
1 

Effects of two centuries of global environmental variation on phenology and physiology of Arabidopsis 
thaliana 

Victoria L. DeLeo1,2, Duncan N. L. Menge4, Ephraim M. Hanks5, Thomas E. Juenger6, Jesse R. Lasky3,4,7 

1Huck Institutes of the Life Sciences | Plant Biology 5 
Pennsylvania State University 
University Park, PA 16802 

2Corresponding author 
Email: vldeleo@psu.edu 10 

3Department of Biology 
Pennsylvania State University 
University Park, PA 16802 

15 
4Department of Ecology, Evolution, and Environmental Biology 
Columbia University 
New York, NY 10027 

5Department of Statistics 20 
Pennsylvania State University 
University Park, PA 16802 

6Department of Integrative Biology 
University of Texas at Austin 25 
Austin, TX 78712 

7Earth Institute 
Columbia University 
New York, NY 10025 30 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 23, 2018. ; https://doi.org/10.1101/424242doi: bioRxiv preprint 

https://doi.org/10.1101/424242
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

Abstract 
Intraspecific diversity arises from genetic and plastic responses to the environment. Immense natural 
history collections allow comprehensive surveys of intraspecific diversity across a species range through 35 
centuries of environmental variation. Using 216 years of Arabidopsis thaliana samples, we tested if traits 
exhibit coordinated variation and hypothesized adaptive responses to climate gradients. We used 
spatially varying coefficient models to quantify region-specific trends. Traits generally showed little 
coordination. However, C:N was low for summer versus spring-collected plants, consistent with a life 
history-physiology axis from slow-growing winter annuals to fast-growing spring/summer annuals. 40 
Collection date was later in more recent years in many regions, possibly because these populations 
shifted toward more spring (as opposed to fall) germination. δ15N decreased over time across most of 
the range, consistent with predictions based on anthropogenic changes. Regional heterogeneity in 
phenotype trends indicates complex responses to spatial and temporal climate shifts potentially arising 
from variation in local adaptation and plasticity. 45 
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Introduction 
Fitness critically depends on an organism’s response to environmental variability. Anthropogenic global 
environmental change is resulting in dramatic changes in phenotypes of many organisms. Despite 
general patterns of species’ poleward range shifts and advancement of temperate spring phenology 50 
(Parmesan & Yohe), populations and individuals often differ in their responses to changing climates 
(Both et al. 2004; CaraDonna et al. 2014).  These diverse responses could be caused by geographic 
variation in the rate of environmental change or by intraspecific genetic variation, clouding our 
understanding of climate impacts. Quantifying the spatial patterns of responses to environmental 
gradients can put temporal trends in context as well as reveal adaptive phenotypic variation across the 55 
species range. 

Organisms respond to environmental stressors in diverse ways, including life history, phenology, and 
physiology. In seasonal locations, phenology dictates the environment encountered during vulnerable 
stages. Plant phenology and development are primarily limited by moisture, temperature, and 60 
photoperiod (Wilczek et al. 2009; Burghardt et al. 2015). Warmth usually increases growth rate, 
however cold temperatures in critical periods can advance flowering time through a process known as 
vernalization. Rapid development and reproduction can allow plants to escape drought, a strategy 
employed by some genotypes of our study species Arabidopsis thaliana (hereafter, Arabidopsis, Kenney 
et al. 2014). Other genotypes exhibit drought avoidance by minimizing water loss (e.g. through stomatal 65 
closure) and maximizing water uptake (Ludlow 1989; Kenney et al. 2014). Fast life histories can allow 
spring or summer annual life cycles, where a plant germinates and flowers within a single season, while 
slow life histories and vernalization requirements result in a winter annual cycle, where a plant 
germinates in the fall and flowers the following spring.  

70 
Standardized metrics are needed to compare ecologically relevant phenological variation among sites of 
different climate timing and at different latitudes. Photothermal units (PTU) integrate developmental 
time under favorable temperatures and light across a growing season and account for much of the 
environmental influence on flowering dates (Wilczek et al. 2009; Brachi et al. 2010). Thus, PTUs may 
help capture genetic differences in phenology across environments. Measures of developmental time 75 
standardized to environmental conditions can better capture genetic variation in development 
compared to raw flowering dates in Arabidopsis (Brachi et al. 2010). 

Beyond flowering time, plant physiological response to environment is partly reflected in leaf isotope 
and nutrient composition, traits with high intraspecific genetic and plastic variation (Nienhuis et al. 80 
1994; Chardon et al. 2010). Δ13C, which measures discrimination against 13C in photosynthesis, is an 
indicator of pCO2 within leaves (Ci) relative to atmospheric pCO2 (Ca) (Farquhar et al. 1982). Ci declines 
when stomata are closed, which may occur under drought, while Ca declines with elevation. Thus, we 
expect Δ13C to increase in moist environments and decrease with elevation (Farquhar et al. 1982; 
Diefendorf et al. 2010; Zhu et al. 2010). 85 

Leaf nitrogen physiology is another important aspect of environmental response, since leaf nitrogen is 
important to photosynthetic capacity (Stocking & Ongun 1962; Evans 1989) and photorespiration 
(Rachmilevitch et al. 2004). At the community level, leaf N (proportion of mass) generally increases with 
mean annual temperature  (Reich & Oleksyn 2004; Ordoñez et al. 2009), and increases with greater 90 
precipitation (Reich et al. 2003). Lower nitrogen concentration leaves (high C:N, low proportion N) are 
found in drier and in hotter areas, in part because of investment in non-photosynthetic leaf features, 
especially veins (Blonder et al. 2011; Sack et al. 2012). Leaf δ15N, or the fraction of 15N over total 
nitrogen in a leaf, can be affected by the same resource acquisition strategies and is related to leaf N 
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(Stock & Evans 2006). However, leaf N and δ15N may also reflect deposition and biogeochemical cycling 95 
(e.g. Pardo et al. 2007), complicating biological explanations. In this study, we used the ratio of carbon 
to nitrogen in the leaf (C:N) to capture leaf nitrogen investments. 

The physiological, morphological, or phenological traits plants use to cope with varied environments 
often are subject to tradeoffs. When resources are abundant (high nutrient, ample water, warmth), 100 
functional traits enabling rapid growth and low investment in tissues may be favored, leading to low leaf 
C:N ratio. When resources are limited, slow growth and costlier, longer-lived tissues may be favored 
(Reich 2014). Accordingly, the winter annual phenology of northern Arabidopsis ecotypes described 
above could be explained by a slow growth strategy, while a fast growth strategy could lead to drought 
escape in arid regions. In addition, this fast growth could lead to higher leaf Δ13C through increased 105 
photosynthetic and transpiration rates. The leaf economic spectrum (LES) predicts that multiple 
dimensions of trait variation are coordinated to reflect a single life history and physiology axis from fast 
to slow that also corresponds to changes in dominant vegetation types across environments  (Wright et 
al. 2004; Reich 2014), though the association of LES traits with climate may be weaker within species 
(Wright & Sutton-Grier 2012). We hypothesized that phenotype-environment correlations would follow 110 
LES or fast-slow predictions (Table 1). 

Table 1: Hypothesized responses of phenotypes to temperature, rainfall, or year. Year trends are 
predicted due to elevated CO2, nitrogen deposition, or elevated temperatures. 

Temperature Rainfall Year 

Δ13C + + 7 + 9

δ15N + 1,5 - 1,5 - 8, 4

C:N - 6 - 2 + 3,8

Photothermal 
Units 

+ or no change + No change

Collection Date - + -
(Amundson et al. 20031; Wright et al. 20042; Reich et al. 20063; Pardo et al. 20074; Craine et al. 20095; Ordoñez et 115 
al. 20096; Diefendorf et al. 20107; McLauchlan et al. 20108; Drake et al. 20179) 

Museum collections offer broadly distributed sampling in space and time to test the relationships 
between these phenotypes and climate (Willis et al. 2017; Lang et al. 2018). Variation in herbarium 
collection dates can be a reliable proxy for variation in phenology (Miller-Rushing et al. 2006; 120 
MacGillivray et al. 2010; Davis et al. 2015). Here, we leverage the immense fieldwork underlying natural 
history collections to understand how intraspecific diversity is structured through time and along 
spatiotemporal climate gradients. We combine these records with global gridded climate data to ask 
three questions: 

1. Does intraspecific trait variation among wild individuals fall along a single coordinated life125 
history-physiology axis? Alternatively, is trait variation higher dimensional?

2. Do Arabidopsis life history and physiology vary across spatial environmental gradients,
suggesting adaptive responses to long-term environmental conditions?

3. Have Arabidopsis life history and physiology changed over the last two centuries? In particular,
have changes tracked climate fluctuations, suggesting adaptive responses? 130 
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Material and methods 

Our samples included 3300 Arabidopsis thaliana herbarium and germplasm accessions with known 
collection date between 1794 and 2010 from the native range of Arabidopsis in Europe, the Middle East, 
Central Asia, and North Africa (Hoffmann 2002). For each herbarium specimen (n = 3163 of the total 135 
3300) we visually verified species identification, flowering and fruiting reproductive status. Samples that 
were only fruited/senesced (n = 40) and samples that were only flowering (n = 96) as well as samples 
that had neither open flowers nor fruits (n = 10) were excluded to select for a more uniform 
development stage.  Since progression of plant development involves reallocation of nutrients, C:N 
should be assessed at a consistent developmental stage. We also excluded dozens of misidentified 140 
specimens. Our effort highlights the risks of using unverified natural history collection data in online 
databases. Wild-collected germplasm accessions with known collection date and location were included 
from the Arabidopsis Biological Resource Center (https://abrc.osu.edu/). 

We removed and pulverized leaf samples of 470 herbarium specimens and sent them to the UC-Davis 145 
Stable Isotope Facility. In total, we obtained δ15N values for 456 accessions, δ13C values for 454 
accessions, C:N ratios for 455 accessions, and proportion N values for 455 accessions. Because 
atmospheric δ13C has changed dramatically over the time period of this study, we converted leaf δ13C to 
Δ13C using a common estimate of the atmospheric δ13C time series (McCarroll & Loader 2004) from 1850 
to 2000, continuing linear extrapolation beyond 2000, using the 1850 value for earlier specimens, and 150 
the equation of Farquhar et al. (1989) 

Δ = . 

where δa is the isotope ratio in the atmosphere and δp is the isotope ratio in plant tissue (ratios relative 
to a standard).   

155 
We selected climate variables based on knowledge of critical Arabidopsis developmental times and likely 
environmental stressors: average temperature in April (AprilMean in the models), minimum 
temperature in January (JanMinimum), July aridity index (AI) (Hoffmann 2002; Lasky et al. 2012; 
Fournier-Level et al. 2013; Wilczek et al. 2014). Aridity index was calculated from July precipitation 
divided by July PET (United Nations Environment Program 1997). These climate gradients were generally 160 
not strongly correlated (July Aridity to April Mean Temperature r2 = .09; July Aridity to January Minimum 
Temperature r2 = .003; January Minimum Temperature to April Mean Temperature r2 = .44 by linear 
regression). Temperature, precipitation, and PET values came from the Climate Research Unit time 
series dataset (New et al. 2000).  

165 
To estimate accumulated photothermal units (PTU) at date of collection, we used the equation of 
Burghardt et al. (2015) to model the hourly temperature values for the accumulation of sunlight degree 
hours between January 1 and dusk on the day of collection at each accession’s coordinate. Daylength 
was approximated with the R package geosphere (Hijmans 2017). Monthly temperature values for the 
period 1900-2016 came from the Climate Research Unit time series dataset (New et al. 2000). PTUs 170 
were only calculated for specimens collected after 1900. Daily temperatures were interpolated from 
monthly temperatures using the function splinefun in R on the “periodic” setting.  

Arabidopsis displays substantial genetic diversity in environmental response between genotypes from 
different regions (e.g. Lasky et al. 2018). Thus, we employed a regression model with spatially varying 175 
coefficients (generalized additive models, GAMs) to account for regional differences in responses to 
environment, much of which may have a genetic component (Wood 2006; Wheeler & Waller 2009). 
GAMs allow fitting of parameters that vary smoothly in space (i.e. parameter surfaces) and can thus 
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capture spatially varying relationships between predictors and the response of interest. To assess how 
phenotypes have changed across the last few centuries, we first tested a model with a spatially varying 180 
intercept (SVI) and a spatially-varying coefficient model for the effect of year, allowing for geographic 
variation in temporal trends. We refer to these subsequently as “year models”. These models included 
all specimens with phenotype data. 

Next, to assess how temporal fluctuations in climate drive phenotypic change, we fit models with an SVI 185 
and standardizing climate conditions from all years (1901-2016) within a grid cell to unit standard 
deviations and mean zero (“temporal models”). These models only included specimens from after 1900, 
when we had data on monthly climate from CRU. 

Phenotypeij = β1year_dev, ij + β2AI_dev, ij + β3JanMinimum_dev, ij + β4AprilMean_dev, ij + µj + errorij190 

In this model, the subscript j denotes location and i denotes year of collection. The SVI is denoted by µ i , 
where the “j” subscript indicates that the intercept varies with location.  The errors are assumed to be 
independent, be normally distributed, and have constant variance. 

195 
Third, to study spatial variation in phenotypes in response to spatial climate gradients, we fit models 
with spatially varying effects of climate, and with scaled long-term, 50-year climate averages at each 
location and scaled year of collection as covariates (“spatial models”) (Hijmans et al. 2005). In these 
models, the intercept was not allowed to vary spatially, but was kept constant over space.  Covariates 
were scaled to unit standard deviation. In these spatial models, year of collection can be considered a 200 
nuisance variable for our present purposes. These models included all specimens with phenotype data. 

Phenotypeij = β1yearj + β2jAIj + β3jJanMinimumj + β4jAprilMeanj + µ + errorij 

In this model, the subscript j denotes location. The errors are assumed to be independent, normally 205 
distributed, and have constant variance. 

Models were fit in R (version 3.5.0, R Core Team 2011) using the ‘gam’ function in package mgcv 
(version 1.8-17, Wood 2011). We allowed the model fitting to penalize covariates to 0 so that covariates 210 
weakly associated with phenotypes could be completely removed from the model; thus, using the mgcv 
package we can achieve model selection through joint penalization of multiple model terms. Coefficients 
in spatially varying coefficient models represent the individual relationship between each term and 
phenotype at each geographic point, which we visualized by plotting the estimated coefficients on a 
map. Each cell in the 100x100 grid model rasters corresponded to 106 km East/West at the lowest 215 
latitude (28.16°) and 44km North/South, calculated using Vincenty ellipsoid distances in the geosphere 
package. Model predictions farther than 200km from a sampled accession were discarded when 
visualizing results. 

We considered two other spatially-varying environmental variables of interest: elevation and N 220 
deposition. However, the N deposition estimates we tested (Dentener 2006) were spatially coarse and 
correlated with year (r2 = .209). Elevation was not obviously correlated with year (r2 = .004), but the 
smooth term for elevation had an estimated concurvity greater than .9 in both the temporal and spatial 
models, which indicates that it could be approximated from the smooth terms of our other variables.  
We left elevation and nitrogen deposition covariates out of the final models because inclusion resulted 225 
in instability in the numerical routines the GAM software (mgcv) used to estimate parameters and 
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approximate Hessian matrices needed for confidence intervals. When elevation and nitrogen deposition 
were included in the model as covariates, the Hessian matrices were not positive definite, and thus 
could not be used to obtain confidence intervals. We include results in the supplement with elevation 
but not year for both temporal and spatial models (Figures S13 and S14).  Including only variables the 230 
three climate covariates and year resulted in numerically stable estimates. In addition, scaling of year 
and climate variables tended to reduce the concurvity of variables and increase stability. 

Finally, we considered how traits covary by fitting GAMs with spatially varying intercepts and measured 
phenotypes as both response and predictor variables to observe how the correspondence of traits 235 
changes through space. 

Code for all the models and plots will be included as a supplement and will be available on github. 
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240 
Results 

Distribution of samples through time and space 
Samples were broadly distributed, with dense collections in Norway/Sweden, the Netherlands, and 
Spain (reflecting major herbaria used in the study), and sparser collections in the East. 245 

250 

255 

260 

Figure 1: A) Locations of collections used in our analysis. Color of circle corresponds to year of collection. B) Distribution of years 
of collection.  C) Sample herbarium record from Nepal, 1952, with a Δ13C of 21.9, a δ15N of 3.6, and a C:N ratio of 23.4. 265 

Correlations among phenotypes 
We found generally weak correlations among phenotypes of Arabidopsis individuals. The first two 
principal components explained only 36.3% and 24.1%, respectively, of the variance in the phenotypes 
of Δ13C, δ15N, date of collection, C:N, and PTU (N = 397). The first principal component corresponded to a 270 
negative correlation between C:N and day of collection (bivariate r = -0.194). Inspecting the relationship 
between collection date and C:N further, it had a triangle shape (Figure 2B),  i.e. there were no late-
collected individuals with high C:N. ANOVA showed the slopes of the regression of the 25th  and 75th 
percentiles to be significantly different (p = .00153). The second PC corresponded to a negative 
correlation between Δ13C and δ15N (bivariate r = -.218). C:N and leaf N are highly correlated (bivariate r = 275 
-0.815 ), so we focus on C:N in the text. Leaf N results can be found in the supplement.
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Figure 2: (A) Variation in phenotypes across the native range of Arabidopsis for Δ13C, δ15N, C:N, collection date, and 
photothermal units (PTU) at collection. Color indicates the fitted mean value of the phenotype. Collection date is earlier in the 280 
southwest and Turkey in comparison to other regions; however, PTUs are higher in the southwest and in the northeast. δ15N is 
variable across the range. C:N shows a gradient of increasing to the southeast and southwest. Δ13C increases along a 
northeasterly gradient. (B) Correlations between phenotypes in this study. There is a positive trend between PTU and date of 
collection. PCA of phenotypes showed an inverse relationship between C:N and PTU and an inverse relationship between Δ13C 
and δ15N along the first and second principal components (C). Arrows represent correlation of phenotypes with principal 285 
components. 

Spatial variation in long-term average phenotypes 
We visualized spatial diversity in phenotypes by plotting the intercept surfaces in the year only models 
(Figure 2A). All phenotypes showed significant spatial variation (all GAM smooth terms significant). Δ13C 
was lower in the Iberian Peninsula and higher in Russia (GAM smooth term, p = .0002). δ15N varied 290 
across the range, but with less pronounced spatial gradients (GAM smooth term, p = .003). C:N was 
higher in the Iberian Peninsula and the East and lower in Russia (GAM smooth term, p = 8.24e-05). 
Collection day was earlier along the Atlantic coast and Mediterranean (GAM smooth term, p = <2e-16). 
Despite this, PTU at collection still was higher in the Mediterranean region as well as at far northern, 
continental sites (GAM smooth term, p = <2e-16). 295 

Temporal change in phenotypes 
Several phenotypes have changed significantly over the study period (1794-2010, Figure 3 above). For 
example, C:N ratio increased in later years in much of Southwestern Europe. δ15N decreased significantly 300 
throughout most of the range. Collection date and PTUs became significantly later in many regions from 
the Mediterranean to Central Asia, although collection date became significantly earlier in the extreme 
south (Morocco and Himalayas). There was no significant temporal trend in Δ13C (not shown). 
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Temporal change in phenotypes after accounting for climate anomalies 
The temporal trends in phenotypes across the study period were likely partly related to underlying 350 
climate variation. However, many of the phenotypes were still significantly associated with year of 
collection even when accounting for temporal anomalies in climate from 1901-2010.  There was a 
general delay in collection through time in much of the eastern range (Figure S1, S2). However, Iberian 
collections were significantly earlier in later years. Across most of Europe, later years of collection also 
were associated with significantly greater C:N ratio (Figures S9, S10). Similarly, we observed δ15N 355 
decreasing in later years across much of Arabidopsis’ range, as expected with elevated CO2 and 
increased nitrogen deposition. There was still no significant temporal trend in Δ13C.  

Phenotype associations with spatiotemporal climate gradients 360 
Date of collection – In years (temporal models) with a relatively warm January or April plants were 
collected significantly earlier (Figure 4A). Similarly, in locations (spatial models) with warmer 
temperatures plants were collected earlier, though in many regions these coefficients were non-
significant and some exhibited reversed signs. We also tested associations with July aridity index 
(precipitation/PET) and found that plants were collected significantly earlier in years (temporal models) 365 
with dry summers in central/eastern Europe, suggesting a drought escape strategy, but later following 
dry summers in Central Asia, suggesting a drought avoidance strategy (Figure 4B).  

Figure 4: Association between collection day of Arabidopsis thaliana temporal mean April temperatures (A) and July Aridity 370 
Index (B) anomalies (compared to 50-year average). Color indicates the value of the coefficient of the April mean temperature or 
July Aridity Index term. In years where April was warmer, plants were collected earlier. In wetter years, plants were collected 
later in Eastern Europe but earlier in Asia. Shading indicates regions where estimated coefficient is not significantly different 
from 0. Scatterplots of phenotype measures for individuals within the boxed areas show a decreasing collection date with mean 
April temperature and increasing collection date with July aridity index in Eastern Europe and decreasing collection date in 375 
Central Asia. 

Figure 3, previous page: Change in phenotypes due to year for collection date (A), photothermal units (B), delta nitrogen (C), and 
C:N (D). Color indicates the value of the coefficient for year in the model excluding climate variables. Day of collection and 
photothermal units have increased over time in most of the range, but with some exceptions for day of collection in the south. 
Change in collection day was uneven across regions, with greater shifts in the Aegean than in the Scandinavian Peninsula. δ15N 
decreased across most of the range, and C:N increased, most notably in the southwest. Gray shading indicates regions where 
estimated coefficient is not significantly different from 0. Inset scatterplot in A shows the significant increase in collection date 
with year for samples in the boxed Mediterranean region. Plots to the left of A show the density of collection dates through the 
year remains stable through time for Scandinavian collections within the boxed region (top) but shift toward more collections 
late in the year in the boxed Mediterranean collections (bottom). 
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Leaf C:N – Leaf C:N was significantly different among locations (spatial models) differing in April mean 
temperature and January minimum temperature, although the direction of these trends differed among 
regions. In this model, warmer winters were associated with higher C:N in southwestern Europe but 380 
lower C:N in central Asia (Figure S10B) and warmer temperatures in April predicted lower C:N in Iberia. 
For the temporal model, plants collected in wetter years in Iberia had significantly higher C:N ratios. 

Photothermal units – To standardize spatiotemporal variation in developmental periods, we also 385 
modeled climate associations with PTUs. As expected if PTUs account for most of the environmental 
control on development, there were few areas where temperature anomalies were significantly 
associated with PTUs (Figure S3). However, in some areas, accumulated PTUs at collection changed 
significantly in association with spatial temperature gradients, suggesting greater complexity in 
phenology beyond PTU models (Figure S4). Locations with warmer Aprils were collected at more PTUs 390 
around the Baltic sea and fewer PTUs around the Aegean. In the temporal model, accessions from 
Western Europe, Greece, and Central Asia, had lower PTUs in wetter years and accessions in Central 
Europe had higher PTUs wetter years. In the spatial model, accessions from wetter areas in the south 
had lower PTUs, but this pattern was reversed in the North (Figure S3, S4).  

395 

Δ 13Carbon – Although we expected moisture limitation would lead to stomatal closure and lower Δ13C,, 
the coefficient for summer aridity was not significantly different from 0 anywhere in either the temporal 
or spatial models of Δ13C. However, there was regional significance in the spatial relationship between 
Δ13C and long-term mean April temperature (smooth term significance: p = 1.58e-5). Specifically, in 400 
Central Asia areas with warmer Aprils had higher Δ13C than collections from areas with cooler Aprils 
(Figure S6A). In Iberia and Northeastern Europe, the reverse was true (though the local relationships 
were not significant). 
Including elevation caused estimation of confidence intervals to be unreliable, so elevation was left out 
of the final models, but elevation tended to have a negative relationship with Δ13C as expected due to 405 
declining Ca at high elevation (Körner et al. 1988) (Figures S13 and S14). This was significant in the 
temporal model across much of Asia. 

δ 15Nitrogen – δ15N was positively significantly related to temporal anomalies in July Aridity Index in a 410 
number of regions (Figure S7), but this relationship was heterogenous across space. The relationship 
was positive in Iberia, Asia, and Central Europe, but negative in the North of France.  Temperature was 
only significantly related to δ15N in the case of spatial variation in minimum January temperatures 
around the North Sea. 

415 

Covariance of phenotypes 
In a GAM where C:N was a function of date or accumulated photothermal units, we found both 
measures of phenology were negatively correlated with C:N across the Arabidopsis native range, but this 
was insignificant at the 95% confidence interval when the effect of year was included (Figure S20). Δ13C 420 
was likewise insignificantly correlated with date of collection and accumulated photothermal units when 
accounting for year (Figure S20).  
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Discussion 

Widely distributed species often exhibit considerable phenotypic diversity, a large portion of which may 
be driven by adaptive plastic and evolutionary responses to environmental gradients. The existence of 425 
genetic variation in environmental responses among populations suggests that responses to temporal 
environmental shifts may differ dramatically among populations. Previous studies of intraspecific trait 
variation in response to environment have tended to focus on genetic variation of environmental 
responses in common gardens (e.g. Wilczek et al. 2009; Kenney et al. 2014), temporal trends in 
phenology from well-monitored sites (CaraDonna et al. 2014), or field sampling of individuals from a 430 
small number of sites (Jung et al. 2010) Here, we build upon this work to study change in traits across an 
entire species range over two centuries, giving us a window into drivers of intraspecific diversity and 
regional differences in global change biology. From the accumulated work of field biologists contained in 
natural history collections, we found later flowering times and higher accumulated photothermal units 
over the study period across most of the range and lower δ 15nitrogen and higher C:N in more recent 435 
collections. Additionally, we observed distinct regional differences in phenology, Δ 13carbon, and C:N in 
response to rainfall and temperature. However, we observed insignificant covariance among 
phenotypes in space. 

Phenology 440 
We found strong gradients in two measures of phenology suggesting adaptive responses to climate 
drive intraspecific phenotypic diversity. Years and locations that were warmer than average in either 
April or January corresponded to significantly earlier collection dates, consistent with temperature’s 
positive effect on growth rate (Wilczek et al. 2009). The fact that these relationships were spatially 
variable, and insignificant in some regions, may indicate areas of contrasting phenological response, 445 
perhaps due to lost vernalization signal or variable effects on germination (Burghardt et al. 2016). 
Alternatively, Arabidopsis is known to complete a generation within a growing season, climate 
permitting, and warmer climates allow for fall flowering (Wilczek et al. 2009; Fournier-Level et al. 2013). 
If warmer temperatures enable a greater number of spring or summer germinants to flower before 
winter in regions such as Central Europe, we would expect to see later collection dates in more recent 450 
years (Burghardt et al. 2015). In this case, regions that have earlier collection dates with warmer 
temperature may be limited in generational cycles due to another environmental factor, such as 
summer drought or short growing seasons. Our models provided support that some phenological 
variation did reflect seasonality of moisture availability. We found Arabidopsis was collected significantly 
earlier in years with dry summers in central Europe and at significantly lower PTU in regions of wet 455 
summers around the Mediterranean, suggesting drought escape or avoidance strategies could be 
important in those regions. Alternatively, later collections in wetter years could be the result of multiple 
successful generations due to the extra rainfall.  

Our findings of later collection dates through the study period (1798-2010) may surprise some readers 460 
due to previously observed acceleration of temperate spring phenology (Parmesan & Yohe 2003). 
However, we modeled changes in mean phenological response to environment, which can be weakly 
related to phenology of extreme individuals (e.g. first-flowering individuals) (CaraDonna et al. 2014). 
Why might Arabidopsis flower later even as global temperatures rise? First, non-climate environmental 
changes (e.g. in land use) may drive phenology. Second, changes in climate or atmospheric pCO2 may 465 
favor alternate life histories. As described above, later collections in more recent years might represent 
an increasing proportion of fast-growing spring or summer annuals as opposed to winter annuals.  
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Physiology, leaf economics spectrum 
We found little evidence for tight coordination among studied phenotypes, fitting with some past 
surveys that found weak to no support for a single major axis in intraspecific trait variation in response 470 
to environment (e.g. Albert et al. 2010; Wright & Sutton-Grier 2012). Common garden experiments 
often find substantial genetic covariation between these traits possibly due to pleiotropy or selection 
maintaining correlated variation (Kenney et al. 2014). The massively complex environmental variation 
organisms experience in the wild may combine with genotype-by-environment interactions to generate 
high dimensional variation among individuals in nature. 475 

Nevertheless, we found that plants collected later in the year have low leaf C:N, indicative of a fast-
growing resource acquisitive strategy. This strategy may be adaptive for rapid-cycling plants germinating 
and flowering within a season (spring/summer annuals), contrasted with slower-growing genotypes 
known to require vernalization for flowering over a winter annual habit. Indeed, Des Marais et al. (2013) 480 
found that vernalization requiring (likely winter annual) Arabidopsis genotypes had lower leaf N than 
genotypes not requiring vernalization for flowering, the latter of which could also behave as spring or 
summer annuals.  

However, the Leaf Economic Spectrum and fast/slow life history frameworks do not well explain our C:N 485 
models in response to climate variables, which were insignificant across regions for both spatial and 
temporal climate gradients of temperature and aridity. This may be due to the intraspecific nature of 
our study, as opposed to the interspecific basis for LES. In multispecies analyses, phenotype correlations 
with climate may be influenced by community composition changes across the environment or may not 
represent the physiology or climate niche of a given species (Albert et al. 2010; Elmore et al. 2017). 490 
However, as additional environmental processes drive leaf nitrogen in the wild, our study may have 
lacked power to differentiate the effects of nitrogen acquisition and efficiency traits from the effects of 
geochemistry. This may be especially true for δ15N, which neither decreased with rainfall nor responded 
to temperature as expected, but did decrease with year as previously reported in multi-species surveys 
(Craine et al. 2009; McLauchlan et al. 2010). 495 

Similarly, we did not see strong relationships between aridity and Δ13C. Δ13C was expected to be closely 
related to environmental conditions of rainfall and temperature due to stomatal gas exchange dynamics 
(Farquhar et al. 1989; Diefendorf et al. 2010). While surprising, Δ13C patterns may be weaker than 
expected for a couple of reasons. First, we observed both positive and negative trends for aridity and 500 
date of collection, consistent with the hypothesis that Arabidopsis exhibits both drought escaping and 
drought avoiding genotypes. The phenological responses to moisture might limit Δ13C responses by 
allowing consistent favorable conditions during growth periods. Second, gas exchange and carbon 
assimilation depend in part on leaf architecture and physiology traits like venation, specific leaf area 
(SLA), and leaf N (Schulze et al. 2006; Brodribb et al. 2007; Easlon et al. 2014), which could mitigate the 505 
Δ13C response we observe. For instance, as SLA increases in areas of high rainfall (expected according to 
LES (Reich et al. 2003)), the photosynthetic rate could be impacted. In addition, genetic variation in 
these traits may affect δ13C, and thus in turn Δ13C, differently in spring and winter annuals (Easlon et al. 
2014). Furthermore, water use efficiency, for which Δ13C serves as an indicator, is not limited to leaf 
traits but could also reflect root investment or other traits unmeasured here. The lack of Δ13C patterns 510 
could also be the effect of elevated atmospheric CO2 (Drake et al. 2017), although limiting the model to 
observations before 1950 (when atmospheric CO2 was much lower) suggested, surprisingly, that Asian 
accessions growing in locations of high Aridity Index may have had decreased Δ13C. Investigating at a 
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smaller scale the patterns we found could clarify mechanisms leading to the phenotype-climate 
associations or lack thereof. Smaller scales would benefit in addressing populations known to be 515 
genetically unique, as in Iberian relicts (Alonso-Blanco et al. 2016), that may cause unexpected regional 
differences in phenotype trends (Figure S1D). 

Our approach, technical problems to surmount in future studies 
Understanding how spatiotemporal environmental variation drives the intraspecific diversity that exists 520 
in broadly distributed species has been challenging due to the scale of the problem. However, advances 
in digitization of museum specimens and the generation of global gridded spatiotemporal 
environmental data are opening a new window into large scale patterns of biodiversity. One challenge 
of herbarium specimens is that they are typically mature (reproductive) individuals. Thus, these 
specimens contain limited information on phenology and physiology at earlier life stages, which can 525 
have subsequently strong impacts on later observed stages. Use of developmental models (Burghardt et 
al. 2015) might allow one to backcast potential developmental trajectories using herbarium specimens 
and climate data, to make predictions about phenology of germination and transition to flowering. 

Generalized additive models are a flexible approach to model phenotype responses to environment that 
might differ spatially among populations (MacGillivray et al. 2010). Herbarium records represent 530 
imperfect and biased samples of natural populations, and future efforts may benefit from additional 
information that might allow us to account for these biases. Here, we sampled a very large number of 
specimens across continents and decades and so we deem it unlikely that most of the patterns we 
observed were driven by biases associated with specific collectors. Nevertheless, as museum informatics 
advance it may become possible to explicitly model potential sources of bias, for example those arising 535 
from collecting behavior of specific researchers. 

Conclusion 
Widely distributed species often harbor extensive intraspecific trait diversity. Natural history collections 540 
offer a window into this diversity and in particular allow investigation of long-term responses to 
anthropogenic change across species ranges. Here we show that spatiotemporal climate gradients 
explain much of this diversity but nevertheless much of the phenotypic diversity in nature remains to be 
explained. 
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S1 

Additional plots of model surfaces 
Phenology 

Figure S1: Temporal model phenology for April mean temperature (A), January minimum temperature (B), July aridity index (C), and year (D). 

Figure S2: Spatial model phenology for April mean temperature (A), January minimum temperature (B), July aridity index (C), and year (D). 
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S2 

Photothermal Units 

Figure S3: Temporal model photothermal units for April mean temperature (A), January minimum temperature (B), July aridity index (C), 
and year (D). 

Figure S4: Spatial model photothermal units for April mean temperature (A), January minimum temperature (B), July aridity index (C), and 
year (D). 
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S3 

Δ13C 

Figure S5: Temporal model Δ13C for April mean temperature (A), January minimum temperature (B), July aridity index (C), and year (D). 

Figure S6: Spatial model Δ13C for April mean temperature (A), January minimum temperature (B), July aridity index (C), and year (D). 
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S4 

δ15N 

Figure S7: Temporal model for δ15N April mean temperature (A), January minimum temperature (B), July aridity index (C), and year (D). 

Figure S8: Spatial model δ15N for April mean temperature (A), January minimum temperature (B), July aridity index (C), and year (D). 
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S5 

C:N 

Figure S9: Temporal model for C:N April mean temperature (A), January minimum temperature (B), July aridity index (C), and year (D). 

Figure S10: Spatial model C:N for April mean temperature (A), January minimum temperature (B), July aridity index (C), and year (D). 
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S6 

Proportion N. Note: the Hessian Matrix was not positive definite for these matrices, so the confidence 
intervals are unreliable. 

Figure S12: Spatial model proportion N for April mean temperature (A), January minimum temperature (B), July aridity index (C), 
and year (D). 

Figure S11: Anomaly model proportion N for April mean temperature (A), January minimum temperature (B), July aridity index (C), 
and year (D). 
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S7 

Δ13C using elevation in place of year 

Figure S14: Spatial model Δ13C for April mean temperature (A), January minimum temperature (B), July aridity index (C), and 
elevation (D). 

Figure S13: Anomaly model Δ13C for April mean temperature (A), January minimum temperature (B), July aridity index (C), 
and elevation (D). 
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S8 

Δ13C using only samples collected before 1950. Rising atmospheric CO2 concentrations may mask climate 
associations (Drake et al. 2017). However, Δ13C before 1950 is still not significantly related to climate for 
the anomaly model or the year only model, and the spatial model indicates a negative association 
between Δ13C and Aridity in the eastern part of the native range. 

Figure S15: Anomaly model Δ13C for April mean temperature (A), January minimum temperature (B), July aridity index (C), and 
year (D) for samples collected prior to 1950. 

Figure S16: Spatial model Δ13C for April mean temperature (A), January minimum temperature (B), July aridity index (C), and year (D 
for samples collected prior to 1950). 
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S9 

Figure S17: Proportion leaf nitrogen and leaf C:N ratio of the accessions sampled in our study show a negative association. 

580 

585 

Figure S18: Quantile regression for C:N predicted by day of collection. No late collected accessions have a high C:N ratio. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 23, 2018. ; https://doi.org/10.1101/424242doi: bioRxiv preprint 

https://doi.org/10.1101/424242
http://creativecommons.org/licenses/by-nc-nd/4.0/


S10 

600 

605 

610 

Figure S20: Covariance of phenotypes. Across space, the relationship between C:N and date or PTU at collection is not 
significantly negative across the range. Δ13C may be positively related to days or PTU at collection in some regions and 
negatively related to days or PTU at collection in other regions, but the relationship does not differ significantly from 0 at the 
95% confidence interval. 

Figure S19: Proportion of variance explained by Principal Components analysis of phenotypes 
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S11 

Isotope measurement methods, continued: 

Samples were combusted at 1000°C and 13C and 15N were measured with a PDZ Europa ANCA-GSL 
elemental analyzer interfaced to a PDZ Europa 20-20 isotope ratio mass spectrometer. Samples were 
run on plates with two laboratory standards similar in composition to our material and calibrated 
against NIST Standard Reference Materials. Reference gases were included to calculate isotope ratios. 
Δ13C and δ15N were described relative to the Vienna PeeDee Belemnite and Air international standards. 

Elevation 

Elevation was acquired from SRTM and WorldClim when SRTM records were missing. Yearly nitrogen 
deposition values were an interpolation of Dentener 2006’s nitrogen deposition model. Code for 
interpolation included with other scripts.  
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