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Abstract 27 

Food production in conventional agriculture faces numerous challenges such as reducing waste, meeting 28 

demand, maintaining flavor, and providing nutrition. Contained environments under artificial climate 29 

control, or cyber-agriculture, could in principle be used to meet many of these challenges. Through such 30 

environments, phenotypic expression of the plant---mass, edible yield, flavor, and nutrients---can be 31 

actuated through a “climate recipe,” where light, water, nutrients, temperature, and other climate and 32 

ecological variables are optimized to achieve a desired result. This paper describes a method for doing 33 

this optimization for the desired result of flavor by combining cyber-agriculture, metabolomic phenotype 34 

measurements, and machine learning. In a pilot experiment,  (1) environmental conditions, i.e. 35 

photoperiod and ultraviolet (UV) light  (known to affect production of flavor-active molecules in edible 36 

plants) were applied under different regimes to basil plants (Ocimum basilicum)  growing inside a 37 

hydroponic farm with an open-source design;  (2) flavor-active volatile molecules were measured in each 38 

plant using gas chromatography-mass spectrometry (GC-MS); and (3) symbolic regression was used to 39 

construct a surrogate model of this chemistry from the input environmental variables, and search in this 40 

model was used to discover new combinations of photoperiod and UV light to increase this chemistry. 41 

These new combinations, or climate recipes, were then implemented in the hydroponic farm, and several 42 

of them resulted in a marked increase in volatiles over control.  The process demonstrated a “dilution 43 

effect”, i.e. a negative correlation between weight and desirable chemical species.  It also discovered the 44 

surprising effect that a 24-hour photoperiod of photosynthetic-active radiation, the equivalent of all-day 45 

light, induces the most flavor molecule production in basil. In this manner, surrogate optimization through 46 

machine learning can be used to discover effective recipes for cyber-agriculture that would be difficult 47 

and time-consuming to find using hand-designed experiments. 48 

 49 

Introduction 50 
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 51 

The so-called “dilution effect,” noted since the 1940’s and systematically reviewed since the early 1980’s 52 

[1], describes an inverse relationship between yield and nutrient concentration in food: For many 53 

nutritionally-important chemical constituents of food plants, such as minerals, protein, and vitamins, an 54 

increase in biomass is  accompanied by a decrease in nutrient concentration. This effect has been 55 

systematically demonstrated in historical nutrient content studies over the last 50-70 years [2,3], as well 56 

as in controlled side-by-side trials that have shown a relationship between nutrient dilution and genetics 57 

[4], artificial fertilization [5], and elevated carbon dioxide levels related to climate change [6,7]. Flavor, 58 

known to be an important element of food and of eating behavior for organisms from insects to humans 59 

[8], has been declining alongside nutrients over approximately the last 50 years [9-11] in inverse 60 

proportion to rising yields. Flavor-active molecules in plants frequently  have either positive health 61 

benefits (antioxidant, antimicrobial, anti-inflammatory) themselves or signal the presence of other 62 

beneficial or essential molecules, for example by being the enzymatic products of precursors (e.g. pro-63 

vitamin A carotenoids, essential amino or fatty acids) necessary for human nutrition and health [9].  64 

 65 

Vertical farming, or more generally cyber-agriculture, is a plant-growing format employing contained 66 

environments where light, water, nutrients, temperature, and other climate variables are provided 67 

artificially under computer control [12-14]. Data from environmental sensors informs the actuation of 68 

climatic conditions according to a “recipe” that is designed for best possible outcome, such as largest 69 

yield, best flavor, desired nutrients, and least cost. With cyber-agriculture, in principle it may be possible 70 

to increase food production quality and quantity, minimize waste and cost, and grow food with optimized 71 

climate recipes anywhere including locations otherwise unable to support agriculture. Conventional 72 

agriculture has been optimized for yield. What if it were optimized for quality and flavor? 73 

 74 

This paper describes a proof-of-concept method aimed at optimizing flavor in a cyber-agricultural 75 

controlled environment, and a pilot experiment to validate this method. An experimental container, called 76 
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the Food Computer [12], was built at the MIT Media Lab with sensors, actuators, and computer control.  77 

Basil (Ocimum basilicum) was chosen as a model organism because it has a fast growth cycle (five 78 

weeks), and because the outcome can be readily measured in terms of fresh weight (quantity), and 79 

chemical analysis of flavor (quality). A number of known growth recipes were implemented, together 80 

with a broad range of their variations [15].  Machine learning technology [16-18] was then used to 81 

optimize these recipes further. That is, based on these recipes and their associated outcomes, a surrogate 82 

model was first constructed using symbolic regression. To keep the search problem manageable, the 83 

optimization focused on the lighting conditions,  keeping the other variables constant. The surrogate 84 

model was then searched to discover potentially better lighting recipes, which were then tested in the 85 

experimental container. 86 

 87 

The light conditions had a large effect on the outcome, and the surrogate optimization method was able to 88 

discover meaningful recipes. For instance, it discovered the well-known principle that flavor can be 89 

traded off with mass, a version of the “dilution effect”: optimizing for flavor produced smaller plants, 90 

while optimizing for mass produced less flavor. However, it also demonstrated how the approach can 91 

discover new and surprising recipes, i.e. those that are counterintuitive but produce better outcomes. In 92 

particular, the common-sense assumption that basil needs a few hours of darkness each day turned out to 93 

be incorrect: The highest density of flavor molecules was produced through a 24-hr photoperiod, which 94 

optimization discovered quickly and reliably. The results thus demonstrate that surrogate optimization and 95 

machine discovery can be used to find growth recipes that are both effective and surprising. 96 

 97 

Measuring and optimizing flavor 98 

 99 

Flavor is largely a phenomenon of olfaction [19], and many aroma molecules are produced by the 100 

secondary metabolism of plants. Plants have a particularly rich secondary or specialized metabolism [20], 101 
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a set of biosynthetic pathways synthesizing molecules that are not essential for the basic processes of life 102 

(cell division, reproduction, etc.) but rather confer fitness and adaptive advantage to the organism in its 103 

ecological niche [21], related to stress tolerance, defense, and communication [22]. Their expression and 104 

induction depends to various degrees on environmental and ecological conditions [23]. 105 

 106 

Cyber-physical agriculture methods such as the Food Computer (FC), where data from environmental 107 

sensors informs the actuation of climatic conditions according to a climate recipe [12-14] present unique 108 

opportunities for inducing plant phenotypic changes through environmental/ecological conditions alone. 109 

One example of this approach is to apply the ecological stresses to which adaptations have evolved as 110 

specific biosynthetic pathways. 111 

 112 

O. basilicum, the basil plant, is typical of herb plants in that it produces many aromatic molecules, 113 

particularly the terpenoids 1,8-cineole, linalool, camphor, borneol, bergamotene, and farnesene, and the 114 

phenylpropenes eugenol, methyleugenol, and estragole [24]. These molecules are thought to play varying 115 

roles in stress adaptation and defense, and the production by the basil plant of aromatic molecules has 116 

been shown to increase upon exposure to these stresses, including water stress [25], ultraviolet and PAR 117 

light [26–28], heat [29], bacteria [30], chitosan (a compound derived from chitin, found in insect 118 

exoskeletons and fungal cell walls, [31]), and sodium and other minerals [32]. 119 

 120 

This paper explores methods for increasing flavor molecule production in O. basilicum, using: (1) 121 

ultraviolet light, PAR, and photoperiod as environmental and stress variables; (2) Gas Chromatography-122 

Mass Spectrometry for semiquantitative analysis of volatiles; (3) surrogate optimization for discovering 123 

conditions that will maximize production of these volatiles.  124 

 125 

Materials and Methods 126 
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 127 

This section describes the design of the Food Computer, i.e. the physical container environment used in 128 

the pilot experiment with basil. It also describes the process for growing basil in this environment, and 129 

methods for measuring the growth outcome in terms of weight and chemistry. 130 

 131 

Food Computer 132 

All basil plants were grown in a Food Server, a multi-tray, multi-rack hydroponic configuration of 133 

the OpenAg Food ComputerTM (FC) environment [12]. Basil plants were germinated in engineered foam 134 

rooting cubes (Oasis Grower Solutions, Kent, OH), then transplanted to 36-position (4×9) food-grade 135 

resin floating lettuce rafts (Beaver Plastics, Acheson, AB, Canada) at 14 days of age. The plants were 136 

grown in a shallow water culture hydroponic system using 56.6-liter trays (Botanicare, Chandler, AZ) 137 

supplied by 75-liter reservoirs (Botanicare) and 700 gallon-per-hour rated Pondmaster magnetic drive 138 

pumps (Danner Manufacturing, Islandia, NY), with nutrient solutions (a “15-0-0” Calcium Nitrate 139 

solution and a “5-12-26” 5% Nitrate, 12% Phosphate, 26% soluble Potash solution combined with water 140 

for a final concentration of 150 ppm Nitrogen, 116 ppm Calcium, 52 ppm Phosphorus, 215 ppm 141 

Potassium; JR Peters, Allentown, PA) added by a water-powered proportional chemical injector 142 

(Dosatron, Clearwater, FL). 143 

The FC was set up with trays in vertical stacks of three (denoted 0, 1, and 2) within a custom 144 

powder-coated steel frame (Indoor Harvest, Houston, TX). Each stack was thermally isolated with 145 

reflective foil captive-bubble insulation (Reflectix, Markleville, IN) and climate-controlled with a 10,000 146 

BTU air conditioning unit (AeonAir, Wilmington, DE). Three types of photosynthetic-active radiation 147 

(PAR) lights were used: Agrobrite high output T5 fluorescent fixtures (Hydrofarm, Fairless Hills, PA), 148 

Illumitex ES2 Eclipse red and blue LED fixtures (Illumitex, Austin, TX) and Phillips GreenPower deep 149 

red/blue LED production modules (Phillips, Somerset, NJ). Lights were fixed at a distance of 40 cm from 150 
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the foam float. Reptisun 10.0 UVB T5 High Output ultraviolet lights were added to treatment conditions 151 

(Zoo Med, San Luis Obispo, CA), also at a distance of 40 cm. 152 

   153 

Figure 1. Images inside the MIT Media Lab Food Server taken during the experiment.  154 
 155 

Plant species and climate recipes 156 

Common Sweet Basil (O. basilicum var “Sweet”) seeds (Eden Brothers, Arden, NC) were used in 157 

the pilot experiment. From 14 days of age to harvest, they were grown in identical trays as described in 158 

“Food Computer” above, with one of three light types as the only source of PAR. Control conditions were 159 

grown with the PAR light; experimental treatment conditions had supplemental UV light. Treatment 160 

conditions, or “Climate Recipes”, in Rounds 2 and 3 of the experiment were determined based on 161 

suggestions from the surrogate optimization of chemscore from the previous round. The data from Round 162 

1 determined the conditions of Round 2, and the data from Round 2 determined the conditions of Round 163 

3). 164 
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 165 

Harvest, weight and length measurement 166 

 All plants in each round of the experiment were harvested on the same day. Four plants from each 167 

treatment condition were used for volatile analysis and the remaining 32 were used for height and weight 168 

measurements. Weight measurements were taken with roots removed. 169 

 170 

Sampling and sample preparation 171 

 Immediately after harvesting, leaves were sampled from four plants from each treatment 172 

condition. Fifteen leaves from each plant were harvested: five from near the base, five from the middle, 173 

and five from the top, with each set selected randomly. Leaves were immediately frozen with dry ice or 174 

liquid nitrogen, homogenized into a powder, and kept frozen. The amount of 1gram of frozen plant tissue 175 

was transferred to a 20 mL amber glass headspace vial (Supelco, Bellefonte, PA) and 2 mL of saturated, 176 

cold calcium chloride solution in distilled water was added to prevent enzymatic reactions. The vials were 177 

capped with magnetic, PTFE-lined silicone septa headspace caps (Supelco) and kept on ice before 178 

being transferred to GC-MS. 179 

 180 

Volatile Analysis 181 

 The method of Johnson et al. [33] was adapted for the experiment. Sample vials were placed in 182 

the tray of the Gerstel MPS2 autosampler (Gertsel, Linthicum, MD), which performed the extraction and 183 

injection. One vial at a time was warmed to 40°C and agitated at 500 rpm for 5 minutes directly before 184 

extraction. A conditioned, 2-cm long 50/30 um-thick PDMS-DVB SPME fiber (Supelco) was introduced 185 

into the headspace of the vial for 45 minutes at 40°C with rotational shaking at 250 RPM. The fiber was 186 

removed from the headspace of the vial and immediately introduced into the inlet of an Agilent model 187 

7890 Gas Chromatograph- single quadrupole-MS (GC-MS) (Agilent Technologies) with a DB-5 column 188 

(30 meters long, 0.25 mm ID, 0.25 μm film thickness, J&W Scientific, Folsom, CA). The inlet was held 189 
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at 250°C with a 2:1 split and had a 0.75mm i.d. SPME inlet liner installed (Agilent Technologies). The 190 

carrier gas was Helium, at a constant flow rate of 1 mL/minute. The starting oven temperature was 40°C, 191 

held for 3 minutes, followed by a 2°C/minute ramp until 180°C was reached, then the ramp was increased 192 

to 30°C/minute until 250°C was reached, and held for 3 minutes. The total runtime was 47 minutes. The 193 

transfer line to the mass spectrometer was held at 250°C , the source temperature was 230°C, and the 194 

quadrupole temperature was 150°C. The mass spectrometer had a 1.5-minute solvent delay and was run in 195 

scan mode with Electron Impact ionization at 70eV, from m/z 40 to m/z 300.   196 

Compounds were identified and recorded based on a 90% or higher match using the NIST Mass 197 

Spectral Database and a signal to noise ratio above 10. Analyte peaks were integrated on the Total Ion 198 

Chromatogram.   199 

 200 

Optimization metric: Chemscore 201 

Optimizing the target metric should correspond to maximizing flavor in a general sense. The 202 

metric should also be robust to noise, since the number of evaluations is limited, and low-dimensional to 203 

make optimization easier.  204 

Basil, like most foods, contains multiple molecules contributing to flavor. An average GC-MS 205 

chromatogram of basil contains around 30-40 different volatile molecules, with concentrations varying 206 

over several orders of magnitude. To construct a single metric to optimize, this GC-MS data is aggregated 207 

across samples and chemicals as the Chemscore. This score is a weighted average of the volatile profile 208 

compared to the control condition. It is a holistic placeholder for how flavorful a sample is, while 209 

normalizing for varying scales and distributions of different chemicals. Seventeen chemicals common 210 

across all GC-MS measurements were selected into the calculation of chemscore. 211 

 212 

Comparison metrics: R-score and Z-score 213 
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For further comparison, an R-score and a Z-score, across all volatiles in a sample, were calculated 214 

for each treatment condition. The R-Score, the average ratio of volatiles in a treatment condition over 215 

their average in the control conditions in a round of the experiment, facilitates comparison of results 216 

across the three rounds of the experiment, under the assumption that uncontrollable environmental 217 

differences across rounds are captured in differing control results. The Z-score, which compares the 218 

abundances of each volatile molecule in a sample over or below its average in all samples in a round, 219 

gives a sense of the overall spread of results in the experiment. 220 

 221 

Methods: Surrogate modeling and optimization 222 

 In optimization settings where the target function is expensive to evaluate (either temporally or 223 

financially), e.g., in the case of growing basil to maturity, surrogate-based optimization is a common 224 

method for minimizing the number of evaluations required to achieve an acceptable solution [34–36]. To 225 

choose the next samples to evaluate, surrogate methods build an explicit predictive model of the solution 226 

landscape and select the most promising samples according to this “surrogate model''. To implement such 227 

a method, input variables need to be defined, a class of regression models needs to be selected, and a 228 

method for discovering the next samples (recipes) from these models needs to be developed. This section 229 

details the development of these choices for the experiment in this paper, and notes methods for scaling 230 

up future work. 231 

 232 

Input Dimensions 233 

For this experiment, a recipe was defined by three input variables: photoperiod, UV period, and 234 

PAR (photosynthetically active radiation). Three input variables was an appropriate dimensionality for 235 

this pilot experiment, following the general rule-of-thumb that, for surrogate-based methods, the number 236 

of evaluations required to achieve reasonable results is around ten times the number of dimensions [34]. 237 
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These variables were chosen because they are already known to increase the accumulation of volatiles 238 

[26–28], and are relatively simple to control in the described hardware setup. 239 

Photoperiod is the number of hours the primary light panel is turned on each day. Recipes can 240 

thus have photoperiod values anywhere from 0 to 24hrs. Photoperiod is known to have significant effects 241 

on the accumulation of biomass and leaf area in plants [37], as well as the formation of trichomes, the 242 

structure that store flavor-active volatiles, in the Thymus vulgaris (thyme) plant [38], a botanical cousin, 243 

as they are both members of the Lamiaceae family, to basil. In addition, photoperiod has been shown to 244 

change the volatile profile of basil [39]. 245 

UV period is the number of hours per day plants receive supplemental UV-B radiation. Like 246 

photoperiod, UV period can take on values anywhere from 0 to 24hrs. UV has previously been shown to 247 

increase volatile content in basil [26]; it is included so that its effects can be validated and optimized in 248 

the Food Computer hardware setting. 249 

PAR (Photosynthetically Active Radiation) is the amount of light available for photosynthesis. In 250 

the Food Computer setup, the PAR is determined by the primary light panel. There were nine light panels, 251 

each with a unique PAR value. To set PAR values for a batch of nine recipes, one light panel was assigned 252 

to each recipe. Thus, in contrast to photoperiod and UV period, each available PAR value can be used 253 

only once in each batch. This kind of hardware resource matching constraint is not common in either 254 

computer or physical experiments, so a custom optimization method must be developed.  255 

 256 

Regression Model 257 

Symbolic regression [40–42] was used for building surrogate models to predict chemscore from 258 

the input variables. Symbolic regression uses evolutionary optimization to discover nonlinear algebraic 259 

expressions that serve as surrogate models. For the experiment in this paper, a multi-objective Pareto 260 

optimization procedure was used [43,44]. The first objective is to minimize error, i.e., MSE with respect 261 

to predicting chemscore; the second objective is to maximize parsimony, i.e., minimize the size of the 262 
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algebraic expression (number of nodes). The fitting procedure then yields a Pareto front of models, from 263 

which a new batch of recipes can be selected.  264 

For the flavor-optimization problem, symbolic regression has several advantages over other 265 

popular choices for surrogate models. First, by simultaneously optimizing for error and parsimony, search 266 

is biased towards the kinds of compact algebraic expressions that are desirable in the natural sciences 267 

[44]. These expressions are more interpretable than other regression models, because the relationships 268 

between variables can be read off directly from the expression. Such interpretability can lead to a better 269 

understanding of the search space, which helps in developing better models for future experiments. 270 

Second, whereas surrogate models such as Gaussian processes can only interpolate, symbolic 271 

regression can extrapolate. Interpolation is sufficient when iterative incremental improvement can 272 

eventually lead to an optimal solution. However, in the experiment in this paper, only a single parallel 273 

batch of recipes is selected via surrogate optimization to be implemented in the Food Computer. So, it is 274 

advantageous to consider strong optimistic predictions a model makes about sparse regions in the recipe 275 

space. Note that if this process were used over multiple iterations, an inordinate amount of resources 276 

could be spent at the extremes of the recipe space. 277 

Third, symbolic regression is robust to normalization of input and output variables: It 278 

automatically discovers reasonable scaling factors to use through optimized constants that are found to be 279 

useful in model expressions. 280 

It is important to note that symbolic regression can have significant drawbacks as well [43]. First, 281 

it is computationally expensive compared to other regression methods; however in this paper, 282 

computation time is negligible compared to the time it takes to grow a batch of basil recipes. Second, 283 

surrogate optimization with symbolic regression models currently lacks theoretical convergence 284 

guarantees and performance bounds. Such convergence guarantees have potential practical benefits over 285 

many iterations of surrogate optimization; however, since only a single such iteration is performed in the 286 

experiment in this paper, such guarantees are unnecessary. 287 

 288 
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Recipe Discovery 289 

There were three rounds of growing experiments. In each round, there are nine trays of basil 290 

growing in parallel. To ensure consistency across rounds, three of these nine trays are fixed to control 291 

recipes. This setup leaves six non-control recipes to be selected. 292 

In the first round, recipes were selected by hand [15] to investigate the effects of UV supplement 293 

and choice of light panel. To add the photoperiod dimension, and create initial diversity in the recipe 294 

space, recipes in the second round were chosen by an unsupervised method: Six non-control recipes were 295 

found as centroids of Voronoi tessellation (CVT) given the first round of recipes [45]. Following a trust 296 

region approach [35], to implement the bias that good solutions are likely to be relatively close to expert 297 

hand-designed recipes, values for each dimension were constrained to be with a constant distance of 298 

previously evaluated values. 299 

In the third round, recipes were selected from symbolic regression surrogate models [46]. Each 300 

run of symbolic regression yields a collection of models on the error-parsimony Pareto front. These 301 

models were clustered to determine an error threshold, above which models were underfitting. The six 302 

most parsimonious models not underfitting were then used to define a recipe to run in parallel. Since the 303 

recipe space has only three dimensions it is computationally efficient to use a dense grid search to select a 304 

recipe that maximizes expected chemscore. Greedy sequential selection is the most popular approach to 305 

constructing parallel batches from surrogates [47,48]. The recipes were thus selected sequentially in 306 

increasing order of model error. Such a selection handles the constraint that each available PAR value can 307 

be selected only once per round. If a variable is ignored by a model, the value of the variable is set to 308 

maximize exploration, since the model has indicated that exploitation of this variable is currently not 309 

useful. 310 

 311 

Results and Discussion 312 
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The average weight, chemscore, total peak area of volatiles on the chromatogram, and chemscore as a 313 

percentage of the control condition chemscore are presented in Table 1. Weight was recorded as the 314 

weight of above-ground plant parts; roots were excluded. 315 

Table 1. Treatment conditions (UV and PAR photoperiod) and weight and chemical results. 316 

Round Bay Tray UV Photoperiod PAR Photoperiod PAR Weight (grams) R score Chemscore Z score R score 

1 1 0 18 18 636.92 32.00 0.85 -0.77 0.65  

1 1 1 18 18 798.42 102.71 1.00 0.21 1.15  

1 1 2 18 18 832.58 133.59 1.06 0.44 1.37  

1 2 0 0 18 820.25 72.08 1.13 0.46 1.45  

1 2 1 0 18 1,098.75 235.44 0.81 -0.68 0.79  

1 2 2 0 18 403.58 84.33 1.06 0.33 1.34  

2 0 0 9 21.5 867.33 74.18 1.81 1.07 0.68  

2 0 1 9 21.5 445.25 65.63 1.15 -0.01 0.10  

2 0 2 9 21.5 735.42 63.86 1.61 0.86 0.50  

2 1 0 9 14.5 636.92 112.89 0.89 -0.43 -0.25  

2 1 1 9 14.5 798.42 189.00 0.58 -1.07 -0.52  

2 2 0 0 18 820.25 154.50 0.92 -0.42 -0.19  

2 2 1 0 18 1,098.75 211.00 0.73 -0.58 -0.28  

2 2 2 0 18 403.58 112.00 1.35 0.57 0.27  

3 0 0 17.45 24 867.33 137.44 16.57 2.38 -0.28 14.05 

3 0 1 4.12 24 445.25 71.25 2.33 -0.21 -1.03 1.83 

3 0 2 24 24 735.42 49.33 2.84 -0.05 -1.01 2.12 

3 1 0 14.06 24 636.92 80.51 2.00 -0.30 -1.05 1.47 

3 1 1 8.48 17.18 798.42 62.78 1.80 -0.34 -1.06 1.34 

3 1 2 10.67 22.5 832.58 88.83 2.09 -0.28 -1.04 1.55 

3 2 0 0 18 820.25 92.89 0.80 -0.66 -1.11 0.60 

3 2 1 0 18 1,098.75 126.86 1.20 -0.53 -1.09 0.94 
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3 2 2 0 18 403.58     1.47 

“Bay” specifies the position in the vertical stack of three hydroponic trays, with “0” closest to the floor.  317 

One tray in each bay contained a control condition, which had zero hours UV photoperiod and 18 hours 318 

PAR photoperiod. R score > 1.5 is denoted in bold. The photoperiod hours range between 0 and 24. PAR 319 

values indicate μmole/m2s photosynthetic photon flux density. The R-Scores were calculated with missing 320 

control imputed. 321 

 322 

The table includes results both with and without imputed data for the control condition whose data was 323 

lost in Round 3 of the experiment (denoted by dark grey boxes in table 1). Assuming control results are 324 

consistent within each round, they make the results easier to compare across rounds. Imputed values for 325 

each chemical for the missing control treatment in Round 3 were computed by regression, i.e., by solving 326 

a fully-determined linear system that predicts the value of the third control from the other two, based the 327 

values of the controls in the previous two Rounds. 328 

 329 

Table 2 gives the correlations between input variables and metrics (Spearman, to account for nonlinearity 330 

in the metrics). Correlations >0.45 are in bold. Note in particular that the R-scores are negatively 331 

correlated with weight: Optimizing for flavor thus results in smaller plants, and larger plans have less 332 

flavor, thus illustrating the “Dilution effect.” 333 

 334 

Table 2: Spearman correlations between selected input variables and metrics 335 

 R Score Weight Chemscore Z Score 

UV 0.355 -0.336 0.199 0.058 

Photoperiod 0.763a -0.355 0.477a -0.149 
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PAR -0.131 0.541a -0.142 -0.070 

R Score  -0.471a 0.637a -0.226 

R Score Imputed 0.967a -0.502a 0.764a -0.055 

 336 

 337 

In the first round, where an 18-hour PAR photoperiod and an 18-hour UV photoperiod were selected by 338 

hand, R-score and Chemscore did indicate that UV light or photoperiod increases volatiles. In the second 339 

round, two R-scores (both with UV light and extended PAR photoperiod of 21 hours) were above 1.5, 340 

meaning that volatiles holistically increased 50% over control.  In the third round, several conditions 341 

resulted in an R-score that met or exceeded this threshold, with many conditions (all with PAR 342 

photoperiods of 22.5-24 hours and UV periods of 4-17 hours) doubling the volatile profile compared to 343 

control. The discovery of the recipes in Round 3 from the model is illustrated in Figure 2. 344 
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 345 

Figure 2. An illustration of the surrogate model and the recipes suggested by the optimization. The 346 
three axes correspond to the three actuators and the color of the small dots indicates their value predicted 347 
by the model (i.e. flavor; red > yellow > green > blue). The large dots are suggestions, and the darker dots 348 
are the most recent ones. They suggest utilizing long photoperiods and UV periods, the success of which 349 
was confirmed in growth experiments in the Food Computer. 350 
 351 

The most striking discovery in this experiment was the positive effect of a 24-hour photoperiod, i.e., 352 

constant daylight. This result replicated evidence on the volatile profile effects of a 24-hour photoperiod 353 

described by Skrubis et al. [39], who found that basil plants grown with a 24-hour photoperiod weighed, 354 

upon maturity, approximately 25% more than plants grown with a nine-hour photoperiod (although they 355 

took three days longer to reach maturity) and 27% more than plants grown outdoors in natural light with 356 

an approximately 15-hour photoperiod . That study also characterized changes in the relative volatile 357 

profiles of those basil plants, but not absolute volatile content, so comparisons to chemscore in the current 358 

work are not possible.  The 24-hour photoperiod discovery is notable because the hand-designed 359 

experimental conditions in Round 1 had a photoperiod of 18 hours, and the experimenters and the model 360 

ts 

nt 
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were blind to the Skrubis et al. study. The surrogate optimization approach nevertheless iterated the 361 

recipes into the 24-hour photoperiod, where it had a strong positive effect.  362 

 363 

Aside from the high R-score in Table 1 , further evidence for the importance of photoperiod can be seen 364 

in the high correlation between R-score and Photoperiod in Table 2, and in the regression process itself: 365 

For each run of symbolic regression, the most parsimonious nontrivial model had the form y = cp, for 366 

some constant c, where p is the photoperiod. Also,  Figure 3A shows the a linear model trained on all 367 

three light variables to fit the log R-score. Fig 3B shows a linear model of R-score based on photoperiod 368 

alone. Fig 3C shows the predictions of a linear model trained on all three variables, but with the effect of 369 

photoperiod removed, i.e., it is trained to fit the residuals. These modeling results are similar with 370 

imputed and outlier-handled data. The low performance of the residual model suggests that photoperiod 371 

had such a dominating effect that the effects of other variables were effectively noise. However, since 372 

significant effects of UV have been reported in previous work [26,27] and are not seen here, it is also 373 

possible that there are significant nonlinear dynamics that require further trials and nonlinear modeling to 374 

uncover and exploit. 375 
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376 
Figure 3. Linear regression analysis of actual vs. calculated log R-score for three different models. 377 
A: A linear model trained on UV, photoperiod, and PAR. B: A linear model trained on photoperiod only. 378 
C: A linear model trained on residuals after removing photoperiod effect. Photoperiod dominates the other 379 
variables (or possible there are significant nonlinear effects between these variables). 380 

 381 

Discussion and Future Work 382 

The experiment described in this paper confirmed that the design of climate recipes impact the 383 

accumulation of volatile flavor molecules in basil, and it is possible to discover good recipes iteratively 384 
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through machine learning. The recipes discovered in this case replicated known principles (such as the 385 

weight/flavor tradeoff), and also demonstrated the possibility for discovering previously unknown, 386 

surprising principles (like the 24hr photoperiod). The 24-hour photoperiod in particular is impossible in 387 

nature (except around the summer solstice within the Arctic and Antarctic circles) and therefore unlikely 388 

to be discovered, except in controlled environments for cyber-physical agriculture. 389 

 390 

The most immediate direction of future work is to expand the current experiment to a larger search space. 391 

A facility with four containers, making it possible to evaluate an order of magnitude more recipes at once 392 

is in development at MIT and illustrated in Fig 4. This facility will make it possible to control a number of 393 

other actuators besides light, including temperature, pH, nutrient concentration, microbial and other 394 

additives, and different cultivars. It will also be possible to measure the energy and other costs associated 395 

with the recipes, as well as objectives such as nutrient components, density, and yield, and more elements 396 

of flavor (single compounds, and ratios of compounds). 397 

   398 

Figure 4. Images of MIT expansion facility under development.  399 

 400 

In terms of surrogate optimization, more iterations will be run to build more accurate models, and to 401 

determine the proper stopping point of the method, i.e. run it until it has likely converged.  The approach 402 
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will be extended to cover the larger search space as well as multiple objectives. Most likely, different 403 

models and optimizers will be necessary. In low-dimensional settings with unknown nonlinearities and a 404 

relatively small number of samples, Kriging [34], Gaussian processes [36,49], and symbolic regression 405 

[44] are suitable choices for building a regression model of natural phenomena. When the dimensionality 406 

and number of samples increases, deep neural networks may be a better model of the solution landscape 407 

[47,50,51], and evolutionary optimization a better way to determine most promising samples [43–45]. 408 

 409 

 410 

The next step will be to extend the experiment to other plants, such as cotton, where the goal is not to 411 

optimize flavor but physical properties such as strength and length of the fibers. It will be important to 412 

verify that such plants are viable to grow artificially, and that such properties can be optimized with 413 

available actuators, in isolation and in combination with other properties. Future extensions to other areas 414 

may include biofuels and plants with specific medicinal value. 415 

 416 

The third future step is to extend the optimization from static recipes to time-varying recipes, i.e. 417 

optimizing the actuators during the entire growth period of the plant. Of particular interest are different 418 

stress periods when the plant is exposed to, for example, drought or signals of predators (e.g. through 419 

chitosan added to the growth medium). Such periods may produce a response in the plan that results in 420 

more flavor or more rapid growth, for example. Such recipes should be reactive, i.e. conditional to real-421 

time measurements of the growth status. One possibility is to use machine learning to establish a mapping 422 

from visual images of the plant to more destructive measurements such as chemical concentrations. Such 423 

optimization spaces are very high-dimensional, most likely making it necessary to use evolutionary 424 

optimization, and perhaps neuroevolution to construct a mapping from sensory time series to optimal 425 

actions [55,56]. 426 

 427 

Conclusion 428 
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Computer-controlled growth environments are a promising approach for the future of agriculture, 429 

potentially maximizing production and quality and minimizing waste and cost. Initial experiments with 430 

basil (O. basilicum) suggest that the cyber-physical approach to agriculture is indeed viable: such 431 

environments can be built, the plants thrive in them, the climate recipes make a difference in growth 432 

outcomes, and machine learning can be used to discover good recipes automatically. Future steps should 433 

verify these results on other plants, expand to larger search spaces with more actuators, and to optimizing 434 

entire growth periods. Higher-volume food computers need to be built and more powerful optimization 435 

methods employed, but the results suggest that such extensions are worthwhile. 436 

 437 
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