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question linking ecology with evolutionary biology concerns the role of environmental heterogeneity in 13 
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adaptive the divergence among populations of the stream mayfly Ephemera strigata in the Natori River 15 
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quantify the dispersal ability of E. strigata. Our main findings were as follows: 1) random forest shows a 20 

higher resolution than traditional statistical analysis for detecting adaptive divergence; 2) separating 21 
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A central question linking ecology with evolutionary biology concerns the role of environmental 29 

heterogeneity in determining adaptive divergence among local populations within a species. Adaptive 30 

divergence in aquatic insects is usually reported to be influenced by altitudinal gradients at the river-31 

corridor scale (Hughes et al. 2009, Keller et al. 2013, Polato et al. 2017). Altitude is often strongly related 32 

with a number of environmental factors, such as temperature and oxygen, which greatly influenced the 33 

biology of organisms (Keller and Seehausen 2012, Halbritter et al. 2015). Thermal regimes directly 34 

regulate species’ growth, development and mating behaviour, thereby setting limits on species 35 

distributions and abundances across landscapes (Li et al. 2013). Oxygen availability also restricts 36 

species’ distributions by affecting the respiratory metabolism of aquatic organisms (Rostgaard and 37 

Jacobsen 2005). Multiple studies have focused on the genetic basis of adaptive divergence in aquatic 38 

insects because of their importance in freshwater ecosystem biomonitoring. Altitudinal genetic divergence 39 

has been reported in aquatic insects including caddisflies (Plectrocnemia conspersa and Polycentropus 40 

flavomaculatus (Wilcock et al. 2007), Stenopsyche maramorata (Yaegashi et al. 2014), stoneflies 41 

(Dinocras cephalotes) (Elbrecht et al. 2014) and mayflies (Atalophlebia) (Baggiano et al. 2011). However, 42 

most of these studies were based on a given gene or a limited number of candidate genes. 43 

The development of genome scanning approaches, such as Amplified Fragment Length Polymorphism 44 

(AFLP), allows the study of numerous anonymous markers (loci) rather than the study of a few candidate 45 

genes. Compared with neutral loci, loci influenced by directional selection (i.e. non-neutral loci) are 46 

expected to exhibit higher levels of genetic divergence (Kirk and Freeland 2011). Therefore, based on the 47 

screening of a large numbers of candidate loci (‘outlier’ loci, reviewed by Nosil et al. 2009) and the 48 

estimation of the levels of genetic divergence, statistical methods can identify loci that are under direct 49 

selection or linked to loci under selection. Selected non-neutral loci can be used to test hypotheses about 50 

the adaptive process. Neutral loci may be available for accurate tests of neutral processes, such as 51 

isolation by distance (IBD) (Oleksa et al. 2013) and gene flow patterns, thereby avoiding the confounding 52 

effects of natural selection (Kirk and Freeland 2011). 53 

In the ordinal analysis of genome scanning, non-neutral loci are detected based on genetic variation 54 

among populations with different phenotypes or ecotypes (Bonin et al. 2006, Nosil et al. 2008, Egan et al. 55 

2008, Galindo et al. 2009) or allopatric populations among different geographic localities (Medugorac et 56 
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al. 2009, Gaggiotti et al. 2009, Renaut et al. 2011). Genome scanning can also be conducted using 57 

genetically defined populations with unknown phenotypes or ecotypes. For example, Bayesian clustering 58 

methods (Pritchard et al. 2000, Falush et al. 2003, 2007) can delineate genetic populations prior to any 59 

observable phenotypic divergence and, therefore, may provide insights into the early stages of adaptive 60 

divergence (Whiteley et al. 2011). 61 

The determination of the link between non-neutral loci and environmental factors is one of the most 62 

difficult tasks in molecular ecology. Conventional statistical methods such as the partial Mantel test 63 

(Legendre and Fortin 2010, Watanabe et al. 2014), distance-based redundancy analysis (dbRDA) 64 

(Watanabe and Monaghan 2017) and multivariate analysis of variance (MANOVA (Mccairns and 65 

Bernatchez 2008) have been widely applied, but these methods suffer from a number of limitations. First, 66 

associating genetic variance and environmental distances can result in bias and high error rates 67 

(Legendre and Fortin 2010, Guillot and Rousset 2013, Legendre et al. 2015). In addition, the Mantel test 68 

and dbRDA are limited to testing the linear independence between genetic and environmental distances 69 

among local populations. Fulfilling the underlying assumptions of conventional statistical methods (e.g. 70 

normal distribution and homogeneity of variance) can also be very difficult (Vittinghoff et al. 2012). On 71 

account of these concerns, modern statistical techniques, such as machine learning methods, are now 72 

being developed as promising alternatives. Machine learning methods are particularly effective in finding 73 

and describing structural patterns in data and providing the values of relative importance among variables 74 

(Prasad et al. 2006, Biau and Scornet 2016). 75 

Among the variety of machine learning methods available, Random Forest (RF) (Breiman 2001) is one of 76 

the most widely used modelling techniques to generate high-prediction accuracy and evaluate the relative 77 

importance of explanatory variables in the model (Biau and Scornet 2016). RF is an ensemble tree-based 78 

method that constructs multiple decision trees from a dataset and combines results from all the trees to 79 

create a final predictive model. In ecological studies, RF has been applied to community-level studies to 80 

predict species’ distributions and identify constrained environmental factors (Cutler 2007, Marmion et al. 81 

2009, Evans et al. 2011). In most studies, environmental data have been used as independent variables 82 

to predict the presence or absence of species’ (dependent variables). The relative contributions of 83 
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environmental variables to species distributions are quantified by their relative importance obtained from 84 

the RF model. It may therefore be possible to extend the use of RF to population genetic studies where 85 

environmental variables are used to predict the presence or absence of a haplotype or allele at outlier 86 

loci. The relative importance of each environmental variable could be considered as its influence to outlier 87 

loci, which may strongly drive adaptive divergence. 88 

In this study, we examined adaptive divergence using AFLP markers in populations of the stream mayfly 89 

E. strigata from the Natori River Basin in northeastern Honshu Island, Japan (Fig.1). The primary aims of 90 

the study were to determine the extent of local adaptation at the genome level in natural populations and 91 

to quantify associations between environmental gradients and adaptive divergence. We first detected loci 92 

under selection (non-neutral loci) based on locus-specific genetic differentiation among populations. 93 

Rather than defining populations a priori using geographic or phenotypic information, we delineated 94 

populations based on the discontinuities in the AFLP variation among individuals using a hierarchical 95 

analysis of STRUCTURE (Pritchard et al. 2000, Falush et al. 2003, 2007, Vähä et al. 2007). Focusing on 96 

non-neutral loci, we then applied RF to identify environmental variables most likely to contribute to 97 

adaptive divergence and compared our results with a traditional dbRDA to examine the feasibility of the 98 

method. Finally, we examined the dispersal patterns and dispersal distance in E. strigata using neutral 99 

loci. 100 

Methods 101 

Study site and sampling 102 

E. strigata is a burrowing mayfly well studied in Japan and Korea (Ban and Kawai, 1986; Lee et al., 103 

2008). In this study, sampling was carried out in the Natori River catchment in the Miyagi Prefecture in 104 

northeastern Japan (Fig. 1). Larval samples were collected at 11 sites from October 26 to November 12, 105 

2010. At each site, we collected E. strigata individuals using a Surber net (30 × 30 cm quadrat with mesh 106 

size 250 µm) along 200–900 m stream reaches. All specimens were preserved in the field in 99.5% 107 

ethanol, transported to the laboratory and identified to species level under a stereomicroscope (120×) 108 

using taxonomic keys (Kawai and Tanida 2005). 109 
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We measured six geographical parameters at each site using standard ecological methods in stream 110 

surveys (Hauer and Lamberti 2007, Watanabe et al. 2008). Stream order was determined using a 111 

1:25000 map. The width of the stream channel was measured at 10 randomly selected cross-sections 112 

using a tape measure. Longitude and latitude coordinates and altitude were recorded using a global 113 

positioning system on the river side. The riverine distance between two sites was measured on Google 114 

Maps using the ruler function. 115 

DNA extraction and AFLP fingerprinting 116 

DNA from each individual was isolated from abdominal tissue by removing the digestive tract using the 117 

DNeasy 96 Blood & Tissue Kits (Qiagen). The concentration of extracted DNA was measured by Nano 118 

Drop ND-1000 spectrometer (Thermo Fisher Scientific) and diluted to 50 ng/µL. We genotyped 216 119 

individuals from 11 sites with the AFLP method (Vos et al. 1995). The restriction step followed the 120 

protocol by Watanabe et al. (2014). The ligation step was performed by adding 1 U T4 DNA ligase (New 121 

England), 0.2 µL of 100µM MseI adapter, 0.2µM of EcoRI adapter, 2 µL T4 DNA ligase buffer (10×) (New 122 

England) and up to 20 µL dH2O and incubating the solution at 16°C for 12 h. The sequences of the MseI 123 

adapter and EcoRI adapters followed Reisch (2007). The adapters were manually prepared as follows: 1) 124 

mixing equal molar amounts of adapter oligomer, 2) denaturing at 95°C for 5 min and 3) incubating for 10 125 

min at room temperature. Restricted or ligated products were then diluted at a 1:19 ratio with 0.1× TE 126 

buffer. Pre-selective amplification was performed in a mixture of 0.06 µL of 100µM MseI and EcoRI 127 

primers (Reish 2007). 15 µL of AFLP Amplification Core Mix (Applied Biosystems), 4 µL of each 128 

restricted/ligated product and up to 29 uL dH2O. Pre-selective polymerase chain reaction (PCR) 129 

parameters followed Reish (2007). PCR products were diluted 20 times by 0.1× TE buffer. 130 

For selective amplifications, we employed three types of primer pairs (EcoRI-AGG & MseI-CAT, EcoRI-131 

ACC & MseI-CAC and EcoRI-AGG & MseI-CAC) that generate the most variable patterns in 64 types of 132 

selective primer pairs using three individuals. Each EcoRI primer was modified with Beckman Dye2, 3 133 

and 4 in 5’-end. The mixture of selective PCR was 0.1 µL of 100µM MseI and EcoRI primers, 15µL of 134 

AFLP Amplification Core Mix (Applied Biosystems) and up to 20 uL dH2O. We followed Reich (2007) to 135 

set PCR reaction parameters. 136 
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The selective PCR products were separated by capillary gel electrophoresis using CEQ8000 (Beckman 137 

Coulter). To adjust fluorescent intensity, each fluorescent PCR product was mixed with the following 138 

proportion EcoRI-AGG & MseI-CAT 4 µL, EcoRI-ACC & MseI-CAC 2µL and EcoRI-AGG & MseI-CAC 139 

1µL. Peak sizes of PCR products were calculated with DNA Size Standard 600 (Beckman Coulter) using 140 

the CEQ8000 software (Beckman Coulter) with default settings. 141 

Hierarchal STRUCTURE analysis 142 

We defined populations based on discontinuities in AFLP variation using the individual-based Bayesian 143 

clustering method implemented in STRUCTURE v. 2.3 (Pritchard et al. 2000, Falush et al. 2003, 2007). 144 

We performed 20 runs of 50,000 iterations with a burn-in of 10,000 for each number of assumed 145 

populations (K) ranging from 1 to 15 using the admixture model and assuming correlated allele 146 

frequencies. We used a uniform prior for alpha (the parameter representing the degree of admixture) with 147 

a maximum of 10 and set Alphapropsd to 0.05. Lambda, the parameter representing the correlation in the 148 

parental allele frequencies, was estimated in a preliminary run using K = 1. The prior FST was set to the 149 

default value (mean = 0.01; standard deviation (SD) = 0.05). 150 

To determine the optimal K, we computed the log-likelihood (Ln P (K)) for each K and selected K with the 151 

highest standardized second order rate of change (∆K) of Ln P (K) (Evanno et al. 2005). Although this 152 

method helps to correctly identify K in most situations, it is known to have two limitations. First, it is useful 153 

only for the uppermost level of a hierarchical genetic structure. Second, it is unable to find the best K if K 154 

= 1 (i.e. if there is no population substructure) (Evanno et al. 2005). To address these limitations, we used 155 

a hierarchical approach for STRUCTURE analysis modified from Vähä et al. (2007), which repeats the 156 

analysis at lower hierarchical levels until no substructure can be uncovered. The advantage of our 157 

method was that we used the Wilcoxon two-sample test to control the round of repeated analysis instead 158 

of checking the pattern of individual membership. Specifically, we compared the mean value of Ln P (K) 159 

from 20 runs with optimal K (as determined using ∆K) with mean Ln P (K = 1) using the Wilcoxon two-160 

sample test (Rosenberg et al. 2001). If Ln P (K = 1) was found to be significantly lower than Ln P (K) at 161 

the optimal K, we repeated the analysis within each of the K populations. At each hierarchical level, 162 
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individuals were assigned to subpopulations based on the individual membership coefficient (Pritchard et 163 

al. 2000). 164 

Outlier loci detection 165 

We used two different statistical methods to identify outlier loci. Dfdist (adapted from Fdist (Beaumont and 166 

Nichols 1996)) uses coalescent simulations to generate thousands of loci evolving under a neutral model 167 

of symmetrical islands with a mean global FST close to the observed global FST. Mean FST was calculated 168 

using the default method by first excluding 30% of the highest and lowest observed values. Empirical loci 169 

with FST values significantly greater (p < 0.05) than the simulated distribution (generated with 50,000 loci) 170 

were considered to be outliers. Dfdist can detect both divergent selection and balancing selection, but we 171 

focused only on divergent selection in this study. 172 

BayeScan is a hierarchical Bayesian model-based method first described in Beaumont and Balding 173 

(2004) and modified by Foll and Gaggiotti (2008) for dominant markers (available at 174 

http://cmpg.unibe.ch/software/bayescan/). The Bayesian method is based on the concept that FST values 175 

reflect contributions from locus-specific effects, such as selection, and population-specific effects, such as 176 

local effective size and immigration rates. The main advantage of this approach is that it allows for 177 

different demographic scenarios and different amounts of genetic drift in each population (Foll and 178 

Gaggiotti 2006, 2008). Using a reversible jump Markov Chain Monte Carlo approach, the posterior 179 

probability of each locus being subjected to selection is estimated. A locus is deemed to be influenced by 180 

selection if its FST is significantly higher or lower than the expectation provided by the coalescent 181 

simulations. 182 

For all subsequent analyses, non-neutral loci were defined as outlier loci detected by the Dfdist and 183 

BayeScan methods at the 95% confidence level. Neutral loci were defined as loci detected by neither 184 

Dfdist nor BayeScan at the 95% thresholds. Loci detected as outliers by only one of the two methods 185 

were not considered in the further analyses. 186 

Analysis of genetic diversity 187 
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FST was calculated with ARLEQUIN v. 3.1 (Excoffier et al. 2009) using: 1) all loci, 2) only neutral loci and 188 

3) only non-neutral loci. Global heterozygosity among all populations (Ht) and mean heterozygosity within 189 

populations (Hw) were estimated separately for neutral and non-neutral loci with AFLP-SURV v. 1.0 190 

(Vekemans 2002) using the Bayesian method with a uniform prior distribution of allele frequencies 191 

(Zhivotovsky 1999). Molecular variance analysis (AMOVA) was also conducted using ARLEQUIN to 192 

provide the estimates of genetic variations among and within sampling sites. For the test of IBD, we 193 

examined the correlations of pairwise FST with geographical distance and riverine distance (i.e. distance 194 

along the watercourse) between sites using GeneAlEx v. 6.5 (Peakall and Smouse 2012). The genetic 195 

distance between each pair of sites was quantified using mean pairwise FST for neutral and non-neutral 196 

loci using the Bayesian-estimated allele frequencies generated by AFLP-SURV. 197 

We conducted genetic spatial autocorrelation analysis using neutral loci for geographic distance. Eight 198 

geographic distance classes defined every 4 km (from 0–4 km to 28–32 km) were used in the analysis. 199 

Individuals within the same site were considered to be separated by a distance of 0 km. We calculated 200 

Moran’s I for each distance class using GeneAlEx, where I ranges from −1 to 1, and the positive values 201 

indicate that sites within a given distance class have similar genetic structure. We used jackknifing to 202 

estimate the 95% confidence intervals. 203 

Adaptive divergence modelling 204 

We determined the environmental variables that drive adaptive divergence at non-neutral loci using the 205 

RF model (Chawla et al. 2002, Maciejewski and Stefanowski 2011, Blagus and Lusa 2013). All the six 206 

environmental variables were used to predict the band presence/absence patterns at non-neutral loci. We 207 

assigned individuals from the same site to the same environmental conditions. The dataset was 208 

imbalanced because the number of individuals with band presence was not equal to that with band 209 

absence. The individuals were thus classified in two classes (i.e. presence and absence). We solved the 210 

data imbalance problem by oversampling for the minority class using the Synthetic Minority Oversampling 211 

Technique (SMOTE) (Chawla et al. 2002). SMOTE creates synthetic minority class sample units by taking 212 

the difference between the feature vector (sample) under consideration and its nearest neighbour. It then 213 

multiplies this difference by a random number between 0 and 1 and adds it to the feature vector under 214 
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consideration (Chawla et al. 2002). The process was conducted using the DMwR (Torgo 2013) and 215 

randomForest packages (Liaw and Wiener 2002) in the R programme (R Core Development Team 2015). 216 

Model performance was evaluated using the area under the receiver operating characteristic curve (AUC) 217 

(Janitza et al. 2013). The AUC value typically ranged from 0.5 (random prediction) to a maximum value of 218 

1, which represents the perfect model theoretically. As rules of thumb, an AUC value > 0.9 indicates very 219 

good model quality, a value < 0.7 indicates poor model quality, and a value ranging from 0.7 to 0.9 220 

indicates good model quality (Baldwin 2009). 221 

We also conducted dbRDA as a comparative ordinal method. DbRDA was performed on the ordination 222 

solutions, rather than on the distance matrices (Legendre and Fortin 2010). In this study, pairwise genetic 223 

distances at non-neutral locus among sites were used to screen environmental factors that most closely 224 

relate to genetic divergence (Watanabe et al. 2017). The best model, comprising significant predictors, 225 

was selected using forward selection with permutation tests and an inclusion threshold of α = 0.05 using 226 

the ordistep function of the vegan package (Oksanen et al. 2015) in the R programme (R Core 227 

Development Team 2015). Significant differences were tested with the anova.cca function in the vegan 228 

package. 229 

Results 230 

Hierarchical STRUCTURE analysis 231 

Hierarchical iterations by STRUCTURE detected significant substructure until the 4th iteration beyond the 232 

initial analysis (Fig. 2). In total, 14 groups were defined for the 216 E. strigata individuals collected in 11 233 

sites. Most groups were widespread over the sampling sites, whereas some groups were restricted to 234 

specific sites. For example, the members of groups 2, 3 and 8 occurred only in up- and middle-stream 235 

sites (Fig. 1: upstream sites, S1 and S6-8; middle-stream sites, S2-5). 236 

Outlier detection and genetic diversity 237 

Using our criterion of 95% significance with both Dfdist and BayeScan, 10 non-neutral loci and 346 238 

neutral loci were detected from the 372 polymorphic AFLP loci. Dfdist alone detected 10 outlier loci under 239 
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divergent selection and 11 outlier loci under balancing selection, respectively. Outlier loci under balancing 240 

selection were not involved in this study. All the 10 outlier loci under divergent selection were consistently 241 

identified by BayeScan, which alone identified 26 outliers (Table 1). Total genetic variation (Ht) was lower 242 

at neutral loci than at non-neutral loci and the same trend occurred in mean genetic variation within sites 243 

(Hw; Table 2). Mean global FST among all sites for all AFLP loci was 0.029 (p < 0.01; AMOVA). When 244 

measured using neutral or non-neutral loci, we found global FST values of 0.021 (p < 0.01) and 0.039 (p < 245 

0.01), respectively (Table 2). 246 

Detection of adaptive divergence 247 

We separately built RF models for each of the 10 non-neutral loci. Of the 10 non-neutral loci, loci 56, 89 248 

and 254 were well predicted (i.e. AUC > 0.7) with altitude being the most important environmental 249 

variable (Fig. 3), With dbRDA, only genetic divergence at locus 254 was significantly predicted (p < 0.05) 250 

(Fig. 4) with altitude explaining 54% of the genetic divergence at this locus. For the other non-neutral loci, 251 

no significant relationship with environmental factors was found with dbRDA (p > 0.05). IBD was not 252 

significant for both geographic (r = 0.11, p = 0.33) and riverine distance (r = 0.06, p = 0.49) 253 

(Supplementary Fig. S1). The results of the spatial autocorrelation analysis based on neutral loci showed 254 

significant positive autocorrelation coefficients at the shortest range (0–4 km; Fig. 5). 255 

Discussion 256 

In this study, we used an RF model to examine the relationship between environmental factors and 257 

adaptive divergence at non-neutral loci in the stream mayfly E. strigata. Ordinal statistical tests of multiple 258 

linear regression method need assumptions that data are normally distributed with homogeneity of 259 

variance and are independent from one another (Vittinghoff et al. 2012), and this is often difficult to fulfil. 260 

The environmental factors investigated in this study did not show strong independency among variables. 261 

However, RF can overcome the limitations of regression models and accommodate pronounced 262 

nonlinearities in the exploration of gene-environment relationships in large genomic data sets (Breiman 263 

2001, Fitzpatrick and Keller 2015, Biau and Scornet 2016). We developed RF models for each of the 10 264 

non-neutral loci detected by both BayeScan and Dfdist. Three out of the 10 non-neutral loci (56, 89 and 265 
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254) showed good model prediction performance (AUC > 0.7), whereas the other seven could not be 266 

modelled well. This may be explained by natural selection at these seven loci being driven by 267 

environmental factors not included in our analysis (e.g. velocity and chlorophyll a) (Watanabe et al. 2014, 268 

Li et al. 2016, Brouwer et al. 2017). RF is recommended for future studies including huge numbers of 269 

environmental variables to assess their effects on adaptive divergence because RF can perform well with 270 

large numbers of variables (Genuer et al. 2010). 271 

To compare the performance of RF with ordinal statistical analysis, we also conducted dbRDA analysis 272 

for all the 10 non-neutral loci. Only one locus (254) was well-modelled by dbRDA. This locus was one of 273 

the three loci accurately modelled by RF and the selected environmental factor (i.e. altitude) was 274 

consistent with results from RF. The low number of loci modelled in dbRDA may be because of its ability 275 

to only test linear independence29. The ranking of variable importance in RF relies on the principle that 276 

rearranging the values of unimportant variables should not degrade the predictive accuracy of the model 277 

(Breiman 2001). As a result, RF could reduce the influence of variable dependency on model results 278 

compared with dbRDA (Archer and Kimes 2008, Genuer et al. 2010). 279 

To identify non-neutral loci, we used populations delineated by a hierarchal STRUCTURE analysis as an 280 

alternative to the geographic or phenotypic populations that are typically used in ordinal analysis of 281 

genome scanning. The STRUCTURE analysis successfully delineated populations with significant genetic 282 

differences, something that is difficult to achieve using visible characters such as phenotypes, ecotypes 283 

or geographic localities (Pritchard et al. 2000). The STRUCTURE analysis can delineate genetic 284 

populations among individuals prior to the occurrence of observable phenotypic divergence and may 285 

provide a means to investigate the early stages of adaptive divergence prior to phenotypic divergence in 286 

population delineation and detection of non-neutral loci (Whiteley et al. 2011). 287 

We introduced a hierarchical approach to the STRUCTURE analysis that enabled us to look at the finer 288 

population structure (i.e. higher K) than the ordinal STRUCTURE analysis, which stops once the 289 

uppermost hierarchical level is found. The number of populations (K) is an important determinant in outlier 290 

detection (Foll and Gaggiotti 2008). We conducted outlier loci detection based on the geographical 291 

populations and uppermost hierarchical level of the STRUCTURE analysis that delineated two 292 
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populations, but we could not detect any outlier loci. This clearly shows the advantages of using a 293 

hierarchical approach to STRUCTURE analysis. However, a deeper hierarchical level (e.g. the 4th 294 

iteration in the hierarchy) will define a weaker structure at the risk of detecting extremely fine population 295 

substructures. 296 

By employing a genome scanning approach, we comparatively used neutral and non-neutral loci in 297 

examining genetic diversity and genetic distance. Importantly, we found greater genetic divergence at 298 

non-neutral loci than neutral loci. This pattern is consistent with the study of three caddisflies species and 299 

one mayfly species in the same catchment system (Watanabe et al. 2014). Other studies also found 300 

similar pattern of lower levels genetic divergence in neutral DNA markers compared with morphological 301 

traits (analogues to non-neutral markers) in macroinvertebrate species such as snails (Cook 1992), 302 

spiders (Gillespie and Oxford 1998) and damselflies (Wong et al. 2003). Based on the results of Dfdist, 303 

the 10 non-neutral loci were under divergent selection rather than stabilising selection, and hence 304 

presented greater genetic divergence compared with neutral loci (Table 2). 305 

One of the main findings of this study is that the mountain burrowing mayfly E. strigata presents an 306 

adaptive divergence along an altitudinal gradient. Altitude is often reported to be closely related with a 307 

number of environmental factors that influence the life cycle and development of organisms (Múrria et al. 308 

2013, Halbritter et al. 2015). For example, altitude influences insect phenology, restricting the mating 309 

period to only a few days, thus leading to asynchronous emergence, which may act as a reproductive 310 

barrier between populations (Yaegashi et al. 2014, Watanabe et al. 2017) or as metabolism regulator 311 

(Gamboa et al. 2017). Altitude also influences air density which affects both respiration and the power 312 

required for flight. The haemoglobin gene and other genes with a potential role for adaptation to low O2 313 

may show divergence between populations along an altitude gradient (Keller et al. 2013). 314 

As opposed to non-neutral makers, neutral markers are suitable for examining neutral process occurring 315 

under the drift-migration balance. Previous population genetic studies have inferred dispersal patterns of 316 

stream insects without differentiating neutral and non-neutral loci (Miller et al. 2002, Mila et al. 2010). This 317 

may cause an overestimation of genetic drift because non-neutral loci under divergent selection will 318 
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increase the estimates of genetic divergence (Kirk and Freeland 2011). Therefore, we used only neutral 319 

makers to infer dispersal patterns. 320 

We did not find significant IBD for both geographic and riverine distances based on neutral loci, 321 

suggesting that populations are not in a genetic drift–migration equilibrium at the studied geographic 322 

scale (Supplementary Fig. S1). The results of the spatial autocorrelation analysis based on neutral loci 323 

showed significant positive autocorrelation coefficients at the shortest range (0−4 km; Fig. 5a), indicating 324 

low dispersal ability for E. strigata. Mayflies are generally considered to have a very low dispersal ability in 325 

mountain streams (Barber-James et al. 2007). Limited dispersal distances were also observed in 326 

stoneflies owing to their poor dispersal ability (Briers et al. 2003, 2004). In contrast, caddisflies were 327 

frequently reported to show strong dispersal ability. Yaegashi et al. (2014) reported that the caddisfly 328 

Stenopsyche marmorata showed pronounced dispersal ability along stream corridors up to 12 km. 329 

In conclusion, the RF approach applied in this study performed better than the ordinal dbRDA in 330 

determining the influence of environmental factors on outlier loci under selection. Using neutral and non-331 

neutral methods, we showed that the mountain burrowing mayfly E. strigata presents adaptive divergence 332 

along an altitudinal gradient. The hierarchical STRUCTURE analysis detected finer population structures 333 

and increased the power of outlier detection. A limitation of this study was that our study did not include 334 

many environmental factors, which may also be constrained factors and help to improve the model 335 

performance. In addition, sequencing the detected outlier loci would provide a deeper understanding of 336 

altitudinal adaptation in E. strigata. 337 
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 527 

Figures 528 

 529 

 530 

 531 

Figure 1. Map of 11 sampling sites for Ephemera strigata in the Natori River Basin in northeastern Japan.532 n. 
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 533 

Figure 2. Subpopulation structure of Ephemera strigata as determined using STRUCTURE with 534 

hierarchical iterations. Dashed boxes indicate subpopulations and solid boxes indicate final populations. 535 

Numbers at the top of boxes indicate the number of individuals assigned to the populations. A total of 14 536 

groups (K) were defined from 216 individuals. 537 
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 538 

Figure 3. Relative importance of environmental variables based on the random forest model for three 539 

non-neutral loci (56, 89 and 254).  540 
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 541 

Figure 4. Distance-based redundancy analysis (dbRDA) describing the influence of environmental 542 

heterogeneity on genetic variation at a non-neutral locus (254). 543 
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 545 

Figure 5. Spatial autocorrelation at 4-km distance classes based on geographic distance for neutral loci. 546 

Dashed lines indicate permutated 95% confidence intervals and error bars indicate jackknifed 95% 547 

confidence intervals. * indicates significant spatial autocorrelation (p < 0.05). 548  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 23, 2018. ; https://doi.org/10.1101/424085doi: bioRxiv preprint 

https://doi.org/10.1101/424085


28 

 

Tables 549 

Table 1. Results of outlier loci detection and model construction based on three population definitions and 550 

two adaptive divergence models. Out of the 10 non-neutral loci identified from the 14 populations 551 

delineated by the hierarchical STRUCTURE analysis, three loci (56, 89 and 254) were modelled by 552 

random forest (AUC > 0.7) and one locus (254) was modelled by dbRDA (p < 0.05). 553 

Population definition 
Number of 

populations 

Non-neutral loci 

Neutral loci 

Adaptive divergence model 

Dfdist BayeScan Both 
Random 

forest 
dbRDA 

Sites 11 0 0 0 0 - - 

STRUCTURE 2 0 0 0 0 - - 

Hierarchical 

STRUCTURE 
14 21 26 10 346 3 1 
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Table 2. Genetic diversity and divergence measured using the following: 1) all loci, 2) only neutral loci 555 

and 3) only non-neutral loci. Ht = total expected heterozygosity; Hw = mean expected heterozygosity 556 

within sites; FST = Wright’s fixation index among sites. 557 

 

H
t
 H

w
 F

ST
 

All loci 0.1358 0.1357 0.029 

Neutral loci 0.1173 0.1155 0.021 

Non-neutral loci 0.4379 0.3523 0.039 

  558 
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Supplementary Information 559 

 560 

561 

Figure S1. Isolation by distance calculated using geographic (a) and riverine (b) distance. Solid lines 562 

indicate correlations between Wright’s fixation index (FST) and geographic (r = 0.11, p = 0.33) or riverine 563 

distance (r = 0.06, p = 0.49) calculated with Mantel tests. 564 
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