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Abstract

Spectral-domain optical coherence tomography (SDOCT) is a non-invasive imaging
modality that generates high-resolution volumetric images. This modality finds
widespread usage in ophthalmology for the diagnosis and management of various ocular
conditions. The volumes generated can contain 200 or more B-scans. Manual inspection
of such large quantity of scans is time consuming and error prone in most clinical
settings. Here, we present a method for the generation of visual summaries of SDOCT
volumes, wherein a small set of B-scans that highlight the most clinically relevant
features in a volume are extracted. The method was trained and evaluated on data
acquired from age-related macular degeneration patients, and “relevance” was defined
as the presence of visibly discernible structural abnormalities. The summarisation
system consists of a detection module, where relevant B-scans are extracted from the
volume, and a set of rules that determines which B-scans are included in the visual
summary. Two deep learning approaches are presented and compared for the
classification of B-scans - transfer learning and de novo learning. Both approaches
performed comparably with AUCs of 0.97 and 0.96, respectively, obtained on an
independent test set. The de novo network, however, was 98% smaller than the transfer
learning approach, and had a run-time that was also significantly shorter.

1 Introduction 1

The detection of key frames is a common approach employed in video analysis, 2

particularly for the summarisation of video sequences. The techniques typically rely on 3

the detection of explicit features of interest such as motion [1,2] as well as other features 4

such as edge information [3] and self-similarity [4]. Condensing videos via shot 5

boundary detection has also been applied to the summarisation of video sequences [5]. 6

In medical imaging, the detection of keyframes is more commonly found in the 7

analysis of angiogram video sequences, but is less common in other radiographic 8

modalities. Gibson et al. [6] described an approach for the compression of angiogram 9

videos by detecting diagnostically relevant frames in videos and ensuring they were 10

preserved. Syeda-Mahmood et al. [7] presented an approach for the detection of key 11

frames in angiogram video analysis by detecting the vessels and selecting frames in 12

which their visibility was best. However, both of these approaches relied on the explicit 13

detection of features of interest in the images in order to identify them as “key”. 14

In ophthalmology, spectral-domain optical coherence tomography (SDOCT) [8] has 15

begun to find widespread use for the diagnosis and management of various ocular 16

conditions. This non-invasive imaging modality relies on laser interferometry to 17
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generate high-resolution images of the retina, which allows for the visualisation and 18

quantification of structures in 3-D. These volumetric images are comprised of B-scans, 19

which numbers can range from as few as five to two hundred or more. Summarisation of 20

these volumes in current scanning systems is usually limited to a report that indicates 21

the thicknesses of retinal layers. While such a report shows large pathologies such as 22

choroidal neovascularizations (CNV), smaller abnormal indicators such as drusen, 23

epiretinal membranes and microcytic macular edema would not be visible. Thus, visual 24

summaries could complement the existing approach, by highlighting the pathological 25

conditions that are currently not quantified. Previously, Chakravarthy et. al [9] 26

described an approach for the detection of B-scans that show choroidal 27

neovascularization (CNV). The method relies on the detection of the retina, followed by 28

a machine-learning approach for the detection of possible fluid patches in the images. 29

While this approach does in fact extract the specific B-scans, the method is limited to 30

CNVs associated with wet-AMD. 31

Here, we present a deep learning approach for the automated summarisation of 32

SDOCT volumes. Similar to previous summarisation techniques our proposed system 33

begins with the detection of “key” B-scans. The system was trained and tested on 34

SDOCT volumes acquired from patients that presented with age-related macular 35

degeneration (AMD), and “relevance” was defined on the basis of the presence of visibly 36

discernible structural abnormalities. Using a deep learning approach for this task allows 37

it to be posed as a recognition task, and thus, does not require the explicit extraction of 38

features (such as CNV) in order to characterise the B-scan. We employed and compared 39

two deep learning techniques for keyframe extraction, where one is a transfer learning 40

technique based on a pretrained network, while the second is a de novo trained custom 41

convolutional neural network (CNN) that is significantly smaller. Transfer learning is a 42

commonly used technique that allows for the repurposing of pretrained networks in 43

applications where data might be scarce (as is commonly the case in medical imaging). 44

Once the relevant B-scans had been identified, a set of rules were applied to generate 45

the visual summary. 46

The paper is organised as follows: Section 2 details the data used in this experiment; 47

Section!3 describes the two deep learning networks as well as the summarisation rules. 48

The evaluation and comparison of the two networks is presented in Section!4, and a final 49

discussion of the results can be found in Section 5. 50

2 Data 51

The data used in the experiments were SDOCT images acquired as part of the AREDS2 52

Ancilliary Study. As detailed in [10], the dataset was registered at ClinicalTrials.gov 53

(Identifier: NCT00734487) and approved by the institutional review boards at 4 A2A 54

SDOCT clinics. With adherence to the tenets of the Declaration of Helsinki, informed 55

consent was obtained from all subjects. 56

The study cohort consisted of 115 healthy individuals and 269 patients with 57

age-related macular degeneration (AMD). The images were acquired on a Bioptigen 58

SDOCT scanner (Leica Microsystems Inc., Illinois) from an approximately 6.7×6.7mm 59

area centred on the fovea. Each volumes consisted of 100 B-scans, each containing 1000 60

A-scans and 512 pixels per A-scan (see Fig. 1(a)). Further details of the study are 61

provided in [10]. 62

Figure 1. (a) The dimensions of an SDOCT volume depicted on the en-face image
(left) and the central B-scan of the volume (right). Examples of poor quality scans with
(b) poor contrast, (c) large shadows, and (d) incorrect mirror position.
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2.1 Data Annotation 63

The volumes were manually annotated and labeled as being healthy, relevant 64

(containing visibly discernible structural change) or low-quality. For this, each B-scan 65

was visualised and labeled relevant if any visual structural change was observed. Thus, 66

retinal layer thinning (which is difficult to identify visually) was not considered a key 67

feature. However, B-scans with even minor disruptions like small drusen, reticular 68

pseudodrusen and epiretinal membranes were all labeled as relevant “key” B-scans. 69

The presence of large shadows, poor contrast and other artefacts (such as vinetting, 70

mirror location errors) were flagged as poor quality B-scans (see Fig. 1(b)-(d)). 71

3 Methods 72

Deep learning [11] has been successfully employed for a number of applications in 73

computer vision such as image recognition [12,13] and semantic segmentation [14,15]. 74

This technique has also found application in medical imaging [16] for recognition [17], 75

segmentation [18–20] as well as image registration [21–23]. While larger architectures 76

have shown to perform better than shallower networks, their training also requires 77

larger datasets. 78

Transfer learning is a technique that re-purposes existing, trained models for new 79

tasks by retraining only small parts of the network. As most weights of the network are 80

left unchanged, this reduces the amount of training data required. Transfer learning 81

lends itself to medical imaging quite well, as large datasets are difficult to acquire in the 82

medical domain. Thus, this was the first technique we employed for the detection of 83

relevant B-scans (detailed in Section 3.1). We utilised the 16-layer VGG network [13] 84

that was initially trained for the ImageNet Challenge - a classification problem 85

consisting of 1000 classes of natural scene images [24]. 86

Transfer learning, however, is not without problems. The pre-trained networks were 87

designed for object recognition in natural scene images, and require the input to be a 88

3-channel RGB image. SDOCT images are however, grayscale. Thus, a B-scan either 89

has to be replicated three times to meet the required input dimensions, or a section of 90

three slices (and only three) has to be used as network input. Designing and training a 91

network de novo allows to circumvent this requirement and potentially could also result 92

in a smaller or more accurate network. For comparison we therefore also designed a 93

significantly smaller convolutional neural network (CNN) that was trained de novo 94

(detailed in Section 3.2). 95

The networks were developed in Keras [25] with TensorFlow [26] as the backend and 96

nuts-flow/ml [27] for the data pre-processing. 97

3.1 Transfer Learning Approach 98

The structure of the 16-layer VGG network [13] is as shown in Fig. 2(a). It consists of 99

3x3 convolutional filters with a stride of 1; padded to preserve spatial resolution. All 100

layers utilised rectified linear unit [12] (ReLU) activation. The original network for an 101

input RGB (3-channel) image of 224x224 pixels in size contained 138 million parameters. 102

See [13] regarding training of the original network. 103

Since the classification task at hand is a 2-class problem, the model was changed to 104

reflect this (see Fig. 2(b)). Furthermore, the two fully connected layers prior to the final 105

layer were reduced in size from 4096 to 1024 and 512, respectively. Removal of the two 106

original fully connected layers allowed for the input size of the network to be changed to 107

300x512x3 pixels. For an input image of this size, the total size of the network is 18.6 108

million parameters. The five blocks of convolutional filters were used as feature 109
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Figure 2. The structure of the (a) original VGG-16 network [13], and (b) the modified
transfer network for keyframe detection. Note that the layers in the first five banks of
CNNs have not been changed from the original network, and that only the last three
fully-connected layers were re-trained.

Figure 3. Outline of the data preprocessing steps showing (a) the original slice, (b) the
filtered image, (c) connected components of the thresholded image, and (d) the final
cropped image indicated by the red box.

extractors and were not re-trained or fine-tuned, resulting in a network with 3.8 million 110

trainable parameters. 111

Network weights were opimized by Adam [28], with parameters set to recommended 112

values (learning rate set to 1−6, β1 = 0.9, β2 = 0.999, and ε = 1−8). The loss function 113

was the balanced cross-entropy loss function: 114

L =
∑
i

−C2yi log ŷi − C1(1− yi) log(1− ŷi) (1)

where, yi is the true label and ŷi is the predicated label of the i-th sample, and C1 and 115

C2 are the number of samples of the first and second class in the batch, respectively. 116

This loss function, being normalised by the number of samples in each class helps with 117

class imbalances. Training was stopped when the validation loss did not decrease by 118

more than 0.1 or after 150 epochs. 119

Data preprocessing The individual B-scans in each volume are 512x1024 pixels in 120

size. The retina however, does not encompass the entire B-scan, with a large portion of 121

the image showing the vitreous, choroid and scleral tissue. Thus, detecting and 122

extracting the image region that contains the retina reduces the image size. Therefore, 123

the image was filtered with a gaussian derivative filter (first order, σ=6.0). This 124

generated a high response at the internal limiting membrane (ILM), and the ellipsoid 125

zone of the photoreceptors as shown in Fig. 3(a)-(b). This response was then 126

thresholded (using a threshold obtained by Otsu’s method [29]), and the largest 127

connected components were detected. Since the largest two components belong to the 128

retinal surfaces, their locations defined the bounding boxes (at least 300 pixels in height) 129

around the retina, and B-scan were cropped to this size. The cropped B-scan was finally 130

resized to 300x512, and replicated three times to match the requirements of the VGG-16 131

network, which expects the input to be a 3-channel image. The training data was 132

augmented through random rotations (±5◦), translations (±10 pixels), contrast scaling 133

(0.3, 1.7) and flipping along the horizontal axis. 134

3.2 De Novo Network 135

The de novo CNN consisted of 4-layers with 32, 64, 128, and 128 filters (3x3 in size). 136

Skip connections [30] were introduced between the layers, with the outputs from the 137

previous layers being concatenated prior to pooling. ReLU activation, and pooling 138

(maximum in a 2x2 window) followed each CNN layer (see Fig. 4). A global average 139

pooling (GAP) layer was added to enable the generation of class activation maps 140

(CAM) [31]. Finally, a fully connected layer (size = 2) with a softmax output provided 141

the class probability for the input B-scan. The resulting network contained only 391300 142

trainable parameters, and is 2% the size of the transfer learning network. As before, 143

training was performed by Adam with the balanced cross-entropy loss function (see 144

Eq. 1). 145
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Figure 4. Architecture of the de novo network for keyframe detection.

Data Preprocessing The individual B-scans were processed as described for the 146

transfer-learning approach, beginning with the detection of the retina followed by image 147

cropping at the bounding box. The resulting images were down-sampled by a factor of 2 148

(final size 150x256 pixels) and directly inputted into the network as 1-channel gray-scale 149

images. Training data was augmented as before, employing random rotations (± 5◦), 150

translations (± 10 pixels), contrast scaling (0.3, 1.7) and flipping along the horizontal 151

axis. 152

3.3 Experimental Setup 153

This annotated dataset was then divided into training, validation and testing sets 154

containing 75%, 10% and 15% of the SDOCT volumes, respectively. The allocation of 155

an entire volume to a set ensured that B-scans from a single volume were not 156

distributed across the sets. The final numbers of B-scans - healthy and relevant - in 157

each set are as shown in Table 1. 158

Table 1. Sizes of training, validation and testing sets.

Class Training Set Validation Set Testing Set

OCT Volumes
Healthy 95 4 16
AMD 193 34 42
Total 288 38 58

B-scans

Healthy 15,883 1,527 3,024
Relevant 8,478 1,619 1,961

Low Quality 4,421 654 815
Final Set 24,361 3,146 4,985

The performance of the two networks was evaluated using the area under the curve 159

(AUC). The false positive and false negative rates were also computed and compared for 160

the two networks. 161

3.4 Summarisation Rules 162

Once the relevant B-scans have been extracted, a set of rules is imposed to select the 163

key-frames (see Algorithm 1). If no relevant B-scans were identified by the deep 164

learning framework, then three slices (two peripheral and one central slice) are returned 165

by the system. Otherwise, the function RegionDetector() analyses the set of relevant 166

B-scans Fi, i = 1, 2, ...N , and groups them into regions. If two of the identified B-scans 167

are only separated by a small distance (preset threshold T ), they are considered to part 168

of the same region. This not only compensates for mislabeled B-scans (not correctly 169

identified as relevant for the summary), but also aggregates small regions that show 170

disease-induced change. For instance, drusen may be present in a small number of 171

B-scans near the fovea, but the individual slices may be separated by a few slices that 172

show no pathology. In such a situation, it is reasonable to aggregate them into a larger 173

region. A flexible threshold T , controls the aggregation during run time. 174

Next, each region is represented by the first, median and last scan of each region. 175

Thus, if M regions are detected in the volume, a total of 3M key-frames will be returned 176

by the algorithm. Note, that selecting the median and not the midpoint between the 177

first and last B-scans, ensures that the B-scan included in the summary will be one that 178

was identified by the deep learning classifier as being relevant for the visual summary. 179
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Algorithm 1: Summarisation Rules

input : F : Indices of relevant B-Scans
T : Region threshold for scan aggregation
V : OCT volume

output :K : Indices of key-frames
Function RegionDetector(F , T):

DICT R(int, List) % Dictionary of regions %
LIST L ← F[1]
j ← 1
for i← 2 to len F do

if F [i]− F [i− 1] <= T then
L append F [i]

end
else

R[j++] ← L
L ← F[i]

end

end
return R

Function Main(F , V ):
if len F = 0 % no key-frames % then

n ← number of B-scans in V
K append n/4, n/2, 3n/4

end
else

R ← RegionDetector(F , T )
% represent each region by first, median and last relevant scan %
for i← 1 to len R do

L ← R(i)
j ← len L
K append L[1], L[j/2], L[j]

end

end
return K

4 Results 180

The training of the transfer learning network required approximately 1000 epochs, while 181

de novo training needed nearly 2000 epochs. This is to be expected as the transfer 182

learning network is pre-trained. The initial loss was also substantially larger for the 183

de novo network (Note the difference in y-axes scales in Fig. 5). 184

Figure 5. Loss and accuracy (AUC) monitored during (a) transfer learning and (b)
de novo training.

The AUC, computed on the test set alone, was 0.97 and 0.96 for the transfer 185

learning and the de novo networks, respectively (see Fig. 6(c)). The sensitivity (upper 186

left quadrant of the confusion matrix) was found to be 0.91 for the transfer learning and 187

0.90 for the de novo network (see Fig. 6(a)-(b)). Similarly, the specificity was found to 188

be 0.91 and 0.89 for the transfer learning and de novo networks, respectively. Fig. 7 189

shows instances of B-scans with mild ((a)-(c)) and severe ((d)-(f)) AMD-related 190

pathologies that were correctly identified by the networks as being relevant to the visual 191
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summary. The CAM visualisation for mild and severe B-scans are shown in Fig. 7. 192

Figure 6. Confusion matrices for the (a) transfer learning (TL) and (b) the de novo
network. (c) The AUC plot for the two networks.

Figure 7. Examples of AMD B-scans with small/mild (top row) and significant
pathologies (third row). CAMs from the de novo network for the same images are
shown in the second and fourth rows, respectively.

The percentages of false positives arising from the control datasets was also 193

computed, and found to be 6% and 7.5% for the transfer learning and de novo networks, 194

respectively. Visualisations of these B-scans showed that poor quality scans from the 195

healthy controls were sometimes misclassified. Errors in the retinal localisation as 196

shown in Fig. 8(b) also led to misclassifications. The false negatives were analysed 197

further in order to investigate why they were misclassified. Visually inspecting the 198

results obtained from the transfer learning framework revealed that the false negatives 199

in 73% of the cases contained small pathological conditions such as isolated drusen (see 200

Fig. 8(c)). Similarly, for the de novo network, 91% of the false negatives showed “mild” 201

visually discernible pathologies. However, there were also instances where geographic 202

atrophy was not correctly identified as a pathology (see Fig. 8(d)). The dataset consists 203

of horizontal as well as vertical scans [10], where normal B-scans close to the optic nerve 204

head are visually very similar to geographic atrophy. Since the model did not 205

incorporate this additional piece of information (horizontal or vertical scan), it is not 206

surprising to see misclassifications of this particular pathology. 207

Figure 8. Examples of false positives from control subject scans (top row), and false
positives in AMD scans (bottom row).

4.1 Summarisation Result 208

An example of a visual summary generated by the system is displayed in Fig. 9. This 209

scan showed pigment epithelial detachment at the fovea, and only a single region was 210

identified by the summarisation rules. 211

A second example of an SDOCT volume with drusen and geographic atrophy is 212

presented in Fig. 10. Here three separate regions were detected by the summarisation 213

algorithm as indicated by the blue, red and green regions in Fig. 10(b). The final visual 214

summary consisting of the B-scans that represent the three regions depicted in 215

Fig. 10(c). The individual B-scans from the three regions are shown in the three rows 216

Fig. 10(d) - (l), with the colours of the bounding boxes corresponding to the location 217

indicated in Fig. 10(c). 218

5 Discussion & Conclusions 219

SDOCT finds extensive use in ophthalmology for the visualisation and quantification of 220

structures in the retina. This high-resolution modality generates vast quantities of data 221

(∼ 50MB per volume), making the visual inspection of these images time-consuming, 222

tiring and therefore error prone. Summarisation of the SDOCT volumes has been 223

limited to the extraction of structural measurements, such as retinal layer thicknesses or 224

optic nerve head parameters such as cup-to-disc ratio. However, other conditions such 225

as epiretinal membranes or intra-layer cysts (that do not affect retinal layer thickness) 226
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Figure 9. (a) The en-face projection image of the volume, with (b) all the key B-scans
and (c) the final visual summary. The B-scans that correspond to the three locations
are shown below, and colour coded to indicate their location in the volume.

Figure 10. (a) The en-face projection image of the volume, with (b) all the key
B-scans and (c) the final visual summary. The three B-scans corresponding (d) - (f) to
the first region (blues), (g) - (i) the second region (reds), and (j) - (l) to the third region
(greens).

require the manual inspection of the B-scans in the OCT volume. Visual summaries 227

that retrieve key B-scans and identify relevant regions of the scan can be a valuable 228

addition to the existing diagnostic framework. 229

Previously proposed summarisation methods for videos or volumetric medical images 230

rely on the detection of relevant features, similar to our approach. However, our method 231

does not explicitly segment AMD-related pathologies (see [9]), but uses a deep learning 232

network for the detection of B-scans that show structural abnormalities. Our method 233

can be extended to any structural abnormality or even use a different definition of 234

“relevance”. For instance, a similar system could be designed to extract B-scans where 235

maximal temporal change is identified. This would allow to monitor a variety of 236

conditions such as AMD (dry or wet) or even glaucoma, where changes at the optic cup 237

are recorded over time. A system that analyses temporal SDOCT volumes, however, 238

could not utilise transfer learning and would require a de novo network, designed and 239

trained for the specific application. In our experiments, we found that the de novo 240

training and network design can offer advantages over transfer learning, the most 241

important being the relaxation of input restriction, e.g. three-channel input image of 242

specific size vs a grayscale image of selectable size. 243

A separate experiment was conducted with the transfer learning network, where the 244

input consisted of three adjacent B-scans instead of a replication of a single B-scan. 245

Intuitively, one would expect that the use of adjacent B-scans would bolster the 246

network’s ability to detect the key B-scans, but this network performed worse. The 247

conclusion to be drawn is not that the adjacent B-scans have no additional useful 248

information, but that the transfer learning network is ill-equipped to leverage this. The 249

VGG-16 network was originally designed for three-channel colour images where each 250

channel presented different colour characteristics of the same image. Here, the adjacent 251

B-scans might show differing structures (healthy B-scans adjacent to one with small 252

drusen), and the network was not able to efficiently leverage this additional information. 253

A de novo network, designed and trained for this, might do better, but we did not 254

pursue this. 255

The de novo network, being custom designed, also allowed for the incorporation of a 256

the global average pooling layer (to generate the CAMs), as well as skip-connections 257

(known to assist in training). The inclusion of the CAM brings a degree of 258

“explainability” to the system, where this visualisation indicates the source of the final 259

class label. This output could also be used as an input to the rules that generate the 260

visual summaries, where the size of would CAMs impact the inclusion in the visual 261

summary. The de novo network was 98% smaller than the VGG-16 network, but was 262

found to be just as accurate and robust. This small size allowed for rapid training and 263

required only two days (on a K80 NVIDIA GPU) instead of the six needed by the 264

transfer learning network. Run-time is also affected by network size and the 265

classification of an entire SDOCT volume only took four seconds for the de novo 266

network, while the larger transfer learning network took 190 seconds (computed on a 267

2.5GHz Intel Core i7, 16GB RAM system). 268

In conclusion, the presented de novo network allows for the rapid and reliable 269
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detection of key B-scans in SDOCT volumes, which are used to generate visual 270

summaries of volumes. In the future, we intend to extend the summarisation techniques 271

to other disease models, as well as explore the use of small networks, designed 272

specifically for the task at hand. 273
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