (Fig. 3A, n = 6, n = 50).342
Thus, PFC neurons show a working-memory like activity now tuned to decay at the reward delivery time.343
Concurrently, the phasic activity of DA neurons at the US acts as prediction-error signal on corticostriatal344
synapses, increasing the glutamatergic input from the NAc onto VTA DA and GABA neurons (Fig. 3B,345
3D, 4B). Note that the NAc was not modeled explicitly, but we modeled the net effect of the PFC-NAc346
plasticity with the variable wPFC (see next section).347

Consequently, with learning, VTA GABA neurons show a sustained activation during the CS-US interval348
(Fig. 3B, n = 6, n = 50) as found in Eshel et al. (2015) experiments and in turn inhibit their neighboring349
dopamine neurons. Thus, in DA neurons, the GABA neurons-induced inhibition occurs with a slight delay350
after the PFC-induced excitation, resulting in a phasic excitation at the CS and a phasic inhibition at the US351
(Fig. 3D, n = 50).352

The latter inhibition progressively cancels the reward-evoked excitation by the PPTg glutamatergic fibers353
in DA neurons. It also accounts for the pause in DA firing when reward is omitted after learning (Fig. 3B,354
3D, n = 50, dashed lines).355

Together, these results propose a simple mechanism for RPE computation the VTA and its afferents.356

Let us now take a closer look at the evolution of the phasic activity of DA neurons and their PFC-NAc357
afferents during the conditioning task. Fig. 4A shows the evolution of CS- and US-mediated DA peaks358
over the 50 conditioning trials. Firstly, the US-related bursts (Fig. 4A, red line) remain constant in the early359
trials until the timing is learnt by the PFC recurrent connections JPFC (Fig. 4B, orange line) following Eq.360
7. Secondly, US and CS (Fig. 4A, blue line) responses respectively decrease and increase over all trials,361
following a slower learning process from cortico-striatal connections (Fig. 4B, magenta line) described362
by Eq. 8. This two-speed learning process enables to qualitatively reproduce the DA dynamics found363
experimentally, with almost no effect outside the CS and US time-windows (Fig. 3D).364

Particularly, the graphical analysis of the PFC system enables us to understand the timing learning365
mechanism. From Eq. 6, we can see where the two functions νPFC → νPFC and νPFC → F [wCS · νCS(t) +366
J(n) · νPFC(t) − a(t)] intersect each other (fixed points analysis) at four different timings during the367
simulation: before and after the CS presentation (νCS = 0, a = 0), during CS presentation (νCS = 1, a = 0)368
and after the reward is delivered (νCS = 0, a = a∞). Before learning, as JPFC is weak (Fig. 4C), the system369
starts at one fixed point (νPFC = 0), then jumps to another stable point during CS presentation (νPFC ' 30)370
and immediately goes back to the initial point (νPFC = 0) after CS presentation (t = 1 s) as shown in Fig.371
3A. After learning (Fig. 4D), the system initially shows the same dynamics but when the CS is removed,372
the system is maintained at the second fixed point (30 Hz) until reward delivery (Fig. 3A, n = 50) due to373
its bistability after CS presentation (cyan curve). Finally, with the adaptation dynamics, the PFC activity374
decays right after reward delivery (Fig. 4D, dark blue). Indeed, through this timing learning mechanism,375
the strength of the recurrent connections maintains the Up state activity of the PFC exactly until the US376
timing (Eq. 7). Together, these simulations show a two-speed learning process that enables VTA dopamine377
neurons to predict the value and the timing of the water reward from PFC plasticity mechanisms.378

3.2 Photo-inhibition of VTA GABA neurons modulates prediction errors379

We next focus specifically on the local VTA neurons interactions during the conditioning task. Particularly,380
we model the effects of VTA GABA optogenetic inhibition (Fig. 5) revealed by one of Eshel et al. (2015)381
experiments. First, in order to reproduce similar VTA activities where reward was delivered with 90%382
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probability, we picked the activity of VTA GABA and DA neurons at an intermediary stage of learning (n383
= 6), where DA neurons still responded at the US. Second, as in Eshel et al. (2015), we simulated GABA384
photo-inhibition in a time-window (±500 ms) around the reward delivery time (Fig. 5A, green shaded385
area). Considering that ArchT virus expression was partial in GABA neurons and that optogenetic effects386
do not account quantitatively for physiological effects, the photo-inhibition was simulated for only 20%387
of our GABA population. This simulated inhibition resulted in disinhibition of DA activity during laser388
stimulation (Fig. 5B). If the inhibition was 100% efficient on GABA neurons, we assume that DA neurons389
would then burst at high frequencies during the whole period of stimulation.390

Inhibiting VTA GABA neurons partially reversed the expectation-dependent reduction of DA response at391
the US. As proposed by (Eshel et al., 2015), our model accounts for the burst-cancelling expectation signal392
provided by VTA GABA neurons.393

3.3 Effects of nicotine on RPE computations in the VTA394

We next asked whether we can identify the effects of nicotine action in the VTA during the classical-395
conditioning task described in Fig. 3. We compared the activity of DA neurons at different conditioning396
trials to their activity after 5 minutes of 1 μM nicotine injection, corresponding to physiologically relevant397
concentrations of Nic in the blood after cigarette-smoking (Picciotto et al., 2008; Graupner et al., 2013).398
For our qualitative investigations, we assume that α4β2-nAChRs are mainly expressed on VTA GABA399
neurons (r = 0.2) and we study the effects of nicotine-induced desensitization on these receptors.400

Nic-induced desensitization may potentially lead to several effects. First, under nicotine (Fig. 6B), DA401
baseline activity slightly increases. Second, simulated exposure also raises DA responses to reward-delivery402
when the animal is naive (Fig. 6A, 6B, n = 1), and therefore to reward-predictive cues when the animal403
has learnt the task (Fig. 6A, 6B, n = 50). As expected, these effects derive from the reduction of the404
ACh-induced GABA activation provided by the PPTg nucleus (Fig. 3C). Thus, our simulations predict that405
nicotine would up-regulate DA bursting activity at rewarding events.406

What would happen if the animal, after having learned in the presence of nicotine, is not exposed to it407
anymore (nicotine withdrawal)? To answer this question, we investigate the effects of nicotine withdrawal408
on DA activity after the animal has learnt the CS-US association under nicotine (Fig. 6C), with the same409
amount of reward (4 μL). In addition to a slight decrease in DA baseline activity, the DA response to the410
simulated water reward is reduced even below baseline (Fig. 6C, dark red). DA neurons would then signal411
a negative reward-prediction error, consequently encoding a possible perceived insufficiency of the actual412
reward it usually receives. From these simulations, we could predict the effect of nicotine injection on the413
dose-response curve of DA neurons to rewarding events. Here, instead of plotting DA neuron response to414
different sizes of unexpected rewards as in Fig. 2B, we plot DA response to the CS after the animal has learnt415
different sizes of rewards, taking the maximum activity in a 200 ms time-window following the CS onset416
(Fig. 6A, 6B, dark colors). Here, when the animal learns under nicotine, the dose-response curve is elevated,417
assigning an amplification effect of nicotine on dopamine reward-prediction computations. Notably, the418
nicotine-induced increase in CS-related bursts grows with the increase of reward size for rewards ranging419
from 0 to 8 μL. Associating CS amplitude to the predicted value (Rescorla and Wagner, 1972; Schultz,420
1998), this suggests that nicotine could increase the value of the cues predicting large rewards, therefore421
increasing the probability of choosing the associated states compared to control conditions.422
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3.4 Model-based analysis of mouse decision-making under nicotine423

In order to evaluate the effects of nicotine on the choice preferences among reward sizes, we simulated a424
decision-making task where a mouse chose between three locations providing different reward sizes (2, 4,425
8 μL) in a circular open-field (Fig. 7A) inspired by Naudé et al. (2016) experimental paradigm.426

Following reinforcement-learning theory (Rescorla and Wagner, 1972; Sutton and Barto, 1998), CS427
response to each reward size (computed from Fig. 6D) was attributed to the expected value of each location.428
We then computed the repartition of the mouse between the three locations over 10,000 simulations in429
control conditions or after 5 min nicotine ingestion.430

In control conditions, the simulated mice chose according to the location’s estimated value (Fig. 7B); the431
mice chose preferentially the locations that provide the greater amount of reward. Interestingly, under Nic-432
induced nAChRs desensitization, the simulations show a bias of mice choices towards large reward sizes;433
the proportion of choices for the small reward (2 μL) diminished by about 4%. Thus, these simulations434
suggested a differential amplifying effect of nicotine for large water rewards.435

4 DISCUSSION

The overarching aim of this study was to determine how dopamine neurons compute key quantities such as436
reward-prediction errors, and how these computations are affected by nicotine. In order to do so, we have437
developed a computational modeling approach extending the population activity of the VTA and its main438
afferents during a simple task of Pavlovian-conditioning. Including both theoretical and phenomenological439
conceptions, this model qualitatively reproduces several observations on the VTA activity during the task:440
phasic DA activity at the US and the CS and persistent activity of VTA GABA neurons. It particularly441
proposes a two-speed learning process of the reward timing and size mediated by the PFC working memory,442
coupled with the signaling of reward occurence in the PPTg. Finally, using acetylcholine dynamics coupled443
with the desensitization kinetics of α4β2-nAChRs in the VTA, we revealed a potential effect of nicotine444
action on reward perception through up-regulation of DA phasic activity.445

4.1 Relationship to other computational models446

Multiple studies have proposed a dual-pathway mechanism for RPE computation in the brain (O’Reilly447
et al., 2007; Vitay and Hamker, 2014) through phenomenological bottom-up approaches. Although they448
propose different possible mechanisms, they mainly gather several components: regions that encode449
reward-expectation at the CS, regions that encode actual reward, regions that inhibit dopamine activity at450
the US, and final subtraction of these inputs at the VTA level. These models usually manage to reproduce451
the key properties of dopamine-related reward activity: progressive appearance of DA bursts at the CS452
onset, progressive decrease of DA bursts the reward-delivery, phasic inhibition when reward is omitted and453
early delivery of reward.454

Additionally, a top-down theoretical approach as the temporal difference (TD) learning model assumes455
that the cue and reward cancellation signal both emerge from the same inputs (Sutton and Barto, 1998;456
Morita et al., 2013). After the task is learned, two sustained expectation signals V (t) and V (t+ 1) subtract457
each other (Fig. 8), leading to the TD error: δ = r+V (t+ 1)−V (t). Notably, the temporary shift between458
both signals induce a phasic excitation at CS and an inhibition at the US.459
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TD models are reliable to describe many features of dopamine phasic activity and establish a link between460
reinforcement learning theory and dopamine activity. However, the biological evidence for such specific461
signals is still unclear.462

In our study, we combine these two phenomenological and theoretical approaches to describe the VTA463
DA activity. Firstly, our simple model relies on neurobiological mechanisms such as PFC working memory464
activity (Connor and Gould, 2016; Le Merre et al., 2018), PPTg activity (Kobayashi and Okada, 2007;465
Okada et al., 2009) and mostly VTA GABA neurons activity (Cohen et al., 2012; Eshel et al., 2015) and466
describe how these inputs could converge to VTA DA neurons. Secondly, at least at the end of learning, we467
also proposed a similar integration of inputs as in TD models, with two sustained signals that are temporally468
delayed. Indeed, the reward expectation signal comes from the same input (PFC): based on recent data469
on local circuitry in the VTA (Eshel et al., 2015), we assumed that the PFC sends the V (t+ 1) sustained470
signal to both VTA GABA and DA neurons. Only, via a feed-forward inhibition mechanism, this signal471
is shifted by VTA GABA neurons membrane time constant τG. Thus, in addition to the direct V (t + 1)472
excitatory signal from the PFC, VTA GABA neurons would send the V (t) inhibitory signal to VTA DA473
neurons (Fig. 8). Adding the reward signal r(t) provided by the PPTg, our model integrates the TD error474
δ into DA neurons. However, in our model, and as shown in several studies, CS- and US-related bursts475
gradually increase and decrease with learning, respectively, whereas TD learning predicts a progressive476
backward shift of the US-related burst during learning, what is not experimentally observed.477

Although we make strong assumptions on VTA reward information integration that may be questioned at478
the level of detailed biology, it proposes a way to explain how the sustained activity in GABA neurons479
cancel the US-related dopamine burst without affecting the preceding tonic activity of DA neurons during480
the CS-US interval. Furthermore, this assumption can be strengthened by our simulation of optogenetic481
experiment (Fig. 5) qualitatively reproducing DA increase in both baseline and phasic activity as found in482
(Eshel et al., 2015).483

4.2 Reliability of the VTA afferents484

As described above, our model includes two glutamatergic and one GABAergic input to the dopamine485
neurons, without considering the influence of all other brain areas.486

Although the PFC, the NAc and the PPTg were found to be important excitatory afferents to the VTA, it487
remains elusive whether these signals: 1) respectively encode reward expectation and actual reward and 2)488
are the only excitatory inputs to the VTA during a classical-conditioning task. As well, it is still unclear489
whether VTA GABA fully inhibit their dopamine neighbors. Here, we assumed that the activity of DA490
neurons with no GABAergic input was relatively high (BD = 18 Hz) in order to compensate the observed491
high baseline activity of GABA neurons (BG = 14 Hz) and get the observed DA tonic firing rate (' 5 Hz).492
This brings up two issues: do these GABA neurons only partially inhibit their dopamine neighbors, for493
example, just when activated above their baseline? And also, is the inhibitory reward expectation signal494
mediated by other brain structures as the LHb (Watabe-Uchida et al., 2012; Tian and Uchida, 2015; Keiflin495
and Janak, 2015)?496

In an attempt to answer this question, Tian et al. (2016) recorded extracellular activity of monosynaptic497
inputs to dopamine neurons in seven input areas including the PPTg. Showing that many VTA inputs were498
affected by both CS and US signals, they proposed that DA neurons receive a mix of redundant information499
and compute a pure RPE signal. However, this does not elucidate which of these inputs effectively affect500
DA neurons activity during a classical-conditioning task.501
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While other areas might be implied in RPE computations in the VTA, within our minimal model, we502
used functional relevant inputs to the VTA that were shown to be strongly affected by reward information503
based on diverse recurrent studies in the last decades: the working-memory activity in the PFC integrating504
the timing of reward occurence (Durstewitz et al., 2000; Connor and Gould, 2016), the dopamine-mediated505
plasticity in the NAc via dopamine receptors (Morita et al., 2013; Yagishita et al., 2014; Keiflin and Janak,506
2015), the PPTg activation at the reward delivery (Okada et al., 2009; Keiflin and Janak, 2015). Notably, in507
most of our assumptions, we rely on experimental data that studied neuronal activity of mice performing a508
simple classical-conditioning task (reward delivery following conditioning cue with no instrumental actions509
required). In line with this modeling approach, further optogenetic manipulations implying photo-inhibition510
as in Eshel et al. (2015) would then be required to study the exact functional impact of the PFC, the NAc511
and the PPTg on dopamine RPE computations during a simple classical conditioning task.512

4.3 Nicotine-induced nAChRs desensitization and environmental rewards513

Desensitization of α4β2-nAChRs on VTA GABA neurons following nicotine exposure results in increased514
activity of VTA DA neurons (Mansvelder et al., 2002; Picciotto et al., 2008; Graupner et al., 2013). Through515
the associative-learning mechanism suggested by our model, nicotine exposure would therefore up-regulate516
DA-response to rewarding events by decreasing the impact of endogenous acetylcholine on VTA GABA517
neurons provided by the PPTg nucleus activation (Fig. 6). Together, our results propose that nicotine-518
mediated nAChRs desensitization potentially enhances the DA response to environmental cues encountered519
by a smoker (Picciotto et al., 2008).520

Indeed, here, we considered that the rewarding effects of nicotine could be purely contextual: nicotine521
ingestion does not induce a short rewarding stimulus (US), but an internal state (here, after 5 min of522
ingestion) that would up-regulate smoker perception of environmental rewards (the taste of coffee) and523
consequently, when learned, the associated predictive cues (the view of a cup of coffee). While nicotine524
self-administration experiments considered nAChRs activation as the main rewarding effect of nicotine525
(Picciotto et al., 2008; Changeux, 2010; Faure et al., 2014), our model focuses on the long-term (min to526
hours) effects of nicotine that a smoker usually seeks, that interestingly correlates with desensitization527
kinetics of α4β2-nAChRs (Changeux, 2010).528

However, the disinhibition hypothesis on nicotine effects in the VTA remains debated. Although demon-529
strated in vitro (Mansvelder et al., 2002) and in silico (Graupner et al., 2013), it is still not clear whether530
nicotine-induced nAChRs desensitization preferentially acts on GABA neurons within the VTA in vivo.531
This would depend on the ratio of α4β2-nAChRs expression levels r but also on the preferential VTA targets532
of cholinergic axons from the PPTg. While we gathered both components into the parameter r, recent533
studies found that PPTg-to-VTA cholinergic inputs preferentially target either DA neurons (Dautan et al.,534
2016) or GABA neurons (Yau et al., 2016). Notably, accounting for the relevance of Yau et al. (2016) exper-535
imental conditions - photo-inhibition of PPTg-to-VTA cholinergic input during a Pavlovian-conditioning536
task - we chose to preferentially express α4β2-nAChRs on GABA neurons (r = 0.2).537

Finally, in our behavioral simulations of a decision-making task (Fig. 7), we report that nicotine exposure538
could potentially bias mice choices towards big rewards. Recent recordings from Faure and colleagues539
(unpublished data) showed a similar effect of chronic nicotine exposure, with mice showing increasing540
choices for locations with 100% and 50% reward probabilities at the expense of the location with 25%541
probability. In this line, future studies could investigate the effects of chronic nicotine on VTA activity542
during a classical conditioning task as presented here (Fig. 6) but also on behavioral choices according to543
reward size (Fig. 7).544
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The idea that dopamine neurons signal reward-prediction errors has revolutionized the neuronal inter-545
pretation of cognitive functions such as reward processing and decision-making. While our qualitative546
investigations are based on a minimal neuronal circuit dynamics model, our results suggest areas for future547
theoretical and experimental work that could potentially forge stronger links between dopamine, nicotine,548
learning, and drug-addiction.549

Parameter Description Value Reference
α4β2-nAChR (Graupner et al., 2013)
EC50 half-maximum conc. of activation (ACh) 30 μM
α potency of Nic to evoke response 3
na Hill coefficient of activation 1.05
IC50 half-maximum conc. of desensitization by Nic 0.061 μM
nd Hill coefficient of desensitization 0.5
τa activation time constant 5 msec
Kτ half-maximum conc. of desensitization time const. 0.11 μM
nτ Hill coefficient of desensitization time constant 3
τmax maximal desensitization time constant 10 min
τ0 minimal desensitization time constant 500 msec
Network
x reward size 1-20 μL (Eshel et al., 2015)
wCS strength of CS signal 8 here
τD membrane time constant of DA population 30 ms (Graupner et al., 2013)
τG membrane time constant of GABA population 30 ms (Graupner et al., 2013)
τPFC membrane time constant of PFC population 100 ms (Gerstner et al., 2014)
τa adaptation time constant 1000 ms (Gerstner et al., 2014)
τPPTg membrane time constant of PPTg population 80 ms (Okada et al., 2009)
wG strength of GABA input to DA 1 (Graupner et al., 2013)
wPFC strength of PFC input to GABA and DA variable
JPFC strength of PFC recurrent connections variable
wPPT-D strength of PPTg Glu input to DA 0.8 (Yoo et al., 2017)
wPPT-G strength of PPTg Glu input to GABA 0.2 (Yoo et al., 2017)
wα4β2 strength of nAChR activation 15 here
wACh maximal ACh conc. from PPTg 1 μM (Graupner et al., 2013)
BD baseline firing rate of DA (without input) 18 Hz (Eshel et al., 2015)
BG baseline firing rate of GABA 14 Hz (Eshel et al., 2015)
BPPTg baseline firing rate of PPTg 2 Hz (Okada et al., 2009)
r balance of α4β2 nAChRs 0.2 (Mansvelder et al., 2002)
c strength of adaptation in PFC population 0.6 here
αP learning rate of PFC recurrent weight 0.2 here
αS learning rate of cortico-striatal weight 0.0005 here

550

Table 1. Model parameters551
The parameters in the model were chosen qualitatively in order to account for most of experimental data from552
different studies (references) with relative accuracy. The α4β2-containing nAChR parameters were directly taken553
from (Graupner et al., 2013), whereas the network parameters were qualitatively adapted from different studies.554
When no data could be related, some parameters were arbitrarily fixed (here).555
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Figure 1. Illustration of the VTA circuit and neural dynamics of each area during learning of a pavlovian-
conditioning task
Afferents inputs and circuitry of the ventral tegmental area (VTA). The GABA neuron population (red) inhibits
locally the DA neuron population (green). This local circuit receives excitatory glutamatergic input (blue axons) from
the corticostriatal pathway and the pedunculopontine tegmental nucleus (PPTg). The PPTg furthermore furnishes
cholinergic projections (purple axon) to the VTA neurons (α4β2 nAChRs). r is the parameter to change continuously
the dominant site of α4β2 nAChR action. Dopaminergic efferents (green axon) project, amongst others, to the
nucleus accumbens (NAc) and the prefrontal cortex (PFC) and modulates cortico-striatal projections wPFC and PFC
recurrent excitation JPFC weights. The PFC integrates CS (tone) information, while the PPTg respond phasically to
the water reward itself (US). Dopamine and acetylcholine outflows are represented by green and purple shaded areas,
respectively. All parameters and description are summarized in Table 1.
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Figure 2. Schematic of a classical-conditioning task
(A) Simulated thirsty mice receive a water reward ranging from 1 to 20 μL. Tone (CS) and reward (US) onsets are
separated by 1.5 sec. (B) Firing rates (mean ± standard-error (s.e.)) of optogenetically identified dopamine neurons
in response to different sizes of unexpected reward. Adapted from (Eshel et al., 2016).
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Figure 3. Activity of VTA neurons and their afferents during a pavlovian-conditioning task
Simulated mean activity (Hz) of each neuron population during a pavlovian-conditioning task, where a tone is
presented systematically 1.5 s before a water reward (4 μL). Three different trials are represented: the initial
conditioning trial (n = 1, light colors), an intermediate trial (n = 6, medium colors) and the final trial (n = 50, dark
colors) and when reward is omitted after learning (dotted lines). Vertical dashed grey and cyan lines represent CS
and US onsets, respectively. (A) PFC neurons learn the timing of the task by maintaining their activity until US.
(C) PPTg neurons activity responds to the US signal at all trials. (B) VTA GABA persistent activity increases with
learning, (D) VTA DA activity increase at the CS and decrease at the US.
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Figure 4. Learning of reward timing and magnitude during classical-conditioning
(A) The maximal activity of the VTA DA neurons at the CS onset (blue line) and at the reward delivery (orange line)
is plotted for each trial of the conditioning task. These values are computed by taking the maximum value of the
firing rate of the DA neurons in a small time window (200 ms) after the CS and the US onsets. (B) PFC weights
showing two phases of learning: learning of the US timing by PFC recurrent connections weight (JPFC, orange line)
and learning of the reward value by the weights of PFC neurons onto VTA neurons (wPFC, magenta line). (C,D)
Phase analysis of PFC neuron activity from Eq. 6 before learning (C) and after learning (D). Different times of the
task are represented: t < 0.5 s (before CS onset, light blue) and 1 s < t < 2 s (between CS offset and US onset,
light blue), 0.5 s < t < 1 s (during CS presentation, medium blue) and t > 2 s (after US onset, dark blue). Fixed
points are represented by green (stable) or red (unstable) dots. Dashed arrows: trajectories of the system from t = 0
to t = 3 s.
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Figure 5. Photo-inhibition of VTA GABA neurons
(A) Activity of a subpopulation of GABA neurons (20%) in control (black) and with photo-inhibition (green)
simulated by an exponential-like decrease of activity in a ±500 ms time-window around the US (green shaded
area). (B) DA activity resulting from GABA neurons activity in control condition (black) and when GABA is
photo-inhibited (green).
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Figure 6. Effects of nicotine on DA activity during classical-conditioning
(A) Activity of DA neurons during the pavlovian-conditioning (tone + 4 μL reward) task in three different trials
as in Fig. 3. (B) Same as (A) but after 5 min of 1 μM nicotine injection during all conditioning trials. (C) DA
activity after learning under nicotine (magenta) or in the same condition but when nicotine is removed (dark red).
(D) Dose-response curves of CS-related burst in DA neurons after learning in control condition (green) or under
nicotine (magenta).

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 25, 2018. ; https://doi.org/10.1101/423806doi: bioRxiv preprint 

https://doi.org/10.1101/423806
http://creativecommons.org/licenses/by-nc-nd/4.0/


Deperrois and Gutkin Nicotinic Modulation of Dopaminergic Reward Computation Circuitry

2 L 4 L 8 L
Reward value

0

10

20

30

40

50

R
ep

ar
tit

io
n 

(%
)

Control
Nicotine8 μL  

4 μL  2 μL  

A B

Figure 7. Effects of nicotine on mouse decision-making among reward sizes
(A) Illustration of the modeling of the task. Three explicit locations are placed in an open field. Mice receive a reward
each time they reach one of the locations. Simulated mice, who could not receive two consecutive rewards at the
same location, alternate between rewarding locations. The probability of transition from one state to another depends
on the two available options. (B) Proportion of choices of the three rewarding locations as a function of reward value
(2, 4, 8 μL) over 10,000 simulations in control mice (blue) or nicotine-ingested mice (red).
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Figure 8. TD learning model (Watabe-Uchida et al., 2017)
TD error model as implemented in (Schultz, 1998). The TD error in DA neurons is computed from 3 inputs: two
reward expectation signals and one reward signal. Traces show how these terms change with time at the last trial of a
conditioning task. DA response to a reward omission can be approximated by V (t+ 1)− V (t) (gray), the derivative
of the value function, V (t). Adapted from (Watabe-Uchida et al., 2017).
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